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ABSTRACT
Multicellular organisms use transcripts and proteins as signaling molecules for cell-to-cell com-
munication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor identified in 
plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously, and both 
its messenger RNA (mRNA) and protein traffic between cells through intercellular nanochannels 
called plasmodesmata. KN1 protein and mRNA trafficking are regulated by a chaperonin subunit 
and a catalytic subunit of the RNA exosome, respectively. These studies suggest that the function 
of KN1 in stem cell regulation requires the cell-to-cell transport of both its protein and mRNA. 
However, in situ hybridization experiments published 25 years ago suggested that KN1 mRNA was 
missing from the epidermal (L1) layer of shoot meristems, suggesting that only the KN1 protein 
could traffic. Here, we show evidence that KN1 mRNA is present at a low level in L1 cells of maize 
meristems, supporting an idea that both KN1 protein and mRNA traffic to the L1 layer. We also 
summarize mRNA expression patterns of KN1 homologs in diverse angiosperm species, and 
discuss KN1 trafficking mechanisms.
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Cell-to-cell communication is essential for determining 
cell fates, and is the basis for multicellular development. 
For example, stem cells divide to self-renew and pro-
duce cells destined to differentiate, and many forms of 
cell-to-cell communication regulate their identity and 
proliferation [1,2]. Plants use multiple types of cell-to- 
cell signaling, including secreted ligands and receptors, 
as well as direct transfer of molecules through plasmo-
desmata, membrane-lined nanochannels that penetrate 
the cell wall [3–5]. Plasmodesmal signaling is critical 
for maintaining plant stem cell niches, or meristems 
[6–8]. Several transcription factors, including homeo-
domain factors, act as non-cell-autonomous signals by 
trafficking through plasmodesmata [9].

Maize KNOTTED1 (KN1) was the first homeodo-
main transcription factor identified in plants, and the 
first transcription factor found to traffic via plasmodes-
mata [10,11]. KN1 homologs, so-called class I KN1-like 
homeobox (KNOX I) genes, are conserved in all taxa in 
the plant kingdom [12,13]. The primary function of 
KNOX I genes is to maintain the pool of stem cells in 
shoot meristems, as shown by the loss of meristems in 
maize kn1 mutants [14–16]. This function, as well as 
cell-to-cell mobility, is conserved widely, for example, 
in the KN1 homolog SHOOT MERISTEMLESS (STM) 
in Arabidopsis [17–19]. While transcription factor pro-
tein trafficking is broadly documented, the function of 
class I KNOX genes requires trafficking of both their 

protein and mRNA [7,8,19]. Regulators of class 
I KNOX protein and mRNA trafficking, such as cha-
peronins and an RNA exosome subunit, respectively, 
and additional mobile transcription factors, such as 
WUSCHEL and SHORT-ROOT, have been identified 
[7,8,20–22].

In addition to short-range cell-to-cell trafficking, 
proteins and mRNAs are also selectively transported 
systemically between plant organs via the phloem. 
Regulatory factors and protein/RNA motifs and mod-
ifications important for this long-range transport have 
also been identified [23,24]. Thus, cell-to-cell signaling 
using proteins and mRNAs is a rapidly developing field, 
and although significant progress has been made in 
understanding its mechanisms, there are still many 
open questions.

