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Solving the inverse problem 
of time independent Fokker–Planck 
equation with a self supervised 
neural network method
Wei Liu1, Connie Khor Li Kou1, Kun Hee Park2 & Hwee Kuan Lee1,3,4,5,6,7*

The Fokker–Planck equation (FPE) has been used in many important applications to study stochastic 
processes with the evolution of the probability density function (pdf). Previous studies on FPE mainly 
focus on solving the forward problem which is to predict the time-evolution of the pdf from the 
underlying FPE terms. However, in many applications the FPE terms are usually unknown and roughly 
estimated, and solving the forward problem becomes more challenging. In this work, we take a 
different approach of starting with the observed pdfs to recover the FPE terms using a self-supervised 
machine learning method. This approach, known as the inverse problem, has the advantage of 
requiring minimal assumptions on the FPE terms and allows data-driven scientific discovery of 
unknown FPE mechanisms. Specifically, we propose an FPE-based neural network (FPE-NN) which 
directly incorporates the FPE terms as neural network weights. By training the network on observed 
pdfs, we recover the FPE terms. Additionally, to account for noise in real-world observations, 
FPE-NN is able to denoise the observed pdfs by training the pdfs alongside the network weights. Our 
experimental results on various forms of FPE show that FPE-NN can accurately recover FPE terms and 
denoising the pdf plays an essential role.

The Fokker–Planck equation (FPE) is an important tool to study stochastic processes commonly used to model 
complex systems. The time evolution of variables in a stochastic process is affected by random fluctuations 
which makes it impossible to derive a deterministic trajectory. However, the randomness can be accounted for 
by characterizing the process with the probability density function (pdf) of the random variable. As a class of 
partial differential equations (PDEs), FPE governs how the pdf evolves under drift and diffusion forces. FPE has 
a wide range of applications in many disciplines. For example, the master equation can be approximated by FPE 
which is easier to be solved  numerically1. FPE has been used to link the Langevin equation to Monte Carlo (MC) 
methods in stochastic micromagnetic modeling, where the drift and diffusion terms of FPE derived from the MC 
method have been proven to be analytically equivalent to the stochastic Landau–Lifshitz–Gilbert (LLG) equation 
of Langevin-based  micromagnetics2. The eigenfunctions of FPE have been used to approximate the eigenvectors 
of the graph Laplacian, providing a diffusion-based probabilistic interpretation of spectral  clustering3. Beyond 
theory, FPE is also a common tool to model real-world phenomena. For example, it has been used to determine 
the first passage time from one protein conformation to  another4, to describe the weights of deep networks when 
updating them using stochastic gradient  descent5, to characterize the behavior of driver-assist vehicles in freeway 
 traffic6 and to model the distribution of the personal wealth in socio-economics7. In all these applications on 
real-world pdfs, the FPE terms are proposed first and then validated by comparing the calculated pdf with the 
experimental data, which can be seen as a forward problem. To date, many numerical approaches have been 
proposed to solve the forward problem of FPE which is to calculate the pdf with given drift and diffusion terms 
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of FPE, including the finite element  method8–10, the finite difference  method11,12, the path integral  method13, 
and the deep learning  methods14,15.

Solving the forward problem in the case of FPE can often be challenging. For many complex systems, the 
form and parameters of FPE are unclear. For instance, in the field of socio-economics, the coefficient of money 
transaction is treated as a constant which may be an  oversimplification7. In DNA bubble dynamics, the free 
energy terms have to be  approximated16. As such, successful applications of forward modeling of FPE are limited 
to a few simple FPE forms. For example, the most commonly used FPE is derived from the Ornstein–Uhlenbeck 
 process17 which has a linear drift term and a constant diffusion term. However, FPE can adopt more complicated 
forms. In such cases, forward modeling becomes a tedious trial-and-error process of proposing reasonable FPE 
terms and validating with experimental data. Alternatively, it will be more efficient to solve the inverse problem, 
which is to derive the terms of the FPE directly from the experimental data. Besides higher efficiency in many 
cases, the inverse problem can be seen as a data-driven approach for scientific discovery. It requires no prior 
knowledge except assuming the observed data satisfies FPE, enabling us to uncover the unknown mechanisms 
hidden behind the stochastic processes.

