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Abstract

Starting with the hypothesis that analogical reasoning consists of a search of semantic space, we
used eye-tracking to study the time course of information integration in adults in various formats of
analogies. The two main questions we asked were whether adults would follow the same search strate-
gies for different types of analogical problems and levels of complexity and how they would adapt
their search to the difficulty of the task. We compared these results to predictions from the literature.
Machine learning techniques, in particular support vector machines (SVMs), processed the data to find
out which sets of transitions best predicted the output of a trial (error or correct) or the type of anal-
ogy (simple or complex). Results revealed common search patterns, but with local adaptations to the
specifics of each type of problem, both in terms of looking-time durations and the number and types of
saccades. In general, participants organized their search around source-domain relations that they gen-
eralized to the target domain. However, somewhat surprisingly, over the course of the entire trial, their
search included, not only semantically related distractors, but also unrelated distractors, depending on
the difficulty of the trial. An SVM analysis revealed which types of transitions are able to discriminate
between analogy tasks. We discuss these results in light of existing models of analogical reasoning.
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1. Introduction

Analogical reasoning is typically conceived of as a process in which a base domain and a
target domain are compared in order to find relational correspondences between them (e.g.,
Gentner, Holyoak, & Kokinov, 2001; Holyoak, 2012). Analogies play a central role in many
activities and, as such, have been the focus of numerous studies over the years (e.g., Hofstadter
& Sander, 2013; Holyoak, 2012; Krawczyk, 2017).

Understanding an analogy is a multifaceted task requiring systematic comparisons between
the items in both domains of the analogy problem. Most conceptions of analogical reasoning
include the following processes: (1) encoding the items making up the problem; (2) search
and retrieval of one relation in memory that connects the two terms, A and B, in the base
domain (e.g., “lives in” for bird and nest); (3) mapping of the hypothesized relation holding
in the base domain to the target domain, between a C and a D (e.g., “dog” with “doghouse”);
and (4) evaluation of the soundness of the mapping (e.g., can both pairs be unified by the
“lives in” relation) (e.g., Chen, Honomichl, Kennedy, & Tan, 2016; French, 2002).

At the heart of most analogy models is the mapping process between the base and the target
domains. Mapping is the process involved in finding a set of systematic correspondences
between the source and the target domain. This means establishing that the relations holding
between a subset of objects, events, and characters in the source domain also hold between
a subset of objects, events, and characters in a target domain (Holyoak, 2012). Importantly,
depending on the model of analogical reasoning, the emphasis will either be on the alignment
between entities playing the same role in both domains (i.e., A with C, and B with D) or
will involve a generalization of the relation discovered in the base domain and subsequently
applied to the target domain. In the latter case, hypotheses must be made regarding which
relation(s) in the base domain (i.e., A and B) can be applied to the other domain (i.e., C and
D) (for reviews, see Gentner & Forbus, 2011; Gentner et al., 2001; Holyoak, 2012).

The present paper aims to study the temporal dynamics of base-to-target domain mapping
by means of eye-tracking, with analogies of various types and varying levels of difficulty.
The central issue that we will explore is whether the temporal organization of mapping varies
depending on the structure of the analogy task (i.e., scene analogies and proportional analo-
gies), and/or according to characteristics of the domains being compared (e.g., analogy diffi-
culty as measured by the semantic distance between domains or by the type and number of
distractors).

1.1. Definition of the search space

The search space of an analogy can vary from well-defined spaces in which the set of
potential dimensions is limited, to much more open search spaces in the case of very different
source and target domains and/or semantically weakly associated entities in both domains.
The matrix completion task (Chen et al., 2016; Sternberg, 1977) is an example of the first.
Participants view a matrix of items that share a particular relationship and then select a solu-
tion that completes the matrix in a way that is consistent with the relation between the objects
in the matrix. Problem complexity is usually defined by a small number of dimensions that
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differ in saliency and by the number of transformations that have to be kept active in working
memory (see Bethell-Fox, Lohman, & Snow, 1984; Stevenson, Heiser, & Resing, 2013). Its
difficulty involves integrating all of the dimensions into a single representation and distin-
guishing the correct solution from similar alternatives. By contrast, with semantic analogies,
the difficulty is a matter of the conceptual distance between the base and target domains and of
the association strength between the items involved in both domains. In addition, the targeted
relations can be obvious or less obvious, sometimes necessitating semantic rerepresentation
when the salience of the relationally best solution is low (e.g., Green, 2016). Finally, the pres-
ence of irrelevant dimensions, whether salient or not, also contributes to task difficulty (e.g.,
Thibaut, French, & Vezneva, 2010a).

1.2. Computational analysis of the dynamics of analogy-making

In solving an analogy problem what information should be processed and when? Most
research in the field has dealt with interpretations of analogies, their soundness, factors influ-
encing their comprehension, with or without reaction-time data (RTs). Only a few studies
have dealt directly with the temporal organization (i.e., the dynamics) of the search through
semantic space required to solve an analogy problem (see below). However, computer mod-
els have proposed various ways in which the dynamics of solving analogy problems might
occur. These computational models more or less explicitly posit a temporal organization of
the search for a solution. We will compare four distinct proposals derived from computational
models (see French, 2002; Gentner & Forbus, 2011 for reviews)—namely the “alignment-
first,” “projection-first,” “parallel terraced scan,” and “relational-priming” models.

In a predicate-argument context, representations consist of predicates and their argu-
ments. In this case, the predicate instantiates a relational structure in the base domain,
such as revolves_around (earth, sun). In that case, one attempts to align the arguments in
the base domain with arguments in the target domain. Gentner and Forbus (2011) call this
an “Alignment-first” approach (e.g., SME or ACME). This is derived from the structural
alignment hypothesis (Falkenhainer, Forbus, & Gentner, 1989; Markman & Gentner, 1993),
according to which the items that compose the base and the target domains are aligned first
and inferences are projected from the base pair to the target pair. In the A:B::C:? T(arget)
paradigm, this means that one would first align A with C, and would then look for a solution,
T (or Ts) that is conceptually aligned with B. This predicts early attention to the A-C pair and
to the B-T(arget) pairs.

By contrast, “Projection-first” models (e.g., LISA, Hummel & Holyoak, 1997; DORA,
Doumas, Hummel, & Sandhofer, 2008) begin by identifying a set of relations that might be
relevant to unify the stimuli in the base pair. Once identified, they project this relation from the
base pair (i.e., here, the A-B pair) to the target (i.e., the C-T(arget) pair). This predicts early
attention to the A-B pair, as participants study the pair for a relation between the two items.
This would imply more early AB saccades (i.e., saccades between A and B) than saccades
within the target domain or from the base to the target, followed by more attention to C and
Target and C-Target saccades. This contrasts distinctly with the alignment-first case predicting
more between-domain AC and BT saccades.
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The stochastic parallel-terraced-scan models (e.g., French, 1995; Mitchell, 1993) consti-
tute the third class of models. These models make no a priori prediction about the order
in which items will be aligned, but rather, dynamically discover relations between objects
based on the evolving activation levels of the objects and potential relations between them
in a semantic network. In this way, the model gradually converges on a coherent structure
of the problem upon which an answer is based. Activations in the semantic network change
dynamically according to what the program happens to have (stochastically) perceived up to
that point. In the dog:doghouse::bird:nest, within and cross-domain relations are discovered
correct (sleeps-in) or incorrect (builds, for bird nest). When nothing matches between the two
domains, temperature rises, and the search is extended beyond its normal bounds. Relations
with no corresponding relation in the base domain lose activation and the activation of rela-
tional match sleeps-in and its associated arguments increase with dynamics that can differ
from those of the “alignment-first” or “projection-first” approaches.

