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Abstract: A weak C-axis preferred AlN thin film with a lot of defects was fabricated for temperature
measurement. It was found that the (002) diffraction peak of the thin film increased monotonously
with the increase in annealing temperature and annealing time. This phenomenon is ascribed to the
evolution of defects in the lattice of the AlN film. Therefore, the relationship between defects and
annealing can be expressed by the offset of (002) diffraction peak, which can be used for temperature
measurement. Furthermore, a temperature interpretation algorithm Equation based on the lattice
parameter (2θ), annealing temperature and annealing time was established, and a temperature
interpretation software was built with MATLAB. Visual temperature interpretation is realized by the
software, and the relative error is less than 7%. This study is of great significance for promoting the
accurate temperature measurement on the surface of high temperature component.

Keywords: weak C-axis preferred AlN thin film; annealing; lattice defect; MATLAB; temperature
measurement

1. Introduction

Accurately measuring the surface temperature of the turbine blade and mastering its
temperature distribution is an important basis for diagnosing turbine blade breakdown.
Surface temperature measurement methods of turbine blades mainly include thin-film ther-
mocouple [1–3], temperature-indicating paint [4], infrared radiation [5–7], and irradiation
crystals [8–10]. Thin-film thermocouple technology has the advantages of high integra-
tion, but it is not applicable for high-speed rotating blades. Temperature-indicating paint
causes no damage to the structure of the test component, but the testing accuracy is very
low. Infrared radiation temperature measurement technology is especially suitable for the
temperature measurement of high-speed rotating objects, but the variation of emissivity of
the tested parts would bring great errors to the test results. Irradiation crystal temperature
measurement technology can measure the temperature accuracy by arranging test points
in a high density, and it is free from the connecting lead. However, the temperature testing
process is quite complicated and expensive. Based on the advantages of irradiation crystals,
an easy and cheap temperature measurement method by thin film crystal was proposed.
It was reported that the crystal quality can be reinforced after annealing [11–13], which
indicated that the AlN thin film is a promising candidate for temperature measurement.

This work is dedicated to studying the relationship between the lattice structure and
annealing more systematically. We try to establish an algorithm Equation based on the
lattice parameter (2θ), annealing temperature and annealing time, and develop software to
realize the visual temperature interpretation.
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2. Experimental Details

The weak C-axis preferred AlN thin film was deposited on alumina ceramic substrate
with medium frequency (MF) reaction magnetron sputtering (JGP560) at 300 ◦C. A high
vacuum pressure of 5 × 10−4 Pa was obtained by a primary mechanical pump coupled to a
condensate pump. A pair of square aluminum targets (200 × 100 × 10 mm, 99.99% purity)
and high purity argon and nitrogen (99.99% purity) were used as the sputtering source
material for depositing the AlN thin film. Before deposition, alumina ceramic substrate was
ultrasonically cleaned in acetone, absolute ethyl alcohol and deionized water for 10 min,
respectively. Then the substate was dried by nitrogen gun and fixed at a distance of 80 mm
from the Al target. The films were deposited with different nitrogen content (30%, 50%,
70%, 100%, total flow rate of 100 sccm), a working pressure of 0.8 Pa, and MF power of
2000 W. The weak C-axis preferred AlN thin film, with a thickness of 2.5 µm, was grown
on alumina ceramic substrate in a growth time of 1.5 h.

The film deposited with pure nitrogen was annealed in vacuum from 400 to 1000 ◦C
for 40 and 80 min. The pressure of the tube furnace was about 6 × 10−1 pa merely by a
primary mechanical pump. X-ray diffraction (XRD, Ultima IV, CuKα, 40 KV, 40 mA) was
applied to investigate the crystal structure of the film. X-ray photoelectron spectroscopy
(XPS, Kratos XSAM 800, Al Kα radiation) was used to measure the chemical composition
and bonding state of the film. The temperature interpretation algorithm Equation was
established, and the temperature interpretation software was built with MATLAB.