One of the conventional ways to solve the inverse problem of the FPE is linear least square (LLS). However, 
as shown in the Supplementary, the calculated FPE terms become error-prone when the observed pdf is noisy 
due to limited sample size. Machine learning techniques have been promising in solving various inverse prob-
lems. In particular, in recent years, neural network models have been used to learn to solve the inverse problem 
using observable data as the input and outputs. In the field of reinforcement learning and imitation learning, 
the value iteration network has been  proposed18, where the network is trained on optimal policies to recover 
the approximate reward and value functions of a planning computation. To the best of our knowledge, there has 
been one prior work which uses neural networks to solve the inverse problem of FPE. Chen et al developed a 
general framework which takes the spatial and temporal variables as the input and outputs the corresponding 
probability density  values19. FPE is incorporated into the network loss function based on the physics informed 
neural network (PINN)  technique20, where the derivatives are calculated by automatic differentiation. In their 
approach, the random fluctuation causing the stochastic process is assumed to be the Brownian noise and/or the 
Lévy noise, and the coefficient of the fluctuations are constant. Chen’s work took the Lévy noise into considera-
tion, which is a further generalization than most FPE studies which only consider the Brownian noise (usually 
called Gaussian white noise). However, the assumption that the noise coefficient is constant is much stricter than 
in a typical FPE. In actual applications, the random fluctuation may not be independent of the spatial variable 
and consequently the diffusion term becomes an unknown function.

More broadly, PDE-Nets have been proposed to uncover the underlying PDE models of complex systems in 
a supervised learning  manner21,22. Unlike the PINN-based methods, PDE-Nets calculate the derivatives using a 
new and accurate finite difference method. However, the PDE-Nets do not specifically handle the noise within 
the experimental pdfs which is majorly due to limited sample size, and the noise is an inevitable source of error. 
Although the noise is partially removed in PDE-Nets by smoothing the pdfs with the Savitzky–Golay (SG)  filter23, 
the remaining noise is still a major error source of the uncovered PDE.

In this paper, we propose a novel neural network model to solve the inverse problem of FPE. Specifically, we 
directly embed FPE into the neural network architecture, where the drift and diffusion terms are represented 
by the trainable network weights. Our network, named as the FPE-based neural network (FPE-NN), is trained 
in a self-supervised manner where the network is used to predict the distributions at neighboring time points 
based on the input distribution at a single time point. Additionally, to denoise the experimental pdfs, we train 
both the network weights (representing the FPE terms) and the input (representing the experimental pdfs) in 
an alternating way. Our FPE-NN has two key advantages over prior works. First, FPE-NN does not assume any 
form of the FPE terms, making it more flexible than the PINN-based method. Second, FPE-NN can denoise 
the pdfs in experimental data. In fact, we find that the denoising of experimental pdfs is essential to accurately 
recover the FPE terms. Our experiments on simulated data show that FPE-NN is able to recover unknown FPE 
terms, denoise the experimental pdfs, and predict future distributions accurately.

Methods
In this work, we focus on the one-dimensional and time-independent FPE, whose form is shown below:

where P : R× R → R
+ ∪ {0} is the pdf over the observable x and the time t, g : R → R is the drift term and 

h : R → R is the diffusion term. In actual implementation, P(x, t), ∂P(x, t)/∂t , g(x), and h(x) are discretized 
over variable x and denoted as P(t) , ∂ tP(t) , g  , and h , respectively. More specifically, we discretize variable x into 
a number of bins on the support, (x1, x2, . . .) . Then P(x,t) becomes the vector P(t) = (P(x1, t),P(x2, t), . . .) , and 
g(x) becomes the vector g = (g(x1), g(x2), . . .) . The same transform applies to all the other functions.

In order to solve the inverse problem, we focus on the scenario in which a pdf is assumed to satisfy FPE and 
the data within some time period is measured. We also assume P(x, t) is differentialble and has a finite support, 
which is satisfied by most real-world pdfs. However, the measured pdf, denoted as Pnoisy(t) , is corrupted with 
multiplicative noise, and the exact forms of g and h are unknown. Hence, we propose to train a FPE-based neural 
network model FPE-NN in a self-supervised way, based on Pnoisy(t) only, to find g  , h and the true pdf which 
is denoted as Pclean(t) . We currently focus on the one-dimensional FPE and will expand to multi-dimensional 
FPE in future work.

In the following sections, we first give an overview of how to find g  and h and to recover Pclean(t) in an alter-
nating training process. Next, we introduce the architecture of the network FPE-NN. This is followed by training 

(1)∂

∂t
P(x, t) =

∂

∂x
(g(x)P(x, t))+
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∂ x2
(h(x)P(x, t))
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details such as initialization, alternating training steps, stopping criterion, and an application of FPE-NN for 
predicting future distributions.