Importantly, most conceptions of analogical reasoning, in particular the three mentioned
above, involve in one way or another the idea of a selection or discovery of relations among
a set of possible relations, allowing us to progressively converge on a solution, analogically
correct or not. This is one of the central tenets of most models of analogy-making. They
converge on the idea of a lessening of activation for unrelated, local, matches in favor of
an activation/construction of a relational structure, generally written in a predicate-argument
format.

A fourth view, the relational priming model, proposed by Leech, Mareschal, and Cooper
(2008), gives no central role to mapping in the development of analogies. According to this
model, children first study the A-B pair. Then, the relation found between A and B (the authors
appeal to the retrieval of a relevant transformation between A and B) (e.g., cuts for knife and
bread) automatically primes the retrieval of a relationship between C and the target item into
which it is transformed. This model predicts that participants study the A-B pair first, they
then turn to C and the solution set, much like the projection-first model. However, in contrast
to the projection-first model, the relational-priming model’s solution to the problem is found
through priming, which involves no systematic comparisons between pairs of items in the
target domain and mostly ignores distractors. The solution has been primed by the original
relation found in the base domain and is directly applied to C. In other words, there is no
notion of mapping, or even of an active search, in this model.

Finally, most models include an evaluation of the solution at the end of the process, deter-
mining to what extent the inferences discovered are relevant to the context at hand. The pre-
cise temporal organization of this evaluation process remains an open question. In principle,
an evaluation would be associated with “checking” transitions by going between the target
and base domains, in other words, checking the compatibility of their solution in the tar-
get domain with the relation they found in the base domain. The evaluation would generally
also involve comparisons between the target and the semantic distractors. An open empiri-
cal question is whether these processes take place during the entire trial or at the end of the
trial.
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2. Eye-tracking in analogical reasoning

2.1. The temporal dynamics of analogical reasoning

Thibaut, French, and Vezneva (2010b) characterized analogical reasoning as a search in a
space that is dynamically constructed as comparisons proceed. By definition, analogical rea-
soning involves multiple sources of information and various comparisons within and between
the domains making up the problem and their integration into a consistent relational structure.
This means that perceptual or semantic similarities or local relations that, initially, seemed
important might be discarded during the construction of a relational system that best unifies
the two domains (see the systematicity constraint, Gentner, 1983). Eye-tracking technology
can allow us to identify differences between types of analogies, between levels of difficulty,
whether a child or an adult is solving the problem (e.g., Thibaut & French, 2016), and even
whether or not a correct answer to the problem will be given. This is largely because looking
positions and times are highly correlated with the independently assessed informativeness of
regions within a scene (e.g., Rayner, 2012).

The use of eye-tracking techniques that we have developed (French, Glady, & Thibaut,
2017; Thibaut & French, 2016) and that are used to analyze the results from the two exper-
iments reported in this paper will allow us to show that time-course predictions based on
the above computational models do not, in general, present a fully accurate picture of the
dynamics of how analogy problems are actually solved.

2.1.1. Eye-tracking contributions to analogical reasoning

Previous eye-tracking studies can be compared along a number of dimensions: format of the
analogies (semantic analogies or matrices), types of distractors used (semantically or percep-
tually related), global analyses on entire trials or slices of trials, age of participants (i.e., chil-
dren or adults), level of problem difficulty, and a comparison of projection-first, alignment-
first, and relational-priming views of analogical reasoning. Bethell-Fox et al. (1984) were
among the first to investigate participants’ strategies based on eye movements. They studied
Raven geometrical matrices and manipulated problem difficulty by modifying the number of
transformations, the similarity to item C in the matrix, and the number of alternatives. They
hypothesized that these factors would elicit alternative strategies. In this respect, their paper
was able to distinguish between a constructive-matching strategy, which is analogous to the
projection-first strategy (a first analysis of the matrix is followed by an exploration of the
solutions), and a response-elimination strategy that consisted of successive back and forth
explorations between the matrix and each of the alternatives. They showed that the manip-
ulated factors influenced participants’ strategies (see also Mulholland, Pellegrino, & Glaser,
1980, in a true-false judgment task). However, they did not address the temporal dynamics of
solving the problems.

Using a similar matrix task in a developmental context, Chen et al. (2016) com-
pared the strategies of 5- and 8-year-old children. Differences in performance between
age groups resulted from not using optimal processing strategies. Children who employed
optimal processing strategies early on were more likely to correctly solve subsequent
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problems in later phases. One interesting feature of the study is the authors’ equating types
of transitions with specific processing strategies, such as item encoding, rule integration, and
so on. However, these authors provide only global measures and nothing about a moment-
to-moment analysis of the strategies (i.e., when encoding, or rule integration, takes place
during solving). With adults, Hayes, Petrov, and Sederberg (2011) applied a novel scanpath
analysis in order to capture statistical regularities in eye-movement sequences in the Raven’s
Advanced Progressive Matrices. They identified two principal components predicting individ-
ual scores, the first being the row-by-row scan, and the second toggling toward the response
area. The authors interpret the row-by-row strategy as a clue to constructive matching and
toggles as a clue to response elimination. The authors did not analyze when these toggles
took place but note that this can be done by contrasting the beginning and the end of the
trial, an approach we follow. This is important, though, because toggles might also appear in
a constructive matching strategy, when participants compare the options with the regularities
they found in the base.

Gordon and Moser (2007) conducted an eye-tracking study of analogical reasoning in
adults using scenes from Richland, Morrison, and Holyoak (2006). Participants initially
focused on the “actor-patient” pair in the source scene (a dog chasing a cat, see Fig. 4a,
below, top panel). They then looked for the solution in the target image (a second actor-
patient pair: a girl chasing a boy, Fig. 4b, below, lower panel). Significantly, the authors also
studied saccades involving the distractors (i.e., saccades between the actor and the perceptu-
ally similar distractor in the target pair) and showed that these saccades also occurred after
saccades toward relational matches. This suggests that participants did not systematically pro-
cess object matches before relational matches, which, according to the authors, contradicts
Rattermann and Gentner’s (1998) claim “that object matches are generally computed before
relational matches” (p. 471). However, the study did not provide a systematic analysis of the
saccades between the source and the target scenes. It is thus difficult to test the projection-first
versus the alignment-first hypotheses. Finally, eye-movement analyses focused on data col-
lected during a 10 s study period before the arrow pointing to a source object was introduced in
the upper scene. Without the arrow, participants might have engaged in a less targeted search,
identifying characters and stimuli, potential relations, but without the attentional weights that
might be elicited by the targeted (arrow-based) role.