3. Results and Discussion

Figure 1a displays the XRD patterns of the AlN thin film deposited with different
nitrogen content (30%, 50%, 70% and 100%). Weak C-axis preferred AlN thin film, with
a wide full width at half maximum (FWHM), can be prepared with a nitrogen content
above 50%, which is consistent with the reported results [14,15]. XRD patterns reveal the
characteristic peak of AlN with the hexagonal wurtzite structure. It can be observed that
the (002) diffraction peak shifts to a lower angle with the increase in nitrogen content. In
particular, the (002) diffraction peak moved by a larger angle when sputtering with pure
nitrogen. This result contributes to the greater kinetic energy of nitrogen ion. During the
sputtering reaction, nitrogen was ionized into N5+ and N3−. Compared with Ar+, N5+

possesses higher kinetic energy due to its high charge. The cations were accelerated to
bombard the target, which leads to better crystallinity, but also create more defects inside
the film. According to Bragg’s equation, 2dsinθ = kλ [16], where d is the interplanar spacing,
θ is the incident angle, λ is the incident ray wavelength, and k is a constant. Figure 1b
gives the accurate 2θ value of (002) diffraction peak. It can be verified that the interplanar
spacing of the (002) crystal plane is expanded by sputtering using pure nitrogen.
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Figure 1. (a) XRD pattern of AlN thin films deposited with different contents of nitrogen, the inset is
the magnified (002) diffraction peak; (b) accurate 2θ value of the (002) diffraction peak.

Figure 2a shows the XRD pattern of AlN thin films annealed in different temperatures
for 40 min. An obvious peak shift towards a higher angle can be observed in the (002)
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diffraction peak with the increase in annealing temperature. Figure 2b shows the XRD
pattern of AlN thin film annealed for 80 min. The (002) diffraction peak also shifts to
a higher angle with the increase in annealing temperature. Figure 2c demonstrates that
the 2θ value of (002) diffraction peak increases linearly with the increase in annealing
temperature and annealing time. This result illustrates that the defects were repaired step
by step within 1000 ◦C [17–20]. However, the (002) diffraction peak returns to a smaller
value when annealing at 1000 ◦C for 80 min, which is due to the fact that some lattice
defects were repaired at 1000 ◦C, but a higher annealing temperature or a longer holding
time may generate new lattice defects. Fortunately, the regular linear relationship between
the 2θ value and annealing (annealed at 900 ◦C for 40 and 80 min) can be clearly observed.
Coincidentally, based on the relationship between the lattice parameter (2θ), annealing
temperature and annealing time, a novel method for temperature measurement can be
put forward.
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XPS was carried out to prove that annealing can improve the crystallization quality
of the weak C-axis preferred AlN thin film. Figure 3a displays the XPS full spectra of the
initial and annealed AlN thin film. The XPS spectra were calibrated by the C 1s peak at
284.8 eV. XPS full spectra confirmed that there is no exceptional element, either in the initial
AlN film or the annealed AlN film.
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Figure 3b shows XPS fine scans of Al 2p for the AlN thin film. Obviously, a con-
siderable amount of oxygen is observed in the initial AlN thin film, which results from
surface-adsorbed oxygen. In contrast, there is no residual oxygen on the surface for the
annealed film. That means annealing eliminates impurity atoms on the surface of the film,
which leads to a better crystalline thin film [21,22]. The narrow XPS spectrum of N 1s
was also laid out to explain the crystalline quality modification of the AlN thin film. As
Figure 3c shows, it is obvious that N-C merely exists in the initial AlN thin film. However,
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an independent Al-N fitting peak is presented for annealed AlN thin film, which illustrates
that the surface-contaminated carbon has been removed. This result also represents strong
evidence for the suggestion that annealing improves the crystallization quality of the AlN
thin film.