Overview of the FPE-NN training process. Generally, FPE-NN takes P(t) at a time point as the input, 
g and h as trainable weights, to predict P(t) at neighboring time points. The input and the weights are trained in 
an alternating way. To distinguish them from the true values, the training input and weights are denoted as P̂(t) , 
ĝ , and ĥ , respectively. As shown in Fig. 1, each iteration of the training consists of two steps. The first step is the 
gh-training step, where we keep the updated P̂(t) constant to train ĝ and ĥ . The second step is the P-training step, 
where we keep the updated ĝ and ĥ constant to train P̂(t) . The alternating training process is repeated until the 
stopping criterion is met. The reason that the input and weights are not trained simultaneously is that we have to 
use different ways to feed in the data samples when training them. Specifically, ĝ and ĥ are time independent so 
the samples can be fed in batches, whereas P̂(t) is time dependent hence the samples have to be fed one-by-one.

Architecture of FPE-NN. Here we introduce our FPE-based neural network model (FPE-NN). It con-
sists of two major parts and each part consists of several layers (Fig. 2a). The central part, named FPE Core, is 
designed based on FPE which takes the input P̂(t) at a certain time point t to calculate the corresponding deriva-
tive ∂ t P̂(t) with weights ĝ and ĥ . The remaining part is designed based on the Euler method which uses the 
input P̂(t) and the derived ∂ t P̂(t) to predict the corresponding distributions at multiple neighboring time points. 
Please take note that we are not using the neural network to approximate FPE or the Euler method, instead, we 
use the neural network to carry out the computation steps in FPE and the Euler method.

The network architecture of FPE Core is designed based on the discrete form of FPE over variable x for 
fixed-time t:

where ⊙ is the element-wise multiplication; ∂x and ∂xx are matrices to compute derivatives following a new and 
accurate finite difference  method21. The element-wise multiplication of two vectors is implemented by locally 
connecting two layers (Fig. 2b) and the multiplication of a vector by a matrix is achieved by fully connecting two 
layers (Fig. 2c). The weights of the locally connecting layers are the FPE terms ĝ  and ĥ , which are trainable. The 
weights of the fully connecting layers are non-trainable and have fixed values that perform derivative calcula-
tions ∂x and ∂xx (details are provided in the Supplementary). There are no biases or activation functions in these 
two kinds of connecting layers. Overall, the FPE Core computes the corresponding ∂ t P̂(t) of the input P̂(t) at a 
certain time point t based on the given weights ĝ  and ĥ.

In the following part, we use the input P̂(t) and the derived ∂ t P̂(t) from FPE Core to predict the distribu-
tion at time point t + i�t using the Euler method, where i ∈ {−n, . . . , n} and n is a hyperparameter to be tuned 

(2)∂ tP(t) = ∂x(g ⊙ P(t))+ ∂xx(h⊙ P(t))

Figure 1.  Flowchart of using FPE-NN to train the input P̂(t) and the weights ĝ , ĥ in an alternating way. Each 
iteration consists of two steps, first the gh-training step then the P-training step. The counting of iteration 
starts from 1, as P̂0

(t) , ĝ0 and ĥ
0
 are the initialized values. In the k-th iteration, the updated input and weights 

in the previous iteration are P̂k−1
(t) , ĝk−1 , and ĥ

k−1
 , respectively. We first keep P̂k−1

(t) constant to improve 
the accuracy of the weights in the gh-training step, and save the trained weights as ĝk and ĥ

k
 . Then we keep ĝk 

and ĥ
k
 constant to improve the accuracy of the input in the P-training step, and save the trained input as P̂k

(t) . 
Subsequently, P̂k

(t) , ĝk , and ĥ
k
 are used for the next iteration.
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case-by-case. �t is the time gap between adjacent time points. As shown in Fig. 2a, a few layers are added to 
perform the following calculation:

where P̂pred(t + i�t) is the predicted distribution at time point t + i�t . There is no need to add an extra con-
straint to ensure that the integral of P̂pred(t + i�t) equals to 1, because the integral of a pdf is invariant when 
it evolves according to FPE (Proof is provided in the Supplementary). Furthermore, the integrals of the target 
distributions all equal to 1, and P̂pred(t + i�t) is forced to be very close to the target distributions by the loss 
functions. The details about the target distributions and the loss functions are provided later.