Previous studies suggested that KN1 protein and 
mRNA interact as they traffic between cells, perhaps 
by forming a ribonucleoprotein (RNP) complex 
[11,25,26]. If KN1 and STM traffic as RNPs, they may 
need to streamline their shape to pass through the tiny 
plasmodesmata pores. Chaperones and RNA helicases 
may be involved in this process [27,28]. This process 
may also involve RNA-binding proteins that function 
as carriers, and their receptors, as well as actin and 
myosin that can alter plasmodesmal pore size 
[27,29,30]. In our recent study, we found that 
a catalytic subunit of the RNA exosome, Arabidopsis 
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Ribosomal RNA-Processing Protein 44A (AtRRP44A), 
controls KN1 and STM mRNA trafficking between cells 
[8]. AtRRP44A is predominantly nuclear, but when 
levels in the cytoplasm are enhanced by the addition 
of a nuclear export sequence, it has a capacity to loca-
lize to plasmodesmata. These findings suggest that 
AtRRP44A is involved in the plasmodesmata targeting 
of class I KNOX RNPs, the conversion of RNPs to 
a mobile form, or the trafficking through plasmodes-
mata. In support of these ideas, we found that KN1 
mRNAs localize to cytoplasmic puncta that move dyna-
mically around the cytoplasm, and transiently interact 
with plasmodesmata [8]. This interaction could allow 
KN1 mRNA to traffic through plasmodesmata to neigh-
boring cells. However, how KN1 mRNA is targeted to 
plasmodesmata is unknown. The mRNA of another 
mobile factor, FLOWERING LOCUS T, is tethered to 
endosomes and recruited to plasmodesmata via micro-
tubules and actin [31]. Since STM is also associated 
with endosomes and microtubule-associated proteins 
[20,21], it may be targeted to plasmodesmata by 
a similar mechanism.

The trafficking of KN1 and STM proteins and RNAs 
has been studied mostly in Arabidopsis and tobacco 
leaves, but how they traffic in the shoot meristem, where 
they function, is less well understood. However, mutants 
that reduce KN1/STM protein or mRNA trafficking in the 
leaf, such as chaperonin or RNA exosome subunits 
mutants, significantly affected meristem development 
[7,8,19], suggesting their trafficking in the meristem is 
important for normal development. Angiosperm shoot 
meristems have a layered structure, where an outer epi-
dermal L1 layer covers inner layers. Despite multiple 
reports of KN1 and STM mRNA trafficking, the original 
report of KN1 trafficking presented contradictory results, 
as KN1 mRNA was detected in the inner meristem layers 
but absent from the L1, whereas KN1 protein was 
detected throughout all meristem layers [32,33]. This 
difference in localization led to the prediction, and later 
demonstration, that KN1 protein can traffic from the 
inner meristem layers to the L1 [11]. However, the origi-
nal report and several others suggested that KN1 traffics 
with its mRNA as an RNP [8,25]. Homeodomain proteins 
are known for their DNA binding activity, but their 
specific mRNA binding has also been demonstrated in 
flies [34,35]. However, if KN1 mRNA can traffic, and KN1 
protein and mRNA can form an RNP, it is puzzling that 
KN1 mRNA is not detected in the L1 layer of the maize 
shoot meristem. One possible explanation is that KN1 
RNPs traffic between cells in the inner meristem layers, 
but only KN1 protein traffics to L1 [36], however, this 

seems unlikely. Another possibility is that KN1 mRNA 
does traffic to the L1, but its levels there are too low to be 
detected by in situ hybridization. Even a few KN1 mRNA 
molecules in the L1 could be amplified by multiple rounds 
of translation to produce abundant protein levels [37,38]. 
Indeed, we present evidence here that this is likely to be 
the case.

Recently, single-cell mRNA sequencing (scRNA-seq) 
has provided unprecedented resolution in plant expres-
sion studies [39–41]. In a scRNA-seq experiment of 
developing maize ears, we found multiple distinct cel-
lular clusters representing known cell types and 
domains, and indeed we found KN1 transcripts in 
meristem L1 cells [42,43] (Figure 1(a)). However, 
these transcripts could be background noise or sporadic 
expressions captured in the scRNA-seq experiments. 
A recent laser microdissection (LCM) RNA-seq experi-
ment also detected KN1 transcripts in L1 cells of the 
shoot meristem. The KN1 mRNA levels in the L1 were 
about one tenth of those in the L2, but much higher 
than in leaf primordia, where STM expression is 
repressed [44]. To support these findings, we per-
formed KN1 in situ hybridization [32] using a longer 
detection period. Indeed, we detected weak KN1 
mRNA in situ signal in L1 cells (Figure 1(b)). While 
we cannot rule out the possibility that this signal is 
from diffusion of the alkaline phosphatase reaction 
product, the combined evidence of scRNA-seq, LCM 
and mRNA in situ hybridization supports the idea that 
a small amount of KN1 mRNA traffics from the inner 
meristem layers to the L1.