Thibaut and French (2016) used eye-tracking to study the development of analogical rea-
soning, from 5 years of age to adulthood (5-, 8-, 13-year-olds and adults) with classical pro-
portional analogies (A:B::C:? paradigm). In order to study the “temporal dynamics” of solv-
ing problems, they split each trial into three identical time slices and analyzed the distribution
of gazes toward areas of interest (AOIs) and transitions between AOIs. One major result was
the significant differences between age groups in the temporal distribution of gaze profiles.
Crucially, adults seemed to follow mostly a projection-first strategy, whereas children started
by studying the C item and organized their search around it, which can be characterized as
an “undirected” search strategy. At the onset of the trials, children had significantly fewer
AB transitions than adults and more of other types of transitions. Adults also seemed to be
more engaged in solution monitoring, since, by the end of the trial, they had more saccades
from the solution set to the AB pair. Children’s results were interpreted in terms of difficulty
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in inhibiting the main goal of the task, that is, “what goes with C,” so that they could focus
on the AB pair (see Glady, French, & Thibaut, 2017). Overall, the results showed that adults
first analyzed the AB pair and then applied that relation to the target domain. Thereafter, they
checked their solution by continuing to look at the distractors and returning to the source
domain. In sharp contrast, children tended to focus early on the C item, ignoring, or at least
attaching less importance than adults to the AB pair. Both for adults and children, our data
revealed little, or no, evidence of AC and/or BT alignments, the key to alignment-first models.
This lack of AC and BT saccades has been confirmed by Vendetti, Starr, Johnson, Modavi,
and Bunge (2017) in their work on similar proportional analogies (see also Starr, Vendetti, &
Bunge, 2018). The latter authors contrasted three strategies, including the projection first and
the alignment first. Each was implemented by a different algorithm essentially based on a dif-
ferent subset of early gazes and transitions. The authors followed a “winner-take all approach
in which a trial was classified as a particular strategy” (Vendetti et al., 2017, p. 4) depending
on its score. In both papers, Starr and colleagues’ results favored the projection-first strategy.
Hence, by construction, only early gazes were considered, not the temporal dynamics of the
entire trial.

In short, eye-tracking data show that adult participants generally favor a mostly projection-
first approach. However, with the exception of Gordon and Moser (2007) and Thibaut and
French (2016), most studies do not consider the temporal organization of the trial, which we
will try to capture with analyses of the beginning, the middle, and the end of a trial (see
results, below).

3. Goals and predictions

Our two experiments tackle one main question—namely, how participants organize their
search as a function of analogy characteristics. We compare search-strategy adaptations as a
function of analogy type (i.e., scene analogies and proportional analogies) and problem dif-
ficulty (i.e., a greater number of potential relations between items, weaker semantic relations
between items, etc.).

One way to study the effects of the difficulty of semantic analogies in a well-controlled
setting is to refer to semantic distance. The semantic distance between domains has been
of particular interest in analogical reasoning research. For example, Vendetti et al. (2012)
assessed participants’ validity judgments of A:B::C:D analogies with near-domain (A and
C, and B and D, belonging to the same domain) and far-domain analogies (the source and
target domains involving different conceptual domains). They described a general decrease in
correct responses in far-domain analogies. Semantic distance has also been shown to affect
the activation of brain areas and the dynamics of brain processes during analogical judgment
(Green, Kraemer, Fugelsang, Gray, & Dunbar, 2010; Kmiecik, Brisson, & Morrison, 2019).

3.1. Exploring the temporal dynamics of analogy-making with semantic analogies

Former eye-tracking studies with analogies had limitations in the sense that they considered
only one type of analogy, most of them matrices based on a set of well-defined dimensions.
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By construction, matrices display logical progressions across stimuli and heavily rely on the
identification of clear, differentially salient, dimensions. Semantic analogies, by contrast, are
defined along semantic spaces that cannot a priori be described with a finite set of dimensions:
an infinite number of descriptors can be applied to any situation, surface semantic features,
or highly sophisticated interpretations (Hofstadter & Sander, 2013; Murphy & Medin, 1985).
Previous studies have not referred to clear moments of a trial with semantic analogies in
which difficulty was a key variable in the task (French et al., 2017; Gordon & Moser, 2007;
Thibaut & French, 2016).

Most eye-tracking data are compatible with a projection-first hypothesis, showing that the
base domain is studied first and the results of this exploration are then applied to the tar-
get domain. Our paper considers various task formats in different analogical mapping for-
mats, specifically standard proportional analogies and scene analogies.We analyze the time
of course of comparisons taking place until a decision is made, and how distractors are pro-
cessed and rejected as a function of analogy difficulty.

We will manipulate difficulty in several ways, and use techniques we have developed
(French et al., 2017) to analyze the predictive and classification power of sets of transitions
between AOIs. The idea is to use machine learning classification algorithms to study the pre-
dictive dimensions of participants’ scanpaths, aiming at identifying “transition profiles” (i.e.,
subsets of saccade types) that might distinguish complex trials from simple ones, correct trials
from errors, or predict the output of a trial (correct or error) in the first third of the trial.

3.2. Task specificity

Do participants adapt their search strategy to the specifics of the analogy tasks? Given the
preeminence of the projection-first strategy in existing studies, our main hypothesis was that
the projection-first strategy is driven, at least in part, by the particular analogy format, with the
layout of proportional analogies implicitly encouraging participants to first seek a unifying
relation that would drive the search for the compatible target item. By comparison, scene
analogies provide participants with structured scenes with oriented relations in which the
identification of equivalent items becomes the central issue. In terms of a predicate-argument
structure, (e.g., chase (cat, mouse)), the participants’ task is to find the first argument of the
predicate, chase, in the target image that plays the same role as the first argument of chase
in the source image. Complex (difficult) analogy problems, in comparison with simpler ones,
require more evaluation processes, which is often thought of as an alignment of predicates
playing the same role.

Our hypotheses are as follows:

Hypothesis 1 is divided into three options—namely:

- Hypothesis 1a, based on prior studies, predicts a general pattern of exploration of the
base domain (i.e., A, B) and then the target domain (i.e., C, T). Empirical data should
confirm this pattern across analogy formats and complexity levels.
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- Hypothesis 1b predicts a higher number of alignment transitions (i.e., AC and BT) with
more complex analogies or with the scene format (Experiment 2). Indeed scene might
involve more search for equivalence between items (see above).

- Hypothesis 1c predicts a mixture of projection and alignment. Under this hypothesis,
participants would analyze in a back-and-forth manner the A-B pair and C-T and C-D
pairs. The A-B relation would then be applied to the items in the target domain. Once
this is done, they might compare A and C, or B and D as a means of verifying their
answer.

Hypothesis 2. Most models describe analogical reasoning in terms of a progressive conver-
gence toward the relational, analogical solution (see French, 2002, Gentner & Forbus, 2011)
and assume in one way or another, that local, irrelevant, matches are disregarded by the end
of the process (see Gordon & Moser, 2007; Rattermann & Gentner, 1998, for discussions).

- Hypothesis 2a predicts that participants will focus less on distractors at the end of the
trial than at the beginning

- Hypothesis 2b predicts that distractors will be compared to the other stimuli less often
in easy (or simple) trials than in complex trials because the solution comes more eas-
ily to mind and, as a result, unrelated distractors can be ignored more quickly than
other stimuli. The general notion of convergence toward a correct solution predicts that
by the end of the trial, when a correct solution is chosen, most distractors should be
deactivated.

