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Abstract: Bone cement, frequently based on poly (methyl methacrylate), is commonly used in
different arthroplasty surgical procedures and its use is essential for prosthesis fixation. However,
its manufacturing process reaches high temperatures (up to 120 ◦C), producing necrosis in the
patients’ surrounding tissues. To help avoid this problem, the addition of graphene could delay the
polymerisation of the methyl methacrylate as it could, simultaneously, favour the optimisation of the
composite material’s properties. In this work, we address the effect of different percentages of highly
reduced graphene oxide with different wt.% (0.10, 0.50, and 1.00) and surface densities (150, 300,
500, and 750 m2/g) on the physical, mechanical, and thermal properties of commercial poly (methyl
methacrylate)-based bone cement and its processing. It was noted that a lower sintering temperature
was achieved with this addition, making it less harmful to use in surgery and reducing its adverse
effects. In contrast, the variation of the density of the materials did not introduce significant changes,
which indicates that the addition of highly reduced graphene oxide would not significantly increase
bone porosity. Lastly, the mechanical properties (strength, elastic modulus, and fracture toughness)
were reduced by almost 20%. Nevertheless, their typical values are high enough that these new
materials could still fulfil their structural function. In conclusion, this paper presents a way to
control the sintering temperature, without significant degradation of the mechanical performance, by
adding highly reduced graphene oxide so that local necrosis of bone cement based on poly (methyl
methacrylate) used in surgery is avoided.

Keywords: polymethylmethacrylate; highly reduced graphene oxide; mechanical behaviour; bone
cement; microstructure; surgery

1. Introduction

Bone cement, which consists of a broad range of different materials, is commonly used
as a structural adhesive to fix replacement prostheses when the bone is damaged [1,2]. It
has been used for biomaterial applications since the 1960s [3], and its central role is to fix
implants by mechanical bonding and distribute loads optimally from the prosthesis to
the bone. The implantation of prostheses has become an increasingly common practice
throughout the world, both due to the rise and ageing of the population and the higher
incidence of pathologies such as obesity [4], arthrosis (whose global prevalence is around
47% [5]), rheumatoid arthritis, osteoarthritis, and others. Therefore, the design of new
optimised structural adhesives is an essential objective in traumatology and orthopaedics.

However, the limitation of biocompatibility and toxicity significantly reduces the
variety of materials that can be used as adhesives or bone cement for prosthesis fixation.
These materials are sintered directly in the operating room in two phases: (i) the solid phase,
with poly-methyl methacrylate (PMMA) as the main bone cement compound, benzoyl
peroxide (BPO) as the initiating agent, and barium sulphate (BaSO4) as a radio-opacifying
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agent to allow it to be detected on control radiographs; and (ii) the liquid phase, with
the monomer methyl methacrylate (MMA), N, N-dimethyl-p-toluidine (DMPT) as the
accelerator, and hydroquinone as the stabiliser or inhibitor of the polymerisation reaction.

After polymerisation of the bone cement, which usually takes a few minutes, residual
MMA always remains in proportions of between 2–6%. However, this amount decreases
with time, stabilising to around 1–2% of residual MMA after approximately one year [1].
This is because the mobility of the monomer exponentially decreases with the increasing
viscosity of the bone cement. That MMA residue, together with small PMMA particles
released from the bone cement during the service life, activates an inflammatory cascade
where, after the rupture of the endothelium and vasoconstriction of the area, potentially
necrotic ischemia of chemical origin occurs.

Osteoclasts, the only cells capable of resorbing bone [6], can respond to a wide variety
of cytokines produced by cells of the innate and adaptive immune systems through highly
specialised structures [7]. Subclasses of circulating monocytes, dendritic cells, and progeni-
tor cells of the monocyte-macrophage line resident in the bone marrow can transform into
osteoclasts if subjected to specific inflammatory signals [8–10]. Furthermore, the production
and activation of T-lymphocytes cause a rise in osteoclast genesis and bone resorption since
their interaction with the RANKL-RANK system increases osteoclast survival, delaying
their apoptosis and making it possible for several cycles of osteoclastic activity [11]. All
these inflammatory processes can lead to the loss of bone tissue, causing aseptic loosening,
which accounts for approximately two-thirds of protheses’ revisions.

