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Abstract

Diverse tree structures such as blood vessels, branches of a tree and river basins

exist in nature. The constructal law states that the evolution of flow structures in

nature has a tendency to facilitate flow. This study suggests a theoretical basis for

evaluation of flow facilitation within vascular structure from the perspective of

evolution. A novel evolution parameter (Ev) is proposed to quantify the flow

capacity of vascular structures. Ev is defined as the ratio of the flow conductance of

an evolving structure (configuration with imperfection) to the flow conductance of

structure with least imperfection. Attaining higher Ev enables the structure to

expedite flow circulation with less energy dissipation. For both Newtonian and non-

Newtonian fluids, the evolution parameter was developed as a function of

geometrical shape factors in laminar and turbulent fully developed flows. It was

found that the non-Newtonian or Newtonian behavior of fluid as well as flow

behavior such as laminar or turbulent behavior affects the evolution parameter.

Using measured vascular morphometric data of various organs and species, the

evolution parameter was calculated. The evolution parameter of the tree structures

in biological systems was found to be in the range of 0.95 to 1. The conclusion is

that various organs in various species have high capacity to facilitate flow within

their respective vascular structures.
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Introduction

Constructal law is a theory that stipulates the generation of design evolve

structures that increase flow [1–3]. In 1996, Bejan stated the constructal theory as

‘‘for a finite-size flow system to persist in time (to live) its configuration must

evolve in such a way that provides greater and greater access to the currents that

flow through it’’ [4]. According to the constructal law, a living system is a non-

equilibrium system in thermodynamics with a structure that morphs towards

configurations that provide easier flow through the system. The constructal law

hypothesizes the evolution of design [5], and a mathematical formulation of

constructal law based on thermodynamics is presented in Bejan and Lorente [6].

According to the constructal law, the configuration of a flow system evolves to

acquire more global performance (minimization of imperfection) over time.

Tree structures play a vital role in the transport of substance in nature. A

diversity of designs with tree structures exists in nature such as blood vessels, river

basins, bronchial and botanical trees. The well-known Murray’s law states that the

flow through a branch is proportional to the diameter cube of the branch.

Murray’s law represents minimization of energy dissipation, which consists of

viscous dissipation and metabolic cost. This law implied (through conservation of

mass) that the cube of vessels diameter at each generation is preserved, i.e.,P
D3~const. Although the HK (Huo-Kassab) model has shown the exponent is

equal to 7/3 (rather than 3) in coronary branching [7], the power-law form of

Murray’s relation still holds in living vascular structures. Murray’s law has been

validated in some vascular networks in zoology [8] and in plants [9]. For instance,

small arteries of the rat cardiovascular system, swine heart arterioles, and

symmetrical branching pattern of leaf veins support Murray’s law [10–13]. A

comparison of the various laws that govern coronary branching including Murray,

Finet and HK models are summarized in Ref. [14].

A number of studies have been conducted to deduce the design of tree

structures [15–25]. These studies, however, have not focused on the evolutionary

aspect of the constructal design. The objective of this study is to provide an

analytical basis for evaluation of flow capacity within vascular structures. A novel

evolution parameter (Ev) is proposed to evaluate the structure’s capability to

facilitate flow from an evolutionary perspective. The evolution parameter is

obtained for tree geometries using fully developed laminar flows (Newtonian and

non-Newtonian fluids) and fully rough turbulent flows. Lastly, the evolution

parameter is calculated based on vascular morphometric data of various organs

and species.

Methods

2.1 Properties of Flow Systems

The constructal law postulates that uniform design rules of flow systems are due

to universal propensity for flow facilitation in nature. According to constructal
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law, the configuration of flow systems evolves to provide greater access to global

flow [26]. A flow system is a dynamic system with the following properties which

distinguish it from a static system: 1) global external size (area occupied by a tree

construct), 2) global internal size (volume of a tree construct), 3) the global

performance (global flow resistance of a tree construct), 4) configuration

(construction of conduits distribution on the available area or volume), and 5)

freedom to morph the configuration for providing easier access to the global flow

[2]. The flow system properties form dimensionless parameters that describe

features of vascular design as shown below.