3.2.1. Predicting analogy type, complexity, and performance: A machine learning approach

The second main goal of the paper was to use machine learning classification algorithms
to identify a subset of item-to-item transitions (saccades) that might distinguish complex tri-
als from simpler ones and correct trials over erroneous trials (see French et al., 2017 for a
description of these techniques). By looking at various “transition profiles” (sets of saccades),
we are able to predict with a high degree of accuracy whether the problem being solved is
complex or simple. We used a simple and powerful classification technique, a support vec-
tor machine (SVM, Vapnik, 1999, combined with a leave-one-out cross-validation, LOOCYV,
see below). Using this technique, in French et al. (2017), we were able to predict whether an
adult or a child was solving a particular analogy problem and, this, in the first third of the trial,
based only on the distribution of the transitions (saccades). Using an identical approach in the
present paper, we considered how well various transition profiles predicted the difficulty of a
problem under scrutiny (see the Results section for more details).

Experiment 1 consisted of proportional analogies with words. We divided the analogies into
two classes (“simple” and “complex”) according to their difficulty.

Experiment 2 was similar to the first experiment, with the difference being that we used scene
analogies with two levels of difficulty (“easy-simple,” one relation, and “complex,” two
relations).
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4. Experiment 1: Word analogies

The goal of this experiment was to test whether the level of complexity and the type of
distractors (semantically related or unrelated distractors) would influence the time course of
analogical reasoning. Previous experiments have manipulated the difficulty of analogy prob-
lems by changing the number of distractors, the number of potential solution options, the
saliency of feature dimensions (the typical case being matrices of the Raven type, Bethell-Fox
et al., 1984), semantic distance (Green et al., 2010), the presence of cross-mappings (Gentner
& Toupin, 1986), and so on. For example, with semantic analogies, Green et al. (2010) (see
also Kmiecik et al., 2019) studied the neural activation dynamics of brain processes dur-
ing analogical-judgment tasks, with more errors for semantically distant analogies (see also
Bugaiska & Thibaut, 2015) or analogies constructed around weakly or strongly semantically
associated pairs (see Vendetti et al., 2012; Vendetti, Wu, & Holyoak, 2014). Green et al. (2010
and 2012; see also Bendetowicz, Urbanski, Aichelburg, Levy, & Volle, 2017; Hobeika, Diard-
Detoeuf, Garcin, Levy, & Volle, 2016) have shown that frontopolar activation increases when
the semantic distance between the A-B and C-D pairs in a “true/false” verbal analogy prob-
lem was increased. In general, an analogical transfer is more difficult when the conceptual
domains involved are remote rather than close (Gick & Holyoak, 1980; Keane, 1987).

However, how analogy difficulty correlates with search strategies remains an open question.
As summarized above, Thibaut and French (2016) followed a developmental approach. How-
ever, their adult participants saw only problems that could be solved by 6-year-olds, which
did not allow the authors to directly test the effect of task difficulty. In the present experiment,
our general hypothesis predicts that semantically more complex trials would produce differ-
ent search strategies than simpler problems. Indeed, they may evoke several highly associated
words (in the case of word analogies) that are not necessarily relationally consistent solutions
and need to be inhibited in order to rerepresent the pair in terms of novel relations (see Collins
& Loftus, 1975; Murphy, 2002; Steyvers & Tenenbaum, 2005, for discussions of the notions
of semantic networks).

In this experiment, the analogy difficulty was defined in terms of semantic relatedness.
Simpler trials were trials in which the unifying semantic relation was relatively obvious com-
pared to Complex trials. For example, a Simple trial such as cow:milk::hen:? has the relation
produces and the solution, “egg,” can be compared to the more complex relation is-a-type-of
for violence:activity::gloom:? which was rated as complex (see Materials). Several hypothe-
ses can be made regarding the time course of the trials in these cases with differing levels of
difficulty.

The general predictions above would be that we should observe the same projection-first
profile in both complexity conditions. However, Complex-problem items might elicit more
alignments than Simple problems because a larger number of alignments might result from
the difficulty required in establishing which stimuli are semantically equivalent while playing
the same role in the two domains. Thus, a key purpose of the present experiment is to examine
how these two strategies could combine.

Second, it has been claimed that object matches (i.e., surface-similarity) are processed
before relational matches (Goldstone, 1994a, 1994b; Rattermann & Gentner, 1998). In the
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present study, strongly semantically associated distractors will induce surface-similarity
matching. Our Hypothesis 2, above, predicts that in Complex trials, participants will pro-
duce more transitions involving distractors (e.g., Semantic distractor transitions [CSemDis])
at the beginning of the trial than in Simple trials. This is because for Complex trials par-
ticipants begin by considering semantically related options and because the semantic space
is more open. Later on, following most models, we predict that distractors should receive
much less attention in both conditions. We also predicted that the early imbalance observed
in Simple trials in favor of AB compared to other transitions (more AB transitions than other
transitions) should decrease in the complex case. Indeed, less obvious relations should elicit
a more systematic search between C and solutions in order to find a solution when one is not
immediately forthcoming.

Hypothesis 2 also predicts few gazes toward semantically unrelated distractors at any
moment in a trial, except at the beginning when participants start to explore the available
options. One exploratory question here is whether participants might check less obvious or
less plausible solutions, especially in complex trials.

5. Methods

5.1. Participants

Participants were 20 students at the University of Burgundy (M = 23.8 years; SD = 4.2;
from 17 to 35 years). They participated voluntarily, gave their informed consent, and were
unaware of the goals of the experiment.

5.2. Materials

The task consisted of 22 trials (two practice trials and 20 test trials) of a verbal A:B::C:D
task. The test trials consisted of 10 Complex trials and 10 Simple trials. The presentation of
Complex and Simple trials was random. Two practice trials were introduced before the 20 test
trials.

Each trial was composed of eight words written in black ink on a white background, cor-
responding to the A, B, and C terms of the analogical problems, and five potential solutions.
The solution set was composed of the Target (T), two semantically related-to-C distractors
(SemDis), and two unrelated distractors (UnDis). Each word was presented in a black frame
(220%x220 pixels). The A, B, and C terms were presented in a row at the top of the screen
along with an empty black frame (for the stimulus as the answer), and the five words com-
posing the solution set were displayed in a row at the bottom of the screen (Fig. 1).

Twelve university students assessed trial complexity prior to the start of the experiment.
They were asked to solve the different problems and to evaluate the difficulty/complexity of
each problem on a 1-7 scale. Complex trials were rated as significantly more difficult (M =
3.9; range 3.5-4.6) than simple trials (M = 1.2, range 1.1-1.3; two-sample related z-test: #(22)
=23.2,p < .001, n?, = 0.961).
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Fig. 1. Example of the display used in Experiment 1.

The task was presented on a Tobii T120 eye-tracker (17 TFT monitor, resolution:
1024 x768) with an E-Prime (version 2.8.0.22) experiment embedded in a Tobii Studio (ver-
sion 2.1.12) procedure to record participants’ eye movements.