Graphene is a two-dimensional allotropic phase of carbon, ideally being a one-atom-
thick layer, characterised by some exceptional properties: a large specific surface of
2.630 m2/g, an elasticity modulus of 1 TPa, a tensile strength of 130 GPa, great mechanical
flexibility, excellent thermal conductivity, and nominal biocompatibility [12–14]. Therefore,
adding graphene to commercial bone cement could improve the mechanical properties of
the compound [15]. Additionally, the percentage of polymerisation from MMA to PMMA
could be increased since graphene could inhibit the initiators, reducing the number of
active polymerisation points, leading to slower but more efficient PMMA polymerisation.
Significantly, highly reduced graphene oxide (HRGO) nanoplatelets are a derivative of
graphene which are not entirely reduced and whose edges are highly reactive. Hydroxyl
groups are formed on these limits, among other possible compounds, therefore acting as
effective scavengers for polymerisation accelerators.

On the other hand, the MMA polymerisation reaction is highly exothermic, releasing
52–57 kJ/mol of MMA, resulting in a heat release of 1.4–1.7 × 108 J/m3. Consequently,
the bone cement is heated to high temperatures, between 70–120 ◦C. Thermal necrosis in
tissues occurs at temperatures above 50 ◦C if exposed for more than one minute and 45 ◦C
if exposure exceeds 30 min [16]. The minimum critical point of temperature to delay the
death of osteocytes is around 47 ◦C, causing bone resorption, subsequent replacement,
and medium and long-term disturbances in the anchorage of the implants [17–22]. Acrylic
bone cement is in intimate contact with bone, and exposure to high temperatures can cause
thermal necrosis in adjacent tissues. This can happen both due to direct cell damage from
protein denaturation or through coagulation alterations that cause a lack of irrigation to
the adjacent bone tissue, compromising the success of the surgery and accruing additional
healthcare costs. Necrotic debris and tissues provide favourable conditions for bacterial
growth and eventually lead to abscess formation.

The structure and vascularity of bone play an essential role in the response of bone
tissue to heat. Cancellous bone dissipates heat faster and has a greater capacity for regener-
ation than compact (cortical) bone as it has a better supply of blood vessels. The addition
of graphene to the bone cement could delay the polymerisation in a controlled way, and a
reduction of the temperature rise and a longer workability time could be achieved by the
surgeon.

Regarding mechanical properties, bone cement works well below its glass transition
temperature, Tg, which implies a brittle-elastic behaviour. Analysed from the point of
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view of geometric stability over time, the fact that bone cement works below Tg is optimal,
as the creep processes are negligible during the useful life of the bone cement, estimated
at fifteen years. The lower value of the elasticity modulus of the bone cement facilitates
a more homogeneous and even distribution of stress on the bone, thus avoiding stress
concentrations that may damage it.

Furthermore, the addition of graphene to the adhesive could optimise the toughness
or energy of fracture. The propagation of cracks in the matrix could be impeded or diverted
by the presence of graphene because, locally, it would be more favourable to surround
the nanoparticle than to fracture it. As the path of the crack increases and becomes more
protracted and more tortuous, the energy necessary for the crack to grow and propagate
increases [23–25].

Within this context, this work analyses the effect of the addition of different percent-
ages of graphene (0.10%, 0.50%, and 1.00%) and several specific surface densities (150, 300,
500, and 750 m2/g) on the physical, mechanical, and thermal properties, as well as on the
processing, of commercial PMMA-based bone cement.

2. Materials, Manufacture and Characterisation

In this study, a commercial bone cement widely used in traumatology was taken as the
reference material. DePuy Ibérica S.L. (Madrid, Spain) supplied the starting excipients with
CMW-1 Radiopaque reference, and their composition is shown in Table 1. The precursors
are presented in two phases: (i) the solid phase, with poly-methyl methacrylate (PMMA)
as the main bone cement compound, benzoyl peroxide (BPO) as the initiating agent, and
barium sulphate (BaSO4) as the radio-opacifying agent; and (ii) the liquid phase, with
the monomer methyl methacrylate (MMA), N, N-dimethyl-p-toluidine (DMPT) as the
accelerator, and hydroquinone as the stabiliser or inhibitor of the polymerisation reaction.