In summary, the inputs for the whole network FPE-NN is P̂(t) , the trainable weights are ĝ  and ĥ , and the 
output is the predicted distributions P̂pred(t + i�t) , i ∈ {−n, . . . , n} . In order to generate a loss function for train-
ing, P̂pred has to be compared with target distributions. However, as the true pdf Pclean is unknown, we can only 
compare P̂pred with some selected noisy target distributions. We will describe how we formulate the loss functions 
using the noisy target distributions when the details of the alternating training steps are provided. Furthermore, 
in order to alleviate the noise effect of the target distributions, FPE-NN is designed to make predictions at 2n+ 1 
time points and usually n > 1 . Detailed explanations are provided in the Supplementary.

Initialization. The initialized input P̂(t) , denoted as P̂0
(t) , is derived by smoothing Pnoisy(t) with the 

Savitzky-Golay (SG)  filter23, which helps to partially remove the noise. The initialized weights, denoted as ĝ0 and 
ĥ
0
 , are calculated based on P̂0

(t) using a linear least square method (details are provided in the Supplementary). 
In the following two subsections, we will explain how to train and update the input and weights separately in 
the k-th iteration.

The gh-training step in the k-th iteration. In the beginning of the k-th training iteration ( k = 1, 2, . . . ), 
P̂(t) , ĝ and ĥ have been updated in the previous iteration. The updated values are denoted as P̂k−1

(t) , ĝk−1 and 
ĥ
k−1

 , respectively. For the first iteration ( k = 1 ), we use the initialized input P̂0
(t) and weights ĝ0 and ĥ

0
 . Then we 

first run the gh-training step to train ĝ and ĥ (yellow blocks in Fig. 1). Specifically, the input of FPE-NN would 
be P̂k−1

(t) which is kept constant in this step, and the weights are ĝ and ĥ which are trainable with initial values 
ĝk−1 and ĥ

k−1
 , respectively. The output P̂pred is compared with P̂k−1 , hence one data sample consists of a single 

distribution P̂k−1
(t) as input and multiple distributions at neighboring time points P̂k−1

(t + i�t) as target out-
put, where i ∈ {−n, . . . , n} . The loss function is:

(3)P̂pred(t + i�t) = P̂(t)+ i�t∂ t P̂(t)

Figure 2.  FPE-NN architecture. (a) The whole architecture of Fokker–Planck Equation Neural Network 
(FPE-NN). The time distance set used for training FPE-NN is a vector (−n�t, . . . , n�t) , but it changes when 
we use FPE-NN to predict future distributions. The details are provided in the corresponding section later. (b) 
The architecture of locally connecting layers. (c) The architecture of fully connecting layers.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15540  | https://doi.org/10.1038/s41598-021-94712-5

www.nature.com/scientificreports/

where the superscript k indicates the k-th iteration. Because ĝ  and ĥ are time-independent and shared by all the 
data samples, we can train FPE-NN in batch training by randomly picking a certain number of samples, which 
is the first summation in Eq. (4). The interpretation of Lkgh is that we assume P̂k−1

(t) satisfies FPE and search for 
the optimal terms. The optimized ĝ  and ĥ are saved as the updated weights of the k-th iteration.

where P̂k−1
(t) is kept constant.

The P-training step in the k-th iteration. After the gh-training step of the k-th iteration, the latest 
updated input and weights are P̂k−1

(t) , ĝk and ĥ
k
 , respectively. Now we run the P-training step to train P̂(t) 

(green blocks in Fig. 1). Specifically, FPE-NN would have a trainable input P̂(t) with initial value P̂k−1
(t) , and 

the weights ĝk and ĥ
k
 which are kept constant in this step. The output P̂pred is compared with P̂0 which is the 

smoothed Pnoisy . Therefore, one data sample has a single distribution P̂k−1
(t) as input and multiple distributions 

P̂
0
(t + i�t) as target output, where i ∈ {−n, . . . , n} . The corresponding loss function is:

where the superscript k indicates the k-th iteration. Because the input P̂(t) is time-dependent and specific to each 
sample, we could only train the samples one-by-one. The interpretation of LkP is that we search for the optimal 
P̂(t) which has the minimum difference to P̂0

(t) , and naturally to P̂noisy(t) , when it evolves according to FPE 
with terms ĝk and ĥ

k
 . The optimized P̂(t) is saved as the updated input of the k-th iteration:

where ĝk and ĥ
k
 are kept constant.

Training Stopping Criterion. As described previously, the alternating FPE-NN training process uses the 
updated P̂(t) to improve the accuracy of ĝ and ĥ , and uses the updated ĝ and ĥ to improve the accuracy of 
P̂(t) . Eventually, FPE-NN aims to recover the true values of P̂(t) , ĝ and ĥ . However, because the true values are 
unknown, an indirect metric must be set to evaluate the training process and used as a criterion to stop the train-
ing iteration. In this study we use the sum of the two loss functions Lgh + LP as the stopping criterion, to stop the 
whole training process when it converges or fails to decrease within a certain number of successive iterations.