5.3. Procedure

Test sessions took place in a dedicated soundproof room. Each participant was tested indi-
vidually. The distance between each participant’s face and the screen was approximately
70 cm. The task started with eye-tracking calibration. The participants were then tested in the
analogical reasoning task. The eight words constituting an analogy were displayed simultane-
ously (Fig. 1) and participants were given the following instructions during the first training
trial: “Here are two words [pointing to A and B]. They go together well. Can you see why
these two [A and B] go together?” Once the participant had given a relation, the experimenter
confirmed it or corrected it and continued: “OK! Do you see this one [pointing to C]? What
you have to do is to find among these five words [pointing to the solution set] the one that
goes with this one [C] in the same way as this one [B] goes with this one [A]. So, if these
two [A and B] go together because [giving the relation between A and B], which one goes
with this one [C] in the same way?” When participants had given an answer, the experimenter
asked them to justify their answer and gave corrective feedback when necessary. The test
trials followed. Participants received no further instructions or feedback. Eye-tracking data



J.-P. Thibaut, Y. Glady, R. M. French/ Cognitive Science 46 (2022) 13 of 41

were recorded when the presentation of the problem started and stopped when an answer was
given.

6. Results

Before analyzing the time course of saccades (transitions) between objects, we checked
whether Complex trials were, in reality, more difficult than Simple trials. The mean rate of
correct answers was significantly lower in Complex problems than in Simple problems, #(19)
=4.9,p < .001, n%, = 0.558, with M = 100% and 79.5% correct for Simple and Complex tri-
als, respectively. All errors were semantic distractor choices. Complex trials were also solved
significantly slower than Simple trials, #(19) = 9.92, p < .001; nzp = 0.838, with M = 4794
and 12,748 ms for Simple and Complex trials, respectively.

6.1. Eye-movement analysis

We rejected trials in which more than 50% of the gaze time was not recorded. Prelimi-
nary analyses we did when we started this project revealed that beyond a given percentage,
loss of data did not affect the overall results. For example, using 30% of the data or 80% gave
virtually identical results, that is, were perfectly correlated. With this criterion, only two prob-
lems were discarded from the entire data set. We focused on two complementary measures of
interest, gaze duration and the number of saccades. Gaze duration (or looking times) for AOIs
(i.e., gazes toward the items themselves) tells us which items are attended to and for how long
they are attended to while solving the problem and witnesses the depth of processing of the
item. Saccades between items (or switches, or transitions, i.e., when a participant goes, for
example, from item A to item C) tell us which items are compared and can be interpreted as
an attempt to find a relation between X and Y (see Duchowski, 2007). These two measures
correspond to different aspects of the search, insofar as a participant can study an item for a
large amount of time without comparing it with other items. Gaze duration, unlike transitions,
tells us nothing about which items are compared during trials.

In order to compare Simple and Complex trials, we first focused on AOIs (gazes) and
analyzed their distribution throughout the trial, a distribution which is expected to differ in
the two types of trials. Then, we will move to saccades (i.e., “transitions”). In both analyses,
we divided all trials into three equal slices (i.e., each slice being 1/3 of the total length of the
trial), in order to capture differences in the temporal dynamic of Simple and Complex trials.
Indeed, most studies do not analyze the temporal dynamics of trials. In preliminary studies
that later led to Thibaut and French (2016) and French et al. (2017), we started with a finer
five-slice analysis which gave overly complex results (interactions) essentially similar to the
ones reported here. Here, a three-slice approach allows us to separate early explorations of
the semantic space from late explorations in the trial which can be interpreted as decisional.
Compared with diachronic analyses, such as scanpath analyses, which are supposed to find
paths participants might systematically follow (see French et al., 2017; Hayes et al., 2011;
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Le Meur & Baccino, 2013, for reviews and discussion), our analyses remain, to some extent,
synchronic even though they focus on three different moments.

6.1.1. Gaze duration analysis (AOlIs)

In this analysis, we focused on the proportion of time spent on each AOI depending on
the complexity of the problem being solved. We analyzed AOI gaze duration, and the time
course of gazes, splitting trials into three time slices. AOIs were of six types A and B, C
and T, SemDis and UnDis (see above). We averaged the two unrelated distractors (UnDis)
which played the same role in the design. The same was true for the two semantically related
(SemDis) distractors. Then, we regrouped these six AOI types in four stimulus classes. A
and B, the base domain, were averaged as one data point (i.e., A&B). The same is true for C
and T(arget) (as C&T) which are the analogous stimuli in the target domain. The third class
consisted of semantically related distractors (SemDis). The fourth class was comprised of
unrelated distractors (UnDis), for which models predict that they should receive little atten-
tion, particularly toward the end of the trial. The resulting values were then transformed so
that the sum of the four classes in a slice would amount to 33.33% (and so the three time
slices would amount to 100%).

A three-way repeated measure ANOVA, with Stimulus class (A&B, C&T, SemDis, and
UnDis), Difficulty (Simple and Complex), and Slice (first, middle, and last) as within-subject
factors, was performed on the proportions of time spent on the four categories of AOIs to
assess the temporal dynamics of fixations. The analysis revealed an expected main effect of
Stimulus class, F(3, 57) = 22.56, p < .0001, nzp = (0.54), an interaction between difficulty
and stimulus class, F(3, 57) = 7.1, p < .001, nzp = (0.27), an interaction between Slice and
Stimulus class, F(6, 114) = 100.37; p < .00001; 772,, = 0.84).

The most important result was the significant interaction between the three factors, F(6,
114) =22.43, p < .0001, nzp = (0.54). Tukey HSD on individual slices revealed the following
pattern (p < .01). Slice I revealed that the simple condition had a significantly higher propor-
tion of A&B and a lower proportion of fixation times for both types of distractors (SemDis
and UnDis) than the complex condition. In Slice 2, A&B was longer for the complex than in
the simple condition. In Slice 3, there was no difference between the simple and the complex
condition.

The within-condition analyses showed that in the simple condition, in Slice 1, A&B was
significantly longer than C&T as well as both types of distractors, and C&T was longer than
both types of distractors. In the complex condition, however, A&B was longer than the others
but there was no significant difference between C&T and the two distractor types, revealing
a flatter distribution of AOIs in this condition. In Slice 2, in the simple condition, C&T and
both types of distractors had longer looking times than A&B, showing that participants were
done with A&B. There were more SemDis than C&T, suggesting thorough explorations of
semantically related distractors at this stage. In contrast, there was no significant difference
between the four types of AOIs in the complex condition (except C&T > SemDis), suggest-
ing a more balanced exploration of the four stimulus types in this condition. In slice 3, the
proportion of C&T and SemDis gazes was higher than the proportion of A&B gazes. In addi-
tion, C&T was longer than both types of distractors in the simple case. In comparison, in the
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Fig. 2. Mean percentage of fixation time of each Type of Stimulus (AOIs) in the first, middle and last slice in
Simple and Complex trials (error bars represent SEM). We collapsed A and B, C and T, respectively, in one score.

complex case, C&T was longer than A&B and UnDis, but not than SemDis, suggesting that
in this condition, participants were still struggling with the semantic distractors. This profile
will be confirmed by the analysis of the transitions (see Appendix A for the list of confidence
intervals).