2.2 Svelteness

A flow system has a property called svelteness (Sv) which is the ratio between its

external global and internal length scale [26]. For a symmetrical tree structure, the

internal and external sizes are the volume V~ p
4 D2

mLmz2D2
dLd

� �� �
and area

A~Lm|Ldð Þ occupied by the tree structure where Lm and Ld, Dm and Dd, are

lengths and diameters of mother and daughter branches, respectively.

Consequently, the svelteness of a symmetric tree structure is expressed as [26]:

Sv~
A1=2

V
1
3

ð1Þ

The non-dimensional svelteness parameter characterizes the bulk of vessels in the

design of vascular structures. Small Sv denotes thin vessels in the vascular system

while large Sv denotes the converse [5]. When the body size of animal grows, the

svelteness increases accordingly. Moreover, the Sv connects the size of a flow

system to its design. It has been shown that the Sv has a power law relationship

with the mass of system (M) for laminar flows Sv!M1=9
� �

and turbulent flows

Sv!M3=48
� �

[5, 16, 27].

2.3 Evolution parameter

A novel dimensionless parameter is proposed for evaluating the evolution of the

geometry of a vascular system. The flow through a living system along with its

shape and size, are subjected to continuous change in response to physical and

environmental stimuli. In view of constructal design, the configuration of a flow

system must evolve to provide easier access to global flow. In other words, the

time direction of evolution of a flow system, which is subject to different

constraints, is in the general direction of attaining greater flow. In order to

quantify the structure’s capacity for flow facilitation, the evolution parameter (Ev)

is defined as the ratio of the global performance of the evolving configuration

(configuration with imperfection) to configuration with least imperfection, under

the same global constraints. The evolution parameter varies from zero to one

(design with least imperfection) and is defined as follows:
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Ev~
global performance of the evolving conf iguration

global perf ormance of the conf iguration with least imperfection
ð2Þ

As the evolution parameter approaches one, the configuration evolves to higher

flow. The global performance of a flow system is the global flow conductance,

which is the reciprocal of the flow resistance. Therefore, the evolution parameter

can be expressed in terms of flow resistance as:

Ev~
f low resistance of the conf iguration with least imperfection

f low resistance of the evolving conf iguration
ð3Þ

Since the flow resistance is function of flow behavior, the evolution parameter is

obtained for different models including fully developed laminar (Newtonian and

non-Newtonian fluids) and fully rough turbulent flows.

2.3.1 Newtonian fluids

Although Newtonian fluids such as water are ubiquitous in nature, some non-

Newtonian fluids such as blood behave like a Newtonian fluid only at high shear

rates (in large blood vessels). For fully developed flows of Newtonian fluids within

a symmetrical tree, the global flow resistance Rglobal~DP=Q
� �

, that is the ratio of

pressure drop DPð Þ to flow rate Qð Þ, is obtained as (see S1 Appendix):

Rglobal~ks,N
Lm

D4
m

z
Ld

2D4
d

� �
ð4Þ

where ks,N is a function of viscosity, ks,N~128m=p . By combining Eqs. (1) and (4),

the global flow resistance is written as (see S1 Appendix):

Rglobal~
p

4

� �2
ks,N

� �
Sv
V

3� � 1z2a2bð Þ2 1z b

2a4

� �
b3=2

ð5Þ

where the shape factors of a and b are the diameter ratio a~Dd=Dmð Þ and the

length ratio b~Ld=Lmð Þ, respectively; and V is volume of the tree structure

V~ p
4 D2

mLmz2D2
dLd

� �� �
. Equation (5) shows that the global flow resistance is a

function of fluid properties ks,Nð Þ, the svelteness, internal size (V) and shape

factors (a and b). The global flow resistance, Eq. (5), can be minimized with

respect to shape factors (a and b). The shape factors that provide the minimal

flow resistance are the characteristics of the configuration that facilitates access to

the global flow. Minimization of Rglobal with respect to a and b, results in the

following shape factors (see S1 Appendix):

aopt~2{1=3 ð6Þ

bopt~2{1=3 ð7Þ

Incidentally, Eq. (6) is the same as Murray’s law for symmetrical trees. Equations