Table 1. Composition of DePuy Ibérica CMW 1 bone cement radio-opaque.

Solid Phase Liquid Phase

Compound Proportion Function Compound Proportion Function

Poly-methyl methacrylate
(PMMA) 88.85 wt.% Polymer Methyl methacrylate (MMA) 99.18 wt.% Monomer

Benzoyl peroxide (BPO) 2.05 wt.% Initiating agent N,N-dimethyl-p-toluidine
(DMPT) ≤0.82 wt.% Accelerator

Barium sulphate (BaSO4) 9.1 wt.% Radio-opacifying
agent Hydroquinone 25 ppm Stabilizer

To analyse the effect of graphene on the behaviour of the reference bone cement,
four types of highly reduced graphene (HRGO) supplied by XG Sciences (Lansing, MI,
USA), with different values for the specific area (m2/g) and proportions, were used. The
characteristic values for these materials are shown in Table 2.

Table 2. Composition of XG Sciences highly reduced graphene oxide (HRGO).

Graphene Specific Area
(m2/g)

Atomic Oxygen
Concentration (%)

Mean Diameter
(µm)

Density
(g/cm3)

HRGO 120 120–150 <1 15 0.03–0.10

HRGO 300 300 5 <2 0.20–0.40

HRGO 500 500 7 <2 0.20–0.40

HRGO 750 750 10 <2 0.20–0.40
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HRGO is characterised by its low oxygen content. However, the greater the surface
area, the more difficult it is to reduce the oxygen content due to the high reactivity of
the graphene nanoplatelet edge. For this reason, although in Table 2 the oxygen content
increased with the specific area, they all correspond to the same HRGO manufacturing
procedure.

To prepare PMMA compounds with HRGO, a high-resolution Mettler-Toledo 132
balance (up to 10−6 g) was used so that the percentage of each component could be
determined with very high precision. To achieve a good dispersion of the graphene in
the PMMA, once the solid phase of the precursor was mixed with the graphene, this
combination was stirred in an ultrasound bath at 4.0 Hz for five minutes. After that, the
liquid phase was added, and the exothermic reaction started. Subsequently, the entire
mixture was spread on a 100 × 100 mm stainless steel mould with support bases coated
with Teflon to avoid adhesion of the bone cement to the metal, making it easier to separate
and more challenging to introduce undesirable mechanical deformations in the material.
The amount of material deposited was calculated so that the resulting plate had a thickness
of about 2.4 to 3.0 mm, the same thickness of the bone cement layer used in trauma
operating rooms to fix the prosthesis to the bone.

Next, as shown in Figure 1, by employing an electromechanical testing machine
(Instron 5866), a pressure of 50 kPa [25] was exerted perpendicular to the mould surface to
homogenise the manufacturing conditions of the material and simulate the pressure that
bone cement is subjected to through a finger or scalpel in the operating room [1,2,25–28].
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Figure 1. Simplified transversal section of the device developed for controlled fabrication of the bone
cement. On the right, enlarged, it can be seen in greater detail transversal section detail of the sample
manufacturing device.

Although the charge was initially maintained for 20 min to follow the preparation
times indicated by the manufacturer, it was observed that the graphene content influenced
the polymerisation time. Therefore, in some cases, it was necessary to maintain the charge
for more than 24 h until the end of the polymer synthesis. Once the desired state of the bone
cement was reached, the load was removed, the bone cement detached from the mould,
and the material was stored in hermetically sealed PET zip bags at room temperature for
one year before testing. Table 3 shows the specific composition and nomenclature used for
each of the nine new manufactured materials.
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Table 3. Nomenclature of bone cement composition with HRGO manufactured in the form of 100 ×
100 × 5 mm3 plates.