This is a fascinating pattern of interaction since, as Fig. 2 shows, overall, participants have a
“flatter” search pattern in the complex condition in which they look significantly more at both
types of distractors at the beginning of the trial than in the simple condition. In the simple
condition, the second and third slices show that participants rapidly discarded A&B (i.e.,
understood the relation between them) and devoted a significantly greater amount of time to
C&T and the distractors. The pattern is consistent with the hypothesis that they continue to
check alternative solutions (Distractors) until the end of the trial, when they finally converge
on the analogical solution. In the complex condition, the flatter distribution in the three slices
suggests that participants test and check all possible solutions against A&B during the entire
trial. We speculate that participants explored the entire space of solutions, including irrelevant
ones, from the beginning of the trial to its end more thoroughly than in the simple condition.
This is consistent with the idea that participants tested other interpretations of the AOIs when
the first analysis of AB does not lead to an obvious solution.

6.2. Transitions

We focused on a subset of five sets of transitions which have theoretical meaning (French
et al., 2017; Thibaut & French, 2016). This subset was composed of the following transitions
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and sets of transitions. When several transitions were included, the resulting “transition” was
the average of the component transitions.

Transitions are written in the following format, AB or CT are transitions between A and B
or between C and T, and so on. AB are the average of saccades from A to B and B to A. We
created the five following transition types.

-{AB}, transitions between A and B and vice versa, within the source domain

-{AC&BT}, an average of AC and BT switches. This represents alignments of equivalent
stimuli in both domains that is A with C and B with T,

-{CT}, transitions between C and T, in the target domain

-{CSemDis, TSemDis }(hereafter C&T_SemDis), the average of CSemdis and TSemdis,
are transitions between C or T(arget) toward the semantic distractors, SemDis, that have been
shown by Thibaut and French (2016) to be important because they indicate how participants
reach the solution through comparisons between C and the semantically related stimuli, the
semantic distractors, and the target,

-{CUnDis, TUnDis, SemDisUnDis } (hereafter, C&T&SemDis_Undis), which is the aver-
age of the transitions between C, Target, and SemDis toward the unrelated distractors, UnDis.
This measure aggregates the stimuli which are associated with C and the semantically unre-
lated distractor, UnDis. It contributes to test a common prediction of most models that Unre-
lated distractors would be quickly discarded from participants’ search space, compared to
semantically related stimuli (like C&T_SemDis).

The first three sets of transitions (AB, AC&BT, and CT) are crucial in determining whether
participants follow projection-first, constructive strategies (AB then CT(arget)), or alignment-
first strategies (a large number of AC and BT) or a combination of both, depending on the
moment of the trial. The last two transition types, C&T_SemDis and C&T&SemDis_Undis,
will tell us when participants are focusing on T and the semantic or unrelated distractors.
The four models presented earlier predict that transitions to the unrelated distractors, that is,
Undis, should remain rare, especially at the end of the search, because the system converges
on the correct solution.

We ran a three-way repeated-measure ANOVA on the log transformation of the number
of transitions, which were not normally distributed, with Transitions (AB, CT, AC&BT,
C&T_SemDis, and C&T&SemDis_Undis), time Slice (first, middle, and last), and Condition
(Simple and Complex) as within-subject factors. Results revealed a main effect of complex-
ity, F(1, 19) = 45.01, p < .0001, n2,, = 0.70; a main effect of slice, F(2, 38) = 27.68, p
< .00001, n*, = 0.59; a main effect of transitions, F(4, 76) = 211.28, p < .00001, n?, =
0.92. It also revealed an interaction between complexity and transitions, F(4, 76) = 12.50,
p < .0001, n*, = 0.397; slice and transitions, F(8, 152) = 66.44, p < .0001, »*, = 0.78.
The most important result was the significant interaction between these three factors, Type
of Transition, Condition and Slice, F(8, 152) = 12.89, p < .0001, nz,, = 0.40 (Fig. 3).

In the post-hoc comparisons (Tukey HSD), we retained only significant differences below
p < .005 (see Appendix A for the confidence intervals per condition).

They revealed that, in Slicel, the comparison between simple and complex analogies
revealed higher rates of CT and C&T&SemDis_Undis transitions in the complex than in
the simple problems (p < .0001). Within-condition comparisons revealed higher rates of
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Fig. 3. Log of the mean number of each type of saccade in each slice in simple and complex trials (error bars are
SEM).

AB transitions than all the other transition types for both Simple and Complex analogies
(p < .0001). In Complex analogies, there were significantly more CT and, surprisingly,
more C&T&SemDis_Undis, than AC&BT transitions, and more C&T&SemDis_Undis than
C&T_SemDis (p < .0001). The last two results show that transitions involving the unrelated
distractors were more numerous than transitions involving stimuli that were key to solving
the analogy in complex trials. Again, this suggests that participants systematically compared
unrelated distractors to C and to related items in the complex trials.

In Slice2, there was a significantly higher rate of AB transitions in complex than in sim-
ple problems. Within-condition analyses in the simple trials revealed higher rates of AB than
AC&BT and C&T_SemDis (p < .001), and surprisingly, more C&T&SemDis_Undis transi-
tions than all other types of transitions (p < .0001), and more CT than AC&BT. Thus, again
AC&BT transitions were lower than the others (p < .0001). In the complex trials, there were
significantly higher rates of AB transitions compared to other transition types, and fewer
AC&BT than all the other types, and more C&T&SemDis_Undis than CTSemDis and CT
transitions. Again, C&T&SemDis_Undis were at a high level in both conditions.

In Slice3, comparing complex and simple trials revealed significantly higher rates of AB
and C&T_SemDis (p < .0001) in the complex trials which meant that, because finding a
solution is difficult, participants continued to explore, check, and/or rerepresent the relation
between A and B even at the end of the trial. Within-category comparison trials showed that,
in simple trials, there were more C&T&SemDis_Undis than AC&BT, CT and C&T_SemDis,
that is, transitions involving the solution set (p < .0001), and more AB than AC&BT tran-
sitions. In complex trials, there were higher rates of AB transitions than AC&BT and CT
(p < .0001), the latter is compatible with the idea that participants needed to come back to
A&B more often in order to assess the consistency of their answers. There were also more
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C&T&SemDis_Undis than AC&BT and, importantly, CT (p < .0001), and fewer AC&BT
transitions than all the other types (p < .0001).

The Tukey HSD post-hoc analysis also tells us, when we compare the first and third slices
for simple versus complex problems, there were significantly more C&T&SemDis_Undis
transitions in the third slice than in the first slice in both complexity conditions (p < .0005).
This suggests that participants first concentrated on AB and applied the corresponding relation
to CT, then, progressively checked other potential solutions, even though irrelevant, which is
not predicted by the standard convergence views of analogical reasoning we reviewed in the
Introduction. Tukey post-hoc analyses also revealed significantly more C&T_SemDis transi-
tions in the third slice than in the first slice in both complexity conditions (p < .005), suggest-
ing a later check of the semantic distractors in both complexity cases.