(6) and (7) can be verified by the results in ref. [26]. Substitution of 2{1=3 for
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shape factors in the global flow resistance yields the minimal flow resistance of

Newtonian flows. Using Eqs. (3), (5), (6), and (7), the evolution parameter for a

tree structure is expressed as:

EvN~

ffiffiffiffiffiffiffiffiffi
27b3

p
1z2a2bð Þ2 1z b

2a4

� � ð8Þ

The structure with minimal flow resistance and the evolving structure, which form

the evolution parameter, are equal in occupied area and volume, and thus

svelteness. Since the evolution parameter is the ratio between the minimal flow

resistance and the evolving flow resistance, the evolution parameter is only a

function of shape factors for constant properties of fluid ks,Nð Þ.

2.3.2 Non-Newtonian fluids

Most biological fluids such as blood have non-Newtonian behavior (especially in

the microvasculature where the shear rate is smaller). For non-Newtonian fluids,

viscosity is a non-linear function of shear rate. The power law model is widely

used to describe the behavior of a non-Newtonian fluid as:

t( _c)~g _cn ð9Þ

where, t is shear stress; _c is shear rate; g is apparent viscosity and n is index of the

power law model. An index of the power law describes the shear thinning (pseudo

plastic; nv1) or the shear thickening (dilatant fluids; nw1) behavior. The flow

resistance in a tree structure Rglobal~DP
	

Q1=n
� �

for power law fluids can be

written as (see S2 Appendix):

Rglobal~ks,P
Lm

D3nz1
m

z
Ld

2nD3nz1
d

� �
ð10Þ

where, ks,P is proportional to the apparent viscosity. For fixed internal and

external sizes and constant properties of fluid, the global flow resistance as

function of index of the power law model and shape factors is expressed as (see S2

Appendix):

Rglobal~
p

4

� �3nz1
2 ks,P

� �
Sv
Vn

3nz3
2

 !
1z2a2bð Þ

3nz1
2 1z b

2na3nz1

� �
b

3nz3
4

ð11Þ

The result of minimizing Eq. (11), as a function of a and b, is the same as

Newtonian model (Eqs. (6) and (7)), see S2 Appendix. Similar to Newtonian

model, the svelteness and volume of the evolving structure and the structure with

minimal resistance are the same. The evolution parameter is written in terms of

shape factors as (see S2 Appendix):

EvP~
2

7nz3
4 z2

3nz7
4

� �
b

3nz3
4

1z2a2bð Þ
3nz1

2 1z b

2na3nz1

� � ð12Þ
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Equation (12) shows that the evolution parameter is a function of fluid behavior

as well as the aspect ratios for non-Newtonian fluids. As expected, the result of Eq.

(12) is the same as that of Eq. (8) for n~1.

2.3.3 Turbulent model

Unlike laminar flows where the viscous effects are dominant, turbulent flows are

characterized by fluctuant properties due to the non-linear inertia effects.

Turbulent flows are common in natural phenomena such as atmospheric

circulation, oceanic currents and aortic blood flow. For a tree structure, the global

flow resistance for fully rough turbulent flows Rglobal~DP=Q2
� �

is given by (see

S3 Appendix):

Rglobal~ks,T
Lm

D5
m

z
Ld

4D5
d

� �
ð13Þ

where, ks,T is a function of geometry and fluid properties. The global flow

resistance of a tree structure as function of Sv, shape factors, volume, and fluid

properties is written as (see S3 Appendix):