Surface Area of the Graphene Used (m2/g)

HRGO Weight Percentage (wt.%) 120 300 500 750

0.1 G120-0.1 G300-0.1 - G750-0.1

0.5 - G300-0.5 - -

1.0 G120-1.0 G300-1.0 G500-1.0 G750-1.0

2.1. Physical Characterisation

The density of each material was determined using the Archimedean immersion
method in distilled water at a controlled temperature of 22.0 ◦C, using a Mettler-Toledo bal-
ance with an LC-P Density unit attached to measure the mass (Mettler-Toledo LLC, Colum-
bus, OH, USA). The nominal dimensions of the test pieces were 26.8 × 3.0 × 2.4 mm3. Six
tests were carried out for each composition, in which each one used five samples from
different areas to avoid possible inhomogeneities in the developed materials.

2.2. Thermal Characterisation

Differential scanning calorimetry (DSC) was used to determine the glass transition
temperature (Tg) and the amount of residual monomer in the new materials. For this, a
Mettler-Toledo DSC822e machine with STARe software was used. Samples of 6 mg were
subjected to a heating ramp of 10 ◦C/min between 20 and 200 ◦C. To achieve cooling at the
same speed, liquid nitrogen was used as a refrigerant.

2.3. Mechanical Characterisation: Tensile Test

To determine the tensile strength (σt) and the modulus of elasticity (E) of the new
materials, simple tensile tests were carried out in an electromechanical testing machine with
a ±1 kN load cell (resolution lower than ±0.1 N) and with an LVDT-type extensometer with
a path of ±1 mm (resolution lower than ±1 µm). The tests were carried out in displacement
control with a speed of 100 µm/min and an initial preload of 5.0 N. This preload was
intended to achieve the perfect alignment of the specimen and ball joints of the loading
device and thus avoid possible twisting or rotations of the sample, which would lead to
inaccurate results.

The specimens for these tests were machined in the shape of a dog bone specimen
with nominal dimensions of 10 mm testing length, 30 mm total length (LT), and 5 mm
width at the heads inside the jaw; 25 mm centre shaft (L0), 3 mm at the thickness of the zone
of the specimen with a reduced section (A), and 2.4 mm thickness (B). For each material
composition, the samples, indicated in Table 3, were tested. To calculate the value of the
maximum tensile strength (σt), the following formula was used [29]:

σ =
Fm

AB
(1)

where Fm is the maximum force obtained during the tensile test, of which at least six tests
were performed for each composition, and the mean value and its root mean square error
were obtained.

2.4. Mechanical Characterisation: Fracture Toughness

The same mechanical testing instruments mentioned above were used, although
three-point bending tests were performed on specimens notched with 0.13 mm diameter
diamond wire to determine fracture toughness (KIC). In this case, the specimens had a
preload of 1 N and were tested at a speed of 100 µm/min in the displacement control. This
time, the experimental device consisted of a system of alumina rollers, 5 mm in diameter,
with a span between the supports of 20 cm.
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The nominal dimensions of the parallelepipedal specimens were: a length of 26.8 mm;
width of 3.0 mm; and edge of 2.4 mm. As in the previous case, before each test, the
dimensions of each specimen were measured with a calliper with a resolution of ±0.01 mm.
The nominal length of the notches was 1.1 mm and was determined with a Nikon profile
projector V-12B (Nikon, Leuven, Belgium), with a resolution of ±0.001 mm.

Finally, to calculate the fracture toughness from the maximum load and the dimensions
of the specimens [30], the following equation was used:

KIC = σ(πa)
1
2 Y

( a
h

)
(2)

where

Y
( a

h

)
= 1.106 − 1.552

( a
h

)
+ 7.71

( a
h

)2
− 13.53

( a
h

)3

+ 14.23
( a

h

)4
(3)

(3) is a geometric factor,

σ =
6M
bh2 (4)

(4) is the breaking stress,

M =
FL
4

(5)

(5) is the maximum moment generated from the fracture force, a is the length of the notch,
b is the width of the sample, h is the edge of the sample, L is the distance between supports,
and F is the maximum fracture force.