7. Intermediate summary

AB transitions initially dominated in both simple and complex trials. Progressively, how-
ever, participants studied the solution set together with C. This suggests that more compar-
isons of the relations were necessary in the complex case. Beyond that, importantly, there
were virtually no AC or BT transitions in the three slices, which argues against a strict inter-
pretation of alignment-first models.

A second result was that comparisons involving unrelated distractors remained frequent
at the end of the trial in both difficulty conditions, and more frequent than the relevant
C&T_SembDis transitions, although, interestingly, they were more frequent at the beginning of
the complex trials, suggesting that participants were exploring these options during an entire
complex trial. This is not predicted by the “parallel-terraced scan” view of analogical reason-
ing, nor other type of models we are aware of. The analysis of gazes confirmed these results,
with a flatter profile between AOIs in the complex condition, suggesting a more balanced
approach to the AOIs across time slices than in the simple condition.

7.1. Discriminating between Simple and Complex conditions: SVM+LOOCV

As mentioned in the Introduction, our purpose was to identify small sets of transitions that
defined a particular search-space exploration strategy. By this, we mean that the numbers of
each transition-type in these small sets of transitions defined a particular search strategy and
our hope was that we would be able to predict whether the problem being solved was Complex
or Simple, or whether the problem would be solved correctly or incorrectly, based on the
observed strategy (French et al., 2017 used a similar methodology to predict whether adults
and children were doing a problem or whether the problem would be answered correctly or
erroneously). SVM allows us to find small subsets of transitions that allow us to predict with
a high probability whether the problem being solved was complex or simple, or would be
solved correctly or incorrectly.

We hypothesized that small subsets of transitions used during the problem were indicative
of a search strategy and could be used to predict whether a participant was doing a Complex
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or a Simple problem. We selected small subsets of transitions from the following set of 13
transitions: {AB, AC, BT, BC, CT, AT, CSemDis, TSemDis, A&B_UnDis, A&B_SemDis,
CUnDis, TUnDis, and SemDisUnDis).

The only grouped transitions were A&B with SemDis, and A&B with UnDis. This is
because A and B have the same status in the above pair. The same was done for ASemDis
and BSemDis. In contrast with our behavioral analysis, we dissociated CSemDis, TSemDis,
and transitions with UnDis, because the predictability of each transition type might differ.
Also, SVM algorithms allow us to look at a relatively high number of transitions, and we
took advantage of this.

We used the normalized number (by trial) of transitions as input to our SVM-LOOCV
classifier. Note that relatively less frequent transitions may, in principle, contribute to distin-
guishing conditions if they appear in one condition and not in another condition and, on the
other hand, frequent transitions in both conditions may not contribute to differentiate them.

We felt that small subsets of these transitions (three or fewer transitions) provide more
search-strategy information than large subsets. For example, if we take a large enough set
of transitions, the SVM algorithm would almost certainly have been able to discriminate
Complex problems from Simple problems on that basis. But too large a number of transition-
types tells us little about the search-strategy used by a person to solve the problem. Hence,
we considered small subsets of three or fewer transitions that had the highest discriminative
power.

We predicted that participants would have differing numbers of these transitions or subsets
of transitions depending on the problem complexity and that these differences would predict
whether the problem under consideration was Simple or Complex, or in a second analysis,
whether it was an error or a correct trial.

In order to do this, we coupled the SVM with an LOOCV (Geisser, 1975; Miller, 1974;
Stone, 1974; for a review, Arlot & Celisse, 2010), which, in the case of our analysis of transi-
tion profiles, worked as follows. We selected one of the N problems solved by the participants
and set that problem aside. Then, for each of the remaining N-1 problems, which we des-
ignated as the SVM training set, we considered various sets of transition profiles such as
{BT, TSemDis, CSemDis}. We then counted the number of each of these transitions made
while solving the problem, averaged over all participants. We trained the SVM using these
vectors for each problem in the SVM training set until it learned to correctly classify each of
the N—1 problems in the training set as “Simple” or “Complex” (or as “error” or “correct”)
in our second analysis. We then gave the SVM the problem that it had not seen and saw if
it was capable of classifying it correctly as either “Simple” or “Complex,” based on how the
other N—1 problems were classified. We applied this leave-one-out training-and-testing pro-
cedure to all of the problems. We applied this reasoning to the first time slice and the third
time slice, corresponding to the beginning and the end of the search. We arbitrarily set at 0.75
the level of “good predictability” (classifying three trials out of four in the correct category,
either Complex or Simple). When considering pairs or triplets of transitions, we kept only
those transitions that increased the level of predictability of smaller subsets of transitions. For
example, if AB alone had a predictive power of 0.75, we would consider only pairs of tran-
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Table 1
Transition sets and individual transition frequencies for the first slice of Experiment 1

Slice 1 complex

One transition Two transitions Three transitions
Success rate  Transition set  Success rate Transition set Success rate Transition set
0.66 AB 0.9 AD/BD AN/BN 0.81 AB TD DN
0.63 AN/BN 0.77 AN/BN DN 0.81 AB CN DN
0.75 AB AD/BD 0.8 AT AD/BD TN
Individual 0.78 AB CT DN
transition
frequen-
cies
AB 1 0.78 AB TD TN
AD/BD 2 0.78 AB AT AD/BD
AN/BN 2 0.78 CT BC TN
DN 1 0.77 BT CT CD
0.77 AT AN/BN TN
0.75 AB AC TD
0.75 AB BT DN
0.75 AB CD TD
0.75 AB CD DN
0.75 AB CN TN
Individual
transition
frequencies
AB 10
DN 5
TN 5
TD 4
CT 3
AT 3
CD 3
CN 2
BT 2
AD/BD 2
AN/BN 2
BC 1
AC 0

Note: D = SemDis; N = UnDis. AN/BN and AD/BD designate the average number of AN and BN transitions
and AD and BD transitions, respectively.

sitions involving AB (e.g., AB CT) if their predictive power was higher than AB alone (e.g.,
0.80).

For the Simple-Complex discrimination during Slicel, the SVM-LOOCYV analysis gave
the following prediction accuracy scale (Table 1). No single transition was above 0.75. AB
and A_UnDis and B_Undis were at 0.66 and 0.63, respectively, confirming that transitions
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involving A and B were (relatively) important at the beginning of the trial (AC and BT were
at 0 and 0.13, respectively).

Prediction accuracy increased for sets with two transitions and reached our crite-
rion for three pairs of transitions. {AB and A&B_SemDis} (0.75), {A&B_UnDis and
SemDis_UnDis} (0.77), and {A&B_SemDis with A&B_UnDis} (0.90). This suggests that
transitions involving A&B and distractors, both semantically related and unrelated, signif-
icantly improve prediction accuracy. Once again, this is compatible with the idea that the
search space was broader from the start in the case of complex analogies.

When we added a third transition, we found that there were 14 triplets that produced cor-
rect Complex-Simple classification at 0.75 and above. In these triplets, AB was involved in
a total of 10 of them. Interestingly, next on the list were five triplets of transitions contain-
ing SemDis_UnDis (DN in Table 1) and five subsets containing T_UnDis (TN in Table 1),
confirming that, from the start, the Complex condition was characterized by a broader search
space, that is, one involving more items, including semantically unrelated ones. This strongly
suggests that the difference between Simple and Complex trials is a matter of finding the
AB relation and realizing that the two types of distractors (UnDis and SemDis, T and N,
respectively, in Table 1) are not the answer (T). At this stage, AC_BT had no discriminative
power.