Rglobal~
p

4

� �5=2
ks,T

� �
Sv

V4=3

7=2� � 1z2a2bð Þ5=2 1z b

4a5

� �
b7=4

ð14Þ

Minimization of Rglobal with respect to a and b, results in:

aopt~2{3=7 ð15Þ

bopt~2{1=7 ð16Þ

Using Eqs. (3), (14), (15) and (16), the evolution parameter, EvT , is obtained as

(see S3 Appendix):

EvT~
215=4b7=4

1z2a2bð Þ5=2 1z b

4a5

� � ð17Þ

Results

3.1 Theoretical Results

In order to compare the effect of shape factors on the value of evolution

parameter for Newtonian, power law, and turbulent models, Ev is plotted as

function of a and b. Ev is plotted in a wide range of shape factors (0:01vav100
and 0:01vbv100). Although the shape factors of vascular structures are nearly

unity, we plot Ev in a wide range to provide insight into the effect of shape factor

on the behavior of the evolution parameter. Fig. 1A shows that for
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a~2{1=3<0:79 and b~2{1=3, the evolution parameter approaches unity; i.e. the

configuration with the least imperfection. Moreover, a~2{1=3 provides the

maximum Ev at all length ratios. For length ratio other than b~2{1=3, however,

the evolution parameter is less sensitive to the diameter ratio. It is also observed

that the gradual movement towards a~2{1=3 increases the evolution parameter.

In addition, very small or large shape factors leads to very small Ev (e.g., shape

factors equal to 0.01 or 100 results in Ev~10{8 or Ev~10{9, respectively).

Fig. 1B demonstrates how the evolution parameter changes when the shape

factors approaches 2{1=3. For diameter ratios other than a~2{1=3, the maximum

value of Ev oscillates around b~2{1=3. As the diameter ratio approaches

a~2{1=3, the evolution parameter increases and the maximum Ev occurs around

b~2{1=3. For large values of the diameter ratio (e.g., a~8|2{1=3), Ev reaches a

maximum at small values of the length ratio (e.g. b~0:043). It is noted that for

small diameter ratios (e.g., a~1=8|2{1=3), the maximum of Ev occurs at

relatively large length ratios (e.g. b~16:9). This indicates that a balance between

large and small shape factors yields the maximum Ev. The evolution parameter is

given for non-Newtonian fluids in Figs. 2A,B and 3A,B. Figs. 2A and 2B depict

the evolution parameter as function of diameter and length ratios, respectively.

The power index of non-Newtonian pseudo-plastic fluid is assumed to be 0.5 (the

fluid has a shear-thinning behavior). Figs. 3A and 3B illustrate the evolution

parameter as function of diameter and length ratios, respectively for non-

Newtonian dilatant fluids with n51.5 (the fluid has a shear-thickening behavior).

The trend in the evolution parameter for non-Newtonian fluids is similar to that

Fig. 1. Evolution parameter for Newtonian fluids. (a) Ev as function of diameter ratio for different length ratios; (b) Ev as function of length ratio for
different diameter ratios.

doi:10.1371/journal.pone.0116260.g001
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of Newtonian fluids. The value of power index, however, can change the effect of

shape factors on the evolution parameter. The shear thinning behavior (e.g.

n50.5) diminishes sensitivity to the variation of shape factors while the shear

Fig. 2. Evolution parameter for non-Newtonian pseudo-plastic fluids with n50.5. (a) Ev as function of diameter ratio for different length ratios; (b) Ev as
function of length ratio for different diameter ratios.

doi:10.1371/journal.pone.0116260.g002

Fig. 3. Evolution parameter for non-Newtonian dilatant fluids with n51.5. (a) Ev as function of diameter ratio for different length ratios;(b) Ev as function
of length ratio for different diameter ratios.

doi:10.1371/journal.pone.0116260.g003
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thinning effect (e.g. n51.5) increases the effect. For example, a~100|2{1=3 and

b~100|2{1=3 result in Ev~10{12 for n~1:5, Ev~10{9 for n~1:0, and

Ev~10{5 for n~0:5. The behavior of Ev indicates that the evolution of a flow

configuration correlates significantly with the fluid behavior such as non-

Newtonian shear thinning or shear thickening behaviors.