The XRD results illustrate that the lattice defects of the weak C-axis preferred AlN thin
film can be diminished gradually by annealing, and the movement of (002) diffraction peak
directly reflects the relationship between lattice defects and annealing. Consequently, the re-
lationship between annealing temperature, annealing time and 2θ values can be established
and regarded as the basis of temperature measurement. More specifically, the annealing
temperature, annealing time and 2θ values are input into MATLAB software to generate
matrix sequence. According to the temperature interpretation algorithm Equation reported
in the literature [23], we fit the matrix sequence by polynomial in MATLAB software to
obtain the temperature interpretation algorithm Equation, as shown in Equation (1).

2θ = A + B× t + C× T (1)

In the Equation, 2θ is the diffraction angle of the (002) plane of the AlN thin film, t
the is annealing time, and T is the annealing temperature. In Equation (1), A, B and C are
the constants, the fitting results are 35.97, 0.0002583 and 6.543 × 10−5, respectively. The
fitting results of different temperature interpretation algorithms are shown in Figure 4,
which includes the fitted algorithm model diagram, the corresponding residual plots and
the standard temperature calibration curve.
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The linear correlation coefficient (R), standard deviation (RMSE) and sum of squared
residuals (SSE) of the temperature interpretation algorithms Equations are 0.9912, 0.0019,
and 3.2352 × 10−5, respectively. The linear correlation coefficient is closer to 1, which
means the correlation between variables is stronger [24,25]. Small standard deviation
(RMSE) demonstrates that the predicted data are closer to the real data [26,27]. The small
sum of squared residuals (SSE) shows that the fitting degree of the linear fitting model is
high [28,29]. These data illustrate that Equation (1) is suitable for temperature interpretation
algorithm.

In order to realize visual temperature interpretation, temperature interpretation soft-
ware was built in the MATLAB environment, shown as Figure 5. The temperature interpre-
tation software including axes, text, edit, pushbutton and other objects. For a single object,
the corresponding instruction code was written under its callback function. Then, we can
input the values of the constants A, B and C, and the temperature calibration curve can be
drawn. For temperature interpretation, only the annealing time and lattice parameter 2θ
needs to be provided, and the maximum temperature experienced by the sample can be
read out.
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The interpretation temperature is extracted to compare it with the experimental
temperature, and the related result is shown in Table 1. As Figure 6 displays, the trend of
the interpreted temperature curve is consistent with the experimental temperature curve,
but the coincidence degree of the curves is still poor. Therefore, most of the work will
be done in the future to improve the accuracy of temperature measurement by the weak
C-axis AlN thin film. In this work, except for a few points, the relative error is less than 7%.
The relative error is the ratio of the absolute error between the interpreted temperature and
the experimental temperature to the experimental temperature. Especially in the higher
temperature section, the error of temperature interpretation is smaller, which indicates that
the weak C-axis AlN thin film is an ideal candidate for high temperature measurement.

Table 1. The data of experimental temperature, interpretation temperature and the relative error.

Experimental T
(◦C)

Interpretation T
(◦C)—40 min Relative Error Interpretation T

(◦C)—80 min Relative Error

400 ◦C 422.86 5.71% 371.93 7.00%
500 ◦C 468.71 6.25% 478.92 4.21%
600 ◦C 560.41 6.59% 570.62 4.89%
700 ◦C 621.54 11.2% 662.32 5.38%
800 ◦C 774.38 3.20% 799.87 0.01%
900 ◦C 911.93 1.32% 876.29 2.63%

1000 ◦C 973.07 2.69% \ \
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4. Conclusions

A weak C-axis preferred AlN thin film with a lot of defects was successfully deposited
for temperature measurement. In this work, the relationship between annealing and lattice
defects was used for temperature measurement, and the repair of defects by annealing was
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expressed by the offset of (002) diffraction peak. So, the relationship between the lattice
parameter (2θ), annealing temperature and annealing time was established to obtain a
temperature interpretation algorithm Equation. Moreover, based on the algorithm Equation,
the temperature interpretation software was built with MATLAB. Visual temperature
interpretation is realized by the software, and the relative error is less than 7%. This study
is of great significance for promoting accurate temperature measurement on the surface of
high-temperature components. This technology is expected to be applied to the surface
temperature measurement of high-temperature components in the aerospace field.
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