Predict future distributions. Once the whole training process is finished, the well-trained weights ĝ and 
ĥ could be used to predict the future evolution of a different pdf, denoted as P′

noisy(t) , which satisfies the same 
FPE but is not used in FPE-NN training. Specifically, the task would be to use the distributions of P′

noisy(t) at 
time points {t − r�t, . . . , t} to predict the distributions at time points {t +�t, . . . , t + f�t} , where r and f are 
user-defined parameters. In this study, we choose r = n and f = 5.

The prediction process is similar to the P-training step which keeps the FPE-NN weights constant. First, 
the given distributions P′

noisy(·) are smoothed with the SG filter, and the smoothed distributions are denoted by 
P′′
noisy(·) . We then use P′′

noisy(·) as the target output to train the input P̂(t) using FPE-NN. The corresponding time 
distance set is {−r�t, . . . , 0} which is different from the one used in the FPE-training process (Fig. 1). Hence the 
corresponding loss function becomes:

where ĝ  and ĥ are well-trained weights and kept constant. By minimizing the loss value we derive the optimal 
P̂(t):

Finally, the optimized P̂(t) is fed into FPE-NN again with another time distance set {�t, . . . , f�t} , to predict 
distributions at time points {t +�t, . . . , t + f�t}:

(4)

Lkgh(ĝ , ĥ|P̂
k−1

(t)) =
∑

t

n
∑

i=−n

∥

∥

∥
P̂pred(t + i�t)− P̂

k−1
(t + i�t)

∥

∥

∥

2

2

=
∑

t

n
∑

i=−n

∥

∥

∥
P̂
k−1

(t)+ i�t(∂x(ĝ P̂
k−1

(t))+ ∂xx(ĥP̂
k−1

(t)))− P̂
k−1

(t + i�t)
∥

∥

∥

2

2

(5)ĝk , ĥ
k
= arg min

ĝ ,ĥ

Lkgh(ĝ , ĥ|P̂
k−1

(t))

(6)

Lkp(P̂(t)|ĝ
k
, ĥ

k
) =

n
∑

i=−n

∥

∥

∥
P̂pred(t + i�t)− P̂

0
(t + i�t)

∥

∥

∥

2

2

=

n
∑

i=−n

∥

∥

∥
P̂(t)+ i�t(∂x(ĝ

kP̂(t))+ ∂xx(ĥ
k
P̂(t)))− P̂

0
(t + i�t)

∥

∥

∥

2

2

(7)P̂
k
(t) = arg min

P̂(t)

Lkp(P̂(t)|ĝ
k , ĥ

k
)

(8)Lapp(P̂(t)|ĝ , ĥ) =

0
∑

i=−r

∥

∥

∥
P̂(t)+ i�t(∂x(ĝ P̂(t))+ ∂xx(ĥP̂(t)))− P′′

noisy(t + i�t)
∥

∥

∥

2

2

(9)P̂(t) = arg min
P̂(t)

Lapp(P̂(t)|ĝ , ĥ)
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where i ∈ {1, . . . , f }.

Numerical studies
Evaluation metrics. The training process can be evaluated with up to six metrics. The first two metrics are 
the loss values, which can be used to quantify the training result based on the observation Pnoisy(t) . In particular 
Lgh measures how well P̂(t) satisfies FPE, while LP measures how close P̂(t) is to the measured pdf Pnoisy(t).

In the cases of validating our methods with simulated data where the corresponding true values are known, 
three more metrics can be used to quantify the normalized errors of P̂(t) , ĝ  and ĥ:

where P(t) , g  and h are the true values. According to the form of the loss function Lgh (Eq. (4)), the gradients 
of ĝ  and ĥ both are proportional to the corresponding P̂(t) at the same point of x. Usually the values of P̂(t) 
at the boundary points of x are very small, hence the corresponding ĝ  and ĥ at these points are difficult to be 
well trained in backpropagation. On the other hand, the boundary points are less important due to their small 
P(t) values. Hence, we also measure the error of ĝ  and ĥ excluding the boundary points, denoted as Ẽg and Ẽh , 
respectively. Please take note that the boundary area is not excluded during the training process, they are ignored 
only when calculating Ẽg and Ẽh . The boundary area is determined by using the student T-test24 at each point of 
x. The x points whose density values within all the training data are statistically lower than 0.01×max(Pnoisy(t)) 
are classified to the boundary area.