For a turbulent model, Ev is plotted as function of a and b in Figs. 4A and 4B,

respectively. The trend in variation of Ev is similar to that of laminar flows but

maximum Ev occurs at a~2{3=7 and b~2{1=7 rather. Figs. 4A and 4B show that

the flow behavior, such as turbulence, affect the pattern of the evolution

parameter alternation. Hence, the flow behavior (laminar or turbulent) as well as

fluid behavior (Newtonian and non-Newtonian) change the pattern of Ev as

function of shape factors.

3.2 Anatomical Data

The one-third power in Eqs. (6) and (7) generally agrees well with small arteries

and arterioles [8, 10–12, 28]. Experimental measurement of exponents in a and b,

however, show variability for vascular trees of different species and organs [7, 29–

41]. The anatomical data of various organs and species for entire vascular tree

down to the precapillary vessels are used to obtain the shape factors (Table 1). As

shown in Table 1, geometrical shape factors have mean ¡SD of 0.76¡0.04 for

the diameter ratio and 0.75¡0.04 for the length ratio. Moreover, Fig. 5 shows the

evolution parameter for various species and organs. The evolution parameters

were calculated by replacing anatomical shape factors in Eq. (8). The median of Ev

is 0.988 (the structure with the highest flow capacity has Ev51), and mean value

(¡SD) equals to 0.984 (¡0.014).

In order to illustrate the behavior of the evolution parameter within the range

of experimental shape factors, a 3-D surface of the evolution parameter is shown

in Fig. 6. According to Table 1, experimental shape factors, the diameter and

length ratios, varies within the range of 0:71ƒaƒ0:85 and 0:67ƒbƒ0:81,

respectively. This figure shows that the evolution parameter is more sensitive to

the diameter ratio than the length ratio, and thus the diameter ratio has the major

influence on the capacity of the structure for facilitation of flow in the vascular

system.

Discussion

4.1 The Significance of The Evolution Parameter

In broad terms, natural selection stipulates that individuals that are more fit have

more potential for survival. Since the ultimate goal of vasculature is to nourish

tissues, the ability to facilitate flow to transport nutrients within vascular

structures may be an evolutionary advantage. A vascular structure that has less

flow resistance dissipates less energy, and thus is capable of providing higher

flows. Since the vasculature of various species has been subjected to natural
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selection for flow facilitation, the evolution parameter compares viable alternative

designs to the design with highest flow conductance for a given space constraint

(e.g., volume). Hence, the evolution parameter assesses the effectiveness of a tree

structure to provide higher flow and less energy dissipation.

4.2 Evolution Parameter and Murray’s Hypothesis

Based on the definition of the evolution parameter, the increase of Ev implies a

reduction of flow resistance, which provides the capability for higher fluid

transport to a limit of space constraints. A higher Ev is consistent with Murray’s

hypothesis that larger blood vessels demand lager metabolic cost. In summary, a

higher Ev lowers energy dissipation, and enhances fluid transport for a given

constant metabolic cost.

4.3 Evolution Parameter and Space Constraints

The evolution parameter is computed in reference to a structure that provides the

maximum capacity of flow. Both the evolving and the reference ideal structure

have the same constraints (occupied volume and area), and thus the svelteness for

both of the structures is equal. Since the occupied volume and area by the

structure can change over time, the sveltensss that represents the bulk of the flow

structure takes into account the temporal changes in size. Experimental

observations also support the relation that mass of tissue scales with the vascular

volume that nourishes it. Although the size of tissue may change over time; e.g.,

during maturation, the fractal principles such as diameter-flow rate, and flow

Fig. 4. Evolution parameter for a turbulent model. (a) Ev as function of diameter ratio for different length ratios; (b) Ev as function of length ratio for
different diameter ratios.

doi:10.1371/journal.pone.0116260.g004
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Table 1. The least-squares of exponents in shape factors a and b, and corresponding Ev for different species and organs.