2.5. Microstructural and Fractographical Analysis

For the analysis of microstructures and fracture surfaces of the studied materials, a
Zeiss optical microscope and a high-resolution field emission scanning electron microscope
(Auriga series, Carl Zeiss Microscopy LLC, White Plains, NY, USA) were used. To study
the samples in the scanning electron microscope, they were fixed on a copper support with
silver paint and were made conductive by depositing a nanometric layer (about 26 nm)
of carbon in a LEICA EM ACE600 metalliser (Wetzlar, Germany). Again, at least six tests
were performed for each composition and the mean value and its root mean square error
were obtained.

3. Results and Discussion

Given the high number of experimental results obtained and the interrelationship
between them, this section will show the results for each of the characterisations carried
out, followed by a brief discussion. Finally, from the microstructural and fractographic
analysis of the materials, an integrative discussion will present the macroscopical results
obtained on the deformation and fracture micromechanisms observed at the microscale.
This is intended to establish a correlation between microstructure and the properties that
allow for the optimisation of future materials.

In all the physical and mechanical characterisations shown below, each experimental
point corresponds to at least six measurements, and the error interval is the mean square
error. In the thermal characterisation, only one measurement could be made for each
experimental point according to a Gaussian statistic. This statistic is used for the analysis of
the behaviour of materials in which there is no variability from one sample to another. As
they are all assumed identical, the standard agreement in materials science and engineering
expresses the mean values of the measurements made and their root mean square error.
Evidently, this does not happen with living beings, and a different statistic must be applied
since there is interindividual variation.

3.1. Physical Characterisation

Table 4 shows the variation of the density of each material, ρ, dependent on the
percentage and surface area of the added HRGO. The displayed results show the mean
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value and root mean square error of at least six measurements. The error obtained in
determining the density was, in almost all cases, less than 0.7%, which made it possible to
detect minimal variations in density with the addition of HRGO.

Table 4. Material density versus the percentage and surface area of the added HRGO. Each result
shows the mean value and root mean square error.

ρ (g/cm3)

Surface Area of the Graphene Used (m2/g)

HRGO Weight Percentage
(wt.%) 120 300 500 750

0.0 1.244 ± 0.002 [25]

0.1 1.240 ± 0.004 1.240 ± 0.002 - 1.182 ± 0.007

0.5 - 1.229 ± 0.009 - -

1.0 1.241 ± 0.003 1.236 ± 0.003 1.230 ± 0.006 1.234 ± 0.004

Since the density of the graphene used was much lower than that of the PMMA, it was
expected that the density of the composite material would be reduced. Therefore, when the
graphene addition rates reached 1%, the expected reduction due to this effect using the rule
of mixtures should be around this percentage. Nevertheless, the reduction in density due
to the weight percentage of graphene was so slight that it was within the measurements’
error limits. In Table 4, increased wt.% led to a proportional reduction of the density.

Conversely, the possibility of HGRO platelets acting as pore generation points suggests
that this could also reduce the final density. This effect can be appreciated in Table 4: the
increase in the surface density of graphene tended to reduce the volumetric density of the
compound, which would confirm the hypothesis that the greater the surface area of the
HGRO, the more likely it is that nucleation of pores and inhomogeneities will occur around
the platelets.

The only exception for these tendencies was G750-0.1, whose density was much lower
than expected. This indicates that there was probably a problem during the synthesis of
G750-0.1, which reduced the density by a more significant proportion than expected.

3.2. Thermal Characterisation

Table 5 shows the evolution of the glass transition temperature (Tg) depending on the
percentage and surface area of the added HRGO. As can be seen, this parameter was not
visibly affected by the presence of HGRO, since random values appear around the value of
PMMA without HGRO. Therefore, it can be considered almost independent of the presence
of HRGO, at least in the proportions used and at long ageing times.

Table 5. Glass transition temperature (Tg) versus the percentage and surface area of the added
HRGO.