The last metric is the ability of using the trained ĝ and ĥ to predict future distributions, the detailed process of 
which has been described previously. The normalized error of the predicted future distribution is denoted as Etest:

where i ∈ {1, . . . , f } indicates the number of time gaps ahead of the last known distribution, P̂pred(t + i�t) is 
the predict distribution provided in Eq. (10), and Ptarget(t + i�t) is the ground truth.

Simulated data. We validate our method with simulated data. First, We solve the forward problem of FPE 
with chosen FPE terms and initial conditions, to generate several distribution sequences at multiple time points. 
Then, we assume the FPE terms are unknown, and we train FPE-NN to solve the inverse problem of FPE which 
is to find the FPE terms based on the generated distribution sequences.

The simulated data is generated based on three selected FPE examples which have been used to model real-
world phenomena in different areas. Another FPE example, the Brownian motion in a periodical  potential25, 
is also used to validate our method and the result is provided in the Supplementary. For each FPE example, we 
generate 120 distribution sequences and each sequence consists of distributions at 50 time points with a uniform 
time gap �t . 100 distribution sequences are used to train FPE-NN and the remaining 20 sequences are used to 
test the ability of predicting future distributions. We also tested training with less or more than 100 distribution 
sequences, and the result is provided in the Supplementary.

Example 1: Heat flux (OU process). Our first FPE example comes from meteorology, where Lin and  Koshyk26 
used it in climate dynamics to describe how the heat flux at the sea surface evolves. The observable x is the devia-
tion of the heat flux from its steady state in units of watts per square meter. Each unit of time t corresponds to 
55 days. The FPE form is:

The process described by Eq. (13) is called the Ornstein-Uhlenbeck (OU)  process17, where D and θ are the diffu-
sion and drift coefficients respectively. It was originally used in the Brownian motion of molecular dynamics and 
has since been applied widely in various  fields27–29. The forward problem of Eq. (13) has an analytical solution 
which is a time-varying Gaussian distribution:

where the mean µ and deviation σ are:

where x0 is the origin state of x when t = 0 . We set D = 0.0013 and θ = 2.86 , which are the empirical parameters 
from the sea  measurements30. x is discretized into 110 bins with support [−0.01, 0.1] . The initial conditions are 
uniformly sampled from x0 ∈ [0.04, 0.08] and tinit ∈ [0.03, 0.05] . We obtain simulations with a random pair 
of (x0, tinit) for each distribution sequence. We adjust the time gap �t to be 0.001 in order to maximize the 

(10)P̂pred(t + i�t) = P̂(t)+ i�t(∂x(ĝ P̂(t))+ ∂xx(ĥP̂(t)))

(11)EP =
� P̂(t)− Pclean(t) �2

� Pclean(t) �2
, Eg =

� ĝ − g �2

� g �2
, Eh =

� ĥ− h �2

� h �2

(12)Etest =
� P̂pred(t + i�t)− Ptarget(t + i�t) �2

� Ptarget(t + i�t) �2

(13)∂P(x, t)

∂t
= θ

∂

∂x
(xP(x, t))+ D
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∂x2
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√
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−
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)
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distribution differences at different time points while keeping P(x, t) values at boundary points close to zero. 
The time gap of the next two examples are also tuned based on the same criteria.

Example 2: DNA bubble (Bessel process). The next FPE example is from the biology area, where FPE has been 
used to model the dynamics of DNA bubbles formed due to thermal  fluctuations16. The observable x is the bub-
ble length in units of base pair and the time variable t is in units of microsecond. The corresponding pdf satisfies:

Equation (16) describes a generalized Bessel process which also has many other  applications31. In the DNA bubble 
study, µ is estimated as 1 and ǫ is approximated as 2(T/Tm − 1) , where T is the environment temperature and 
Tm is the melting temperature which is determined by the DNA sequence. In this work, we set µ = 1 to follow 
the DNA bubble study and arbitrarily choose ǫ = 0.2 . Equation (16) has a very complicated analytical  solution31. 
Hence for convenience, we generate data by solving the forward problem with the 4th-order Runge–Kutta method 
for temporal discretization. x is discretized into 100 bins with support [0.1, 1.1]. The initial condition is a normal 
distribution whose mean µ and deviation σ are randomly sampled from [0.4, 0.8] and [0.05, 0.1] respectively. 
We adjust the time gap �t to be 0.001, based on the same criteria as mentioned before.