Species Ng
� �

Anatomical data

n r2 a~2{1=n m r2 b~2{1=m

Pig RCA (11) 2.11 0.996 0.72 1.92 0.988 0.7

Pig LAD (11) 2.07 0.993 0.72 1.98 0.990 0.7

Pig LCx (10) 2.04 0.994 0.71 1.8 0.987 0.68

Rat PA (11) 2.22 0.998 0.73 2.14 0.956 0.72

Cat PA (10) 2.37 0.997 0.75 2.33 0.975 0.74

Cat PV (10) 2.3 0.993 0.74 2.18 0.954 0.73

Dog PV (11) 2.5 0.998 0.76 3 0.995 0.79

Human PA (17) 2.65 0.991 0.77 3.16 0.983 0.8

Human PA (15) 2.73 0.994 0.78 3.04 0.978 0.8

Human PA (17) 2.44 0.992 0.75 3.04 0.974 0.8

Human PV (15) 2.65 0.998 0.77 2.92 0.982 0.79

Human PV (15) 2.49 0.994 0.76 2.76 0.986 0.78

Hamster SKMA (4) 2.33 0.992 0.74 2.65 0.87 0.77

Rat MA (4) 3.79 0.990 0.83 2.66 0.924 0.77

Rabbit OV (4) 2.74 0.933 0.78 2.55 0.836 0.76

Human BCA (5) 4.18 0.991 0.85 3.32 0.918 0.81

Human BCV (4) 2.43 0.971 0.75 2.91 0.955 0.79

Hamster RMA (4) 2.05 0.991 0.71 1.71 0.968 0.67

Cat SMA (4) 3.98 0.938 0.84 2.28 0.954 0.74

mean ¡ s.d. 2.64¡0.64 0.76¡0.044 2.55¡0.49 0.75¡0.04

RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; PA, pulmonary artery; PV, pulmonary vein; SKMA, skin muscle
arteries; SMA, sartorius muscle arteries; MA, mesentery arteries; OV, omentum veins; BCA, bulbular conjunctiva arteries; RMA, retractor muscle artery;
BCV, bulbular conjunctiva vein; Ng, number of total generation in the respective vascular trees [32].

doi:10.1371/journal.pone.0116260.t001

Fig. 5. The evolution parameter as function of shape factors. The range of shape factors is obtained from
experimental measurement of vascular trees.

doi:10.1371/journal.pone.0116260.g005

Evolution of Fluid Flow

PLOS ONE | DOI:10.1371/journal.pone.0116260 December 31, 2014 11 / 16



resistance relations govern the design of vasculature. Hence, the evolution

parameter can be expressed as a time-independent constant. As shown by Eqs (5),

(11) and (14), the flow resistance is a function of flow properties, space

constraints, and geometrical shape factors. Since the space constraints are the

same as constraints of flow resistance minimization, the geometrical shape factors

determine the minimal flow resistance. Hence, the evolution parameter considers

the effect of geometrical shape factors on the capacity for flow facilitation, for a

given space constraint. In summary, Ev parameter indicates the structure’s flow

capacity while Sv parameter represents the structure’s size effect.

4.4 Effect of Flow Nature on the Evolution Parameter

Blood has a non-Newtonian shear thinning behavior especially in the

microvasculature whereas it behaves as a Newtonian fluid in large vessels where

shear rate is high. Since biological fluids such as blood have both Newtonian and

non-Newtonian behaviors and may behave as laminar (smaller vessels) or

turbulent (aorta and heart), the evolution parameter was developed for all the

cases. Figs. 1 to 4, indicates that behavior of fluid (Newtonian vs. non-

Newtonian), and flow behavior (laminar vs. turbulent regimes) play a major role

in the relationship between evolution parameter and geometrical shape factors.