It is also interesting to compare expression patterns 
of KN1 and STM homologs in diverse angiosperm 
species. Expression varies significantly between species 
and meristem stages, suggesting interesting hypotheses 
about the regulation of trafficking of KN1/STM-related 
transcripts. In maize, KN1 mRNA appears to be 
restricted to the inner meristem layers in both vegeta-
tive and inflorescence stages, and is mostly undetect-
able in the L1 layer [32] except as described above. 
Similar patterns are seen in other species, including in 
brachypodium spikelet and floral meristems and wheat 
vegetative meristems [45,46]. In some species, however, 
expression is clearly observed in the L1 layer at parti-
cular stages of development. For example, mRNA of 
the rice KN1 ortholog ORYZA SATIVA HOMEOBOX1 
(OSH1) localizes to the inner meristem layers of vege-
tative and inflorescence meristems, but is also observed 
in the L1 meristem layer in spikelet and early stage 
flower meristems. However, expression is once again 
restricted to the inner meristem layers in the late stage 
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Figure 1. KN1 mRNAs are detected at low levels in L1 (epidermal) cells of maize meristems. (a) Single-cell RNA sequencing [42] indicates that 
KN1 transcripts are abundant in meristem (clusters 9, 10, and 11), vasculature (clusters 4, 5, and 12), and ground tissue (clusters 1 and 8), but 
also present at low levels in meristem L1 cells (cluster 6, asterisks). (b) Over-exposure of a KN1 mRNA in situ hybridization shows a weak signal in 
the L1 (pink) and a strong signal in the inner meristem layers (dark blue) in a maize ear spikelet pair meristem. (c-g) Rice OSH1 mRNA is absent 
from the L1 layer of the vegetative shoot apical meristem (SAM) (c) but observed in some L1 cells in the inflorescence meristem (im) (d), and is 
throughout the L1 in the spikelet meristem (sm) (e) and floret meristem (fm) (f), then is again restricted to the inner layers in the later stage fm 
(g). P0 and P1, plastochron 0 and 1; rg, rudimentary glume; sl, sterile lemma; ca, carpel. (h) mRNA in situ hybridization showing STM mRNA in 
the entire vegetative shoot meristem including L1 layer in Arabidopsis. The data used for panel A is from [42]. Panel C, D, E, F-G, and H used 
images from [48,54–56] and [8] with permission, respectively. Scale bars = 50 µm.
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flower meristems [47,48] (Figure 1(c-g)). In tomato and 
tobacco, KN1 ortholog mRNAs are also restricted to the 
inner cell layers in vegetative meristems, but are clearly 
detected in the L1 layer at the reproductive stages [49– 
51]. Thus, localization of KN1 homolog transcripts is 
often excluded from the L1 layer in vegetative stages, 
but found in the L1 layer in later stages. A different 
situation is observed for Arabidopsis STM, where its 
mRNA is not detected in the L1 in early embryo stages, 
but is detected there in later embryo and seedling and 
reproductive stages [17] (Figure 1(h)). What causes 
these changes in mRNA localization between species 
and meristem stages? One possibility is that KNOX 
I gene transcription switches between layers depending 
on the species and/ or developmental stage. However, 
another possibility is that the mobility of KNOX 
I mRNA between cell layers is differentially regulated. 
In support of this idea, the permeability and number of 
plasmodesmata change dynamically during meristem 
transitions [52], and this might affect selective trans-
port of specific transcripts. A better understanding of 
these processes could enable manipulation of KNOX 
expression and localization to fine-tune meristem activ-
ity, and improve plant growth and crop yields.
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