Example 3: Agent’s wealth. The final FPE example comes from economics, where Cordier et al.7 uses FPE to 
describe the wealth distribution of agents. The agent is a terminology in economics referring to an individual, 
company, or organization who has an influence on the economy through producing, buying, or selling. The 
observable x is the agent’s wealth and its pdf satisfies:

Equation (17) has no analytical solution and we solve the forward problem by using the 4th-order Runge–Kutta 
method. We set � = 0.4 and m = 1 following Cordier’s  report7. x is discretized into 100 bins with support [0, 1.0]. 
Similar to the DNA bubble example, the initial condition is a normal distribution whose µ and σ are randomly 
sampled from [0.3, 0.7] and [0.05, 0.1], respectively. The time gap �t is adjusted to be 5e-4 , based on the same 
criteria mentioned in the heat flux example.

Noise addition. After we generate the distribution sequences (denoted as Pclean ) by solving the forward prob-
lem of FPE as described previously, noise is added to the distributions to model real-world scenarios:

where ξ is a random number sampled from the standard normal distribution N(0, 1), and W is a constant which 
is adjusted to ensure that the corresponding EP of Pnoisy(x, t) is approximately 0.01. Simulated data with higher 
corresponding EP is also tested using our method, and the results are provided in the Supplementary.

Results. As described previously, we generate the simulated data by solving the forward problem of FPE with 
given FPE terms and initial conditions. After that, we assume the FPE terms are completely unknown, and train 
FPE-NN to solve the inverse problem which is to find the FPE terms based on the simulated data. A typical train-
ing process with the data from the agents’ wealth example is shown in Fig. 3. LP decreases rapidly in the first few 
iterations while Lgh decreases at a slower rate. Both of their curves become almost flat after the 25-th iteration 
and decrease very slowly. The curve of EP generally coincides with that of LP with a turning point at the 25-th 
iteration. In contrast, Eg and Eh are continuously decreasing during the iterations. The result demonstrates that 
with the alternating training process, the input and weights help each other gradually recover the true values 
over the iterations. We also found that further improvements on the accuracy of ĝ and ĥ , after reaching a certain 
point, have minor effect on the accuracy improvement of P̂(t) . On the other hand, ĝ and ĥ are more sensitive to 
the minor improvements in P̂(t) . We also test Etest at several selected iterations as shown in Fig. 3c. The result 
suggests that a larger time gap is more sensitive to the accuracy of ĝ and ĥ . However, further improvement in 
ĝ and ĥ after a certain point has little effect on future distribution prediction. A typical plot of the predicted 
distributions in future time is provided in Supplementary. Overall, the learning curves demonstrate our self-
supervised method can train P̂(t) , ĝ and ĥ in an alternating way and let them gradually recover the true values.

The training results of the three different FPE examples are summarized in Table 1. Generally, P̂(t) , ĝ  and ĥ 
have been well trained using FPE-NN in all the three simulated datasets. The noise of the trained P̂(t) is signifi-
cantly suppressed, as the final noise ratio EP could reach to less than 0.002. In contrast, the corresponding EP for 
Pnoisy(t) is around 0.01. The trained ĝ  and ĥ also fit well with their true values. Figure 4 shows the plots of the 
final values of ĝ  and ĥ (red diamond), excluding the boundary points, are quite close to the true values (black 
line). In contrast, if we do not train the input but just smooth Pnoisy(t) with SG-filter, the optimized weights 
ĝ1 and ĥ

1
 (blue cross) have much higher error. Hence, further reduction of the noise in Pnoisy(t) is essential to 

improving the accuracy of trained ĝ  and ĥ.
We also examined how the training result is affected by the number of output distributions, which is the 

hyperparameter n in Eqs. (4) and (6). As demonstrated in the Supplementary, n > 1 can help to suppress the noise 
effect of P̂(t) . However, it is not always better to have more neighboring time points, because the local truncation 
error from the Euler method may become too large to be ignored. Therefore n is a hyperparameter which needs 

(16)∂P(x, t)

∂t
=

∂

∂x

((µ

x
− ǫ

)

P(x, t)
)

+
1

2

∂2P(x, t)

∂x2

(17)∂P(x, t)
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=

�

2

∂2

∂x2
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∂
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Figure 3.  Curves of a typical training process with the data of the agents’ wealth. The training is stopped when 
the sum of Lgh and LP fails to decrease within 20 successive iterations. (a) Lgh . (b) LP . (c) Etest . (d) Eg (solid line) 
and Ẽg (dash line). (e) Eh (solid line) and Ẽh (dash line). (f) EP.