For example, the non-Newtonian shear thinning behavior of blood increases the

evolution parameter. This implies that non-Newtonian behavior of blood

(especially in the microvasculature) leads to higher flow in the vascular system.

Since the microvasculature especially arteriolar beds have a significant role in the

Fig. 6. Box and whisker plot of the evolution parameter for various species and organs. The median,
mean and SD values are shown in the figure, the box edges represent the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers. Outliers (star symbols) are larger
than P75+1.5(P75-P25) or smaller than P2521.5(P75-P25), where P75 and P25 are the 75th and 25th percentiles,
respectively.

doi:10.1371/journal.pone.0116260.g006
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regulation of blood flow [42–45], the higher Ev of vascular trees results in higher

blood flow in the entire vascular system.

4.5 The Evolution Parameter for Various Species and Organs

The evolution parameters in the vascular trees of different species and organs were

derived based on measured anatomical data. The mean +SDð Þ of the shape

factors were determined by a least-square fit of morphometric measurement in

the vascular trees of different species and organs. Shape factors a and b have mean

value of 0.76¡(0.04) and 0.75¡(0.04), respectively. The mean value of shape

factors is approximately 2{1=3<0:79, which leads to Ev51 for both Newtonian

and non-Newtonian fluids. As shown in Fig. 6, Ev has the mean value of

0.98¡(0.01). Hence, the vascular trees in different species and organs facilitate

flow within the structure.

4.6 Critique and Implications for Future Studies

The major criticism of contstructal theory is that it has not been derived based on

first principles [46]. Hence, the existence of global design of macroscopic (finite

size) systems that governs evolution is not without controversy. The complication

lays in the fact that mechanical forces that determines structural changes act

locally rather than globally. To address these issues, Bejan [1, 3] has postulated

that the constructal law is a de facto first principle similar to the second law of

thermodynamics that stipulates irreversibility. The constructal law postulates a

global tendency for flow direction in nature, which implies that constructal design

is neither an optimal nor a destiny design.

The proposed evolution parameter measures the design capacity to facilitate

flow within the structure from an evolutionary perspective. Since an entire tree

structure is comprised of many branches, the evolution parameter was developed

for a single branch [47, 48]. As shown by Huo and Kassab [49], the flow resistance

of a vessel branch scales with the equivalent resistance of the corresponding distal

tree. Kassab and colleagues also have considered the effect of branching structure

on hemodynamics considering both symmetric and asymmetric structure [50–

53]. The major conclusion is that the asymmetry of the network does not

significantly affect the mean values but it can significantly affect the spatial

heterogeneity of pressure and flow (since by definition a symmetric tree does not

have hemodynamic dispersions). Since the current analysis was focused on mean

values of pressures and flow, the symmetric assumption is reasonable. Future

studies can synthesize the present result of a single branch to the entire tree.

Although the definition of evolution parameter is general, the precise

prediction of the flow resistance in the evolution parameter relies on the flow

patterns. The Hagen-Poiseuille law (Newtonian and non-Newtonian fluids for

laminar flows), and fully rough turbulent flows that formed the basis of analytical

formulation neglect the branching and entrance effects. Hence, the flow in 3-D

geometry of large bifurcations, which has unsteady nature and complicated
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patterns such as flow separation, requires computational fluid dynamic (CFD)

simulations. Hence, CFD simulations should be utilized in large arteries to

provide a basis for formulation of Ev in future studies.

Conclusions

For Newtonian and power law fluids, the same values of the diameter and length

ratios of 2{1=3 provides Ev51. However, the diameter ratio of 2{3=7 and the

length ratio of 2{1=7 results in Ev51 for fully rough turbulent flows. Nevertheless,

a similar trend was observed for the variation of Ev with respect to shape factors.

Based on measured anatomical data, Ev was found to be approximately one

(0:95vEvv1) for various organs and species. Since the higher evolution

parameter enables the structure to facilitate flow, the results demonstrate that tree

structures adapt and evolve in the direction to maximize flow of vascular systems

of organs and various species.
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