Tg (◦C)

Surface Area of Graphene Used (m2/g)

HRGO Weight Percentage (wt.%) 120 300 500 750

0.0 69.6 [17]

0.1 70.2 69.8 - 70.2

0.5 - 68.0 - -

1.0 68.3 69.3 70.8 70.3

Something very different happened with the residual monomer, as can be seen in
Table 6. A maximum of residual monomer was obtained with 300 m2/g and 0.5 wt.%, as
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indicated in Figure 2. This maximum was in the middle of the studied values, and there
was a clear trend with a central maximum and a decrease in the residual monomer by
increasing or decreasing the wt.% or specific area of the HRGO. This led us to believe that
the two mechanisms may facilitate MMA polymerisation for long ageing times. HRGO is
known to act as an inhibitor of the radical initiator of the polymerisation of MMA as it has
a more significant amount of available double bonds compared to GO. Thus, an increase of
the HRGO edge, by increasing the wt.% of the specific area, may result in a more significant
number of double bonds and, therefore, a higher inhibition of the radicals initiating the
reaction. Therefore, it is unlikely that the MMA encountered a radical polymerisation,
obtaining a higher residual MMA, as shown by our results in the range of 0.1 to 0.5 wt.%
and 120 to 300 m2/g. However, this does not explain the observations for high HRGO,
750 m2/g and 1.0 wt.%, where the residual MMA decreased in the long term. To explain
this exciting result, we must consider the ease of MMA diffusion within the polymer itself.
The simpler it is, the fewer polymeric chains there are in the polymer microstructure. If
a more considerable amount of these radicals were inhibited by adding more significant
amounts of HRGO, we would have reached a situation where there would have been fewer
polymer chains, allowing them to slip easily and the MMA to reach one of the reactive
points. Reducing the number of residual monomers is relevant from a clinical perspective,
as the potential toxicity caused by MMA is well known [31].

Table 6. Residual monomer MMA (%) versus the percentage and surface area of the added HRGO.

Residual MMA (%)

Surface Area of Graphene Used (m2/g)

HRGO Weight Percentage (wt.%) 120 300 500 750

0.1 0.67 1.04 - 0.92

0.5 - 2.05 - -

1.0 1.05 1.67 0.50 0.26
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In addition, the inhibition of radicals induced a slower polymerisation, thus reducing
the rate of energy release, the escalation in temperature, and increasing the curing time,
something which we observed in previous studies [28]. This effect would control the clinical
needs of curing time and local temperature production by choosing the suitable percentage
and density of HRGO. In this way, it would be possible to limit thermal damage to the
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surrounding tissues during surgery and increase the material’s working time according to
surgical needs.

3.3. Mechanical Characterisation

From the simple tensile tests, the stress-strain curves of these materials were obtained,
which, in all cases, showed macroscopically elastic and brittle behaviour until breaking.
Therefore, the tensile strength, σt, and the modulus of elasticity, E, were determined, as
shown in Tables 7 and 8, respectively. In addition, from the mechanical bending tests at
three points on the notched specimens, the fracture toughness, KIC, was determined, which
is shown in Table 9.

Table 7. Tensile strength, σt, of the material versus the percentage and surface area of the added
HRGO. Each result shows the mean value and root mean square error.

σt (MPa)

Surface Area of the Graphene Used (m2/g)

HRGO Weight Percentage (wt.%) 120 300 500 750

0.0 38 ± 2 [25]

0.1 39 ± 7 36 ± 4 - 37 ± 4

0.5 - 31 ± 5 - -

1.0 30 ± 5 29 ± 3 29 ± 5 20 ± 1

Table 8. Modulus of elasticity, E, of the material versus the percentage and surface area of the added
HRGO. Each result shows the mean value and root mean square error.

E (GPa)

Surface Area of the Graphene Used (m2/g)

HRGO Weight Percentage (wt.%) 120 300 500 750

0.0 3.20 ± 0.02 [25]

0.1 3.2 ± 0.6 3.2 ± 0.2 - 3.0 ± 0.2

0.5 - 2.8 ± 0.3 - -

1.0 3.1 ± 0.1 2.8 ± 0.3 2.3 ± 0.2 2.2 ± 0.3

Table 9. Fracture toughness, KIC, of the material versus the percentage and surface area of the added
HRGO. Each result shows the mean value and root mean square error.