Figure 4.  Comparison of the true g and h (black line) and the trained weights ĝ and ĥ from the first training 
iteration (blue cross) and the final iteration (red diamond) in heat flux (a, d), DNA bubble (b, e), and agent’s 
wealth (c, f) examples. The boundary area is indicated by the vertical blue dash line. ĝ1 and ĥ

1
 are the trained 

weights in the first iteration. They are the optimal FPE terms can be found based on the smoothed Pnoisy(t) , 
P̂
0
(t) . The figure shows that ĝ1 and ĥ

1
 are significantly different from their true values, suggesting that merely 

smoothing Pnoisy(t) is insufficient. To further reduce the noise by training P̂(t) with FPE-NN is essential for the 
ĝ and ĥ optimisation.
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to be tuned case-by-case. In this study, we tested four different values of n for each FPE example. As shown in 
Table 1, Lgh and LP always increase when n increases, which is because of the larger truncation error caused by 
the larger time distance. However, the errors of P̂(t) , ĝ  and ĥ are not monotonically increasing or decreasing. 
Different datasets have different best n within the four options.

The effect of the training data size is also studied, by training FPE-NN with 200, 75, or 50 distribution 
sequences. The detailed result is provided in the Supplementary. Generally, using less data (75, or 50 sequences) 
causes the calculated ĝ and ĥ to be less accurate. More distribution sequences could provide more information 
about how the PDF evolves, enabling better fit of g(x) and h(x). On the other hand, the accuracy of the training 
result can be further improved by using more training data (200 sequences), but in real applications it could 
be too expensive to acquire extra distributions. Hence, the result shows that 100 distribution sequences is an 
appropriate data size to achieve accurate enough training results.

Discussion
In this study, we proposed a new method to find the FPE terms based on the measured noisy pdfs, without any 
prior knowledge except assuming the pdfs satisfy FPE. Such an inverse problem of FPE could help us to study 
the stochastic processes in a more efficient way. We designed our network FPE-NN based on FPE and the Euler 
method. The input of FPE-NN is the distribution at a time point, the trainable weights are ĝ  and ĥ representing 
the FPE terms, and the output is the distributions at several neighboring time points. In an alternating way, we 
use FPE-NN to train the input and the weights separately, forcing them to recover their true values. By training 
the input we successfully reduced the noise in the measured pdfs, which is a key factor for finding the accurate 
FPE terms. We validated our method with simulated data from three typical FPE examples. The result shows 
that the final trained input and weights all can agree well with the true values.

Although we are using a uniform grid to generate the simulated data in this paper, FPE-NN also can be used 
with minor changes in cases where the spatial gap �x and the time gap �t are not uniform. As shown in the 
Supplementary, the matrices which perform the derivative calculations of ∂x and ∂xx can be easily modified to 
accommodate a non-uniform �x . For the non-uniform �t , we could treat the time distance set (Fig. 1) as part 
of the input, to make it more flexible and specific for each data sample.

Currently, we are focusing on one-dimensional and time-independent FPE, but our method can be easily 
extended to higher spatial dimensions. In future work, we will try to solve the inverse problem of time-dependent 
FPE. Furthermore, our method can perform well when the initial noise ratio ( EP ) is around 0.01. However, the 
recovered FPE terms become less accurate with data of higher noise ratio. Hence, another possible future direc-
tion is to improve the noise robustness of the proposed method.

Data availability
The data and code that support the findings of this study are available from corresponding authors upon request.

Received: 6 February 2021; Accepted: 5 July 2021

References
 1. Sjöberg, P., Lötstedt, P. & Elf, J. Fokker–Planck approximation of the master equation in molecular biology. Comput. Vis. Sci. 12, 

37–50. https:// doi. org/ 10. 1007/ s00791- 006- 0045-6 (2009).
 2. Cheng, X. Z., Jalil, M. B. A., Lee, H. K. & Okabe, Y. Mapping the monte carlo scheme to langevin dynamics: a Fokker–Planck 

approach. Phys. Rev. Lett.https:// doi. org/ 10. 1103/ PhysR evLett. 96. 067208 (2006).
 3. Nadler, B., Lafon, S., Kevrekidis, I. & Coifman, R. Diffusion maps, spectral clustering and eigenfunctions of Fokker–Planck opera-

tors. Adv. Neural. Inf. Process. Syst. 18, 955–962 (2005).

Table 1.  Summary of the evaluation metric values of the simulated data from three FPE examples. The 
number of the training distribution sequences is fixed as 100. n is the output time point range used in Eqs. (4) 
and (6).

Example n Lgh/(2n+ 1) LP/(2n+ 1) Eg (Ẽg ) Eh(Ẽh) EP E1
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