KIC (MPa·m1/2)

Surface Area of the Graphene Used (m2/g)

HRGO Weight Percentage (wt.%) 120 300 500 750

0.0 1.28 ± 0.02 [25]

0.1 1.40 ± 0.02 1.20 ± 0.05 - 1.15 ± 0.05

0.5 - 1.12 ± 0.02 - -

1.0 1.08 ± 0.03 0.99 ± 0.04 1.06 ± 0.05 0.94 ± 0.06

In all these experimental results, the increase of the HRGO contribution, either in
percentage or in surface density, led to a degradation of all analysed mechanical properties,
likely due to a decrease in the internal cohesion among the platelets and the PMMA matrix.
This would justify that the resistance capacity of the compound was reduced significantly,
even in tiny percentages, for the three analysed parameters. This phenomenon could
become an inconvenience for the clinical application of these materials, as it is well known
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that fracture toughness is essential for fatigue life. However, the fact that the mechanical
properties of the bone cement are inferior to those of the bone and the prosthesis guarantees
that, in case of overload, the breakage is produced by this element, which is the most easily
replaceable.

3.4. Microstructural and Fractographic Characterisation

The microstructural and fractographic analysis of the studied materials showed that,
in some cases, large pores were trapped inside the material, as can be seen in Figure 3.
Nevertheless, these kinds of pores are also typical in the reference bone cement.
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Figure 3. SEM image of the tensile fracture surface of G120-0.1. A giant air bubble can be seen
trapped within the bone cement.

In the same image, it can be appreciated that the fracture surface is relatively flat.
The former may explain the abnormally low-density values of G750-0.1, while the latter is
compatible with the brittle elastic behaviour observed macroscopically for these materials.
Nevertheless, Figure 4 shows the typical porosity distribution, usual micrometric pores or
smaller, and the barium sulphate radiopacifier appeared as a uniformly dispersed white
contrast in the PMMA matrix.

During the detailed analysis of the fracture surfaces, poor adhesion of HRGO to bone
cement (Figures 5 and 6) and the existence of unwanted agglomerates of HRGO (Figure 7)
were observed for all materials. Both factors led to the creation of cracks and defects around
the HRGO platelets.

A more significant number of cracks increases the likelihood of them reaching the
critical crack size and propagating catastrophically under less stress than the expected
critical value. For example, Figure 7 shows an HRGO lamella utterly parallel to the fracture
surface. The gap between the bone cement and that HRGO lamella, or between HRGO
lamellae, could be the place where crack propagation started in this case. Consequently,
both factors indicated that the presence of the HRGO in the PMMA matrix justified the
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macroscopic degradation of the mechanical behaviour of the composite observed in the
previous section.
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appears as a uniformly dispersed white contrast in the PMMA matrix; and (b) at higher magnification,
some tiny pores and defects can be observed.
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4. Conclusions

From the experimental observations shown above and their discussion, the following
conclusions can be established:

1. After one year of natural ageing, the density and glass transition temperature were
not affected by the addition of different percentages and surface densities of HGRO;

2. The amount of residual MMA varied with the amount of HRGO and its specific area.
This phenomenon was related to reducing the polymerisation rate in the presence of
HRGO and MMA diffusivity inside the PMMA. It would allow for controlling the
curing time and the local temperature increase, which would help limit the thermal
damage caused to the surrounding tissues during surgery and increase the working
time of the material if necessary;

3. Due to the addition of different percentages and surface densities of HGRO, the
analysed mechanical properties suffered an intense degradation, exceeding 40%;

4. To improve the mechanical behaviour of these compounds, it is essential to find
micromechanisms that increase the cohesion between the HRGO and the PMMA
matrix, like the silanisation of graphene;

5. Furthermore, we would like to point out the limitations of this study. It was not
a clinical investigation aimed at immediate application in patients, but a scientific
analysis under laboratory conditions to determine the new composite materials’
potential;

6. As future work, it would be fascinating to carry out this type of study on other
bone cement to which similar proportions of HRGO are added and compare the
composites’ results with similar proportions of reduced graphene and different bone
cement matrices. Looking ahead, it would be interesting to extend this study to lower
concentrations of HGRO, consider the influence of HGRO on the bacterial colonisation
of cement, analyse the evolution of the physical, thermal, and mechanical behaviour
of bone cement with graphene after its controlled immersion in physiological serum,
and study the influence on antibiotic release when added to bone cement.
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