For Slice3, the most discriminative single transitions were AB and CSemDis, at 0.67. Look-
ing at the 11 pairs of transitions beyond 0.75 showed that AB (4) and CSemDis (8) were
particularly predictive, meaning that CSemDis played a central role in reaching a solution at
the end of the trial. Adding a third transition gave a total of 22 sets of transitions producing a
discrimination accuracy above 0.75. Once again, AB was involved in 13 out of the 22 triplets.
The other important transitions were CSemDis (14) and CUnDis (9). This result suggests
that, by the end of the trial, Complex trials are characterized by transitions involving C on
the one hand, and SemDis and UnDis, on the other hand. This confirms and extends previous
results (French et al., 2017; Thibaut, French, Missault, Gérard, & Glady, 2011)—namely, that
complex problems involve more comparisons between C and both types of distractors, and
continued focus on AB transitions. This, together with seven A&B_UnDis transitions (shown
as AN/BN in Table 2) confirms that participants saccaded to unrelated distractors more in
the complex problems, suggesting that they found it difficult right up to the end of the trial
to decide whether unrelated distractors were a solution. The presence of AB, of transitions
between AB and other AOIs at the end of the trial, is compatible with the idea that return-
ing to the AB transition occurs more frequently in the Complex case, thereafter comparing C
with the Target, SemDis, and UnDis. As far as we know, this is not predicted by any current
model of analogy-making. Current models predict that, as participants get closer to answer
selection, the number of saccades to semantically unrelated distractors should fall essentially
to zero since they have, presumably, made their decision and will no longer need to saccade
to semantically unrelated items. This is clearly not the case.

This confirms the previous (behavioral) analysis and suggests that, for complex problems,
which require the space of possible solutions to be explored more thoroughly, participants
look at all potential solutions, including the unrelated distractors throughout the course of
the problem.
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Table 2
Transition sets and individual transition frequencies for the third slice of Experiment 1
One transition Two transitions Three transitions
Success Transition Success rate Transition set Success rate Transition set
rate set
0.67 AB 0.88 BT CD 0.94 BT CD CN
0.67 CD 0.81 CD DN 0.88 AB CT CD
0.8 AB CD 0.87 AB CD CN
0.77 AB BC 0.84 AB CT AN/BN
0.77 CT CD 0.84 CD CN DN
0.77 CD BC 0.84 AB AC CD
0.77 CD AT 0.83 AB CD AN/BN
0.77 CD AD/BD 0.81 AB BT CT
0.75 AB BT 0.81 AB CT CN
0.75 AB CT 0.81 CD CN TN
0.75 CD TN 0.81 CD BC AD/BD
Individual 0.78 AB AC BT
transition
frequencies
AB 4 0.78 AB AC CT
CD 8 0.78 AB BT TD
CT 2 0.78 AB BT AN/BN
BT 2 0.78 AB BT CN
BC 2 0.78 CD TD AN/BN
CT 2 0.77 CD AD/BD CN
AD/BD 1 0.77 AC CD AN/BN
AC 0 0.77 CD AN/BN CN
0.75 AC CD TD
0.75 CD TD CN
Individual
transition
frequencies
CD 14
AB 13
CN 9
AN/BN 7
BT 6
AC 5
TD 4
CT 4
AD/BD 2
DN 1
TN 1
BC 1
AT 0

Note: D = SemDis; N = UnDis. AN/BN and AD/BD designate the average number of AN and BN transitions
and AD and BD transitions, respectively.
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Even though we do not provide the behavioral analyses, we ran an identical SVM+LOOCV
analysis to see which strategies led to correct or incorrect answers in the two groups of prob-
lems, to parallel the ones provided by Thibaut and French (2016) and French et al. (2017).
Indeed, finding that these two types of conditions had different profiles in adults would be
interesting, as French et al. (2017) focused on children only. The idea is to find out whether
correct answers have their own signature, compared to errors, and whether an error profile
can be detected from the start.

In Slicel, CUnDis was the best predictor (0.63) followed by CSemDis (0.62) and CT (0.60)
and A&B_SemDis (0.60), showing that transitions involving both distractors contributed to
distinguish Error trials from Correct trials (all Complex since there were no errors in the
Simple condition). No pair reached our expected level of 75%, and only one triplet reached
it, AT, BT, and A&B_UnDis (0.80), that is, pairs involving A and B with the target and
the distractors. Thus, relating A and B to the solution and comparing them with unrelated
distractors was a crucial factor distinguishing the two types of trials, early on in the trial.

In Slice3, CSemDis was a good unique predictor (78% of accuracy) followed by
A&B_SemDis (0.65) and TUnDis (0.62). For pairs of transitions, CSemDis appeared nine
times out of 15 pairs, confirming that controlling SemDis is a major feature of correct answers.
All other transitions were evenly distributed and less frequent (three or less). Among the 31
triplets beyond 0.75, 29 included AB (AB, A&B_SemDis, and A&B_UnDis), and 38 transi-
tions contained SemDis. This, again, argues in favor of the importance of a correct encoding
of AB and careful control of SemDis against other options. Importantly, it should be noted
that there were 13 transitions containing UnDis were also present, confirming the role of
UnDis in taking a decision. Thus, by the end of the trial, including AB and SemDis in the
decisional process seems to be a major feature distinguishing correct from error trials.

This result parallels what we observed in the prediction of whether a problem was Simple
or Complex. Distinguishing between correct and error trials heavily relies on AB and on the
exploration of transitions to semantically related distractors but, also, to unrelated distractors
until the end of the problem. They also confirm what Thibaut and French (2016) found for
children: errors and correct trials differ in their signature.

8. Discussion

Our study extends previous eye-tracking studies using analogies involving words rather
than images. Bethell-Fox et al. (1984) used analogies defined around perceptual dimensions,
whereas Gordon and Moser (2007), Thibaut and French (2016), Vendetti, Starr, Johnson,
Modavi, and Bunge (2017; Starr et al., 2018) used pictures of objects or scenes.

Our data confirmed the projection-first strategy, that is, there were significantly higher rates
of AB and CT saccades in participants’ patterns of visual search compared to AC and BT
saccades, for both Complex and Simple conditions. Thus, participants mostly infer the rela-
tion between the pictures in the A:B pair and apply it to the C-solution set (CT saccades).
Neither Simple nor Complex problems elicit a significant amount of AC or BT saccades, that
is, alignments, or any sign of relational priming as postulated by Leech et al. (2008).
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The second purpose was to assess the impact of trial difficulty. In the second and third
slices, participants tried multiple hypotheses in order to make sense of the analogies, or tried
to rerepresent the relation between A and B after testing their initial hypotheses more often in
the Complex condition than in the Simple one. This is consistent with the idea (Bethell-Fox
et al., 1984) that at this stage no response has yet been eliminated, not even the nonseman-
tically related distractors (UnDis). The lower proportion of CT transitions in complex trials
makes sense since participants are checking all of the items to make sure that, indeed, T is the
correct solution. By contrast, for simple trials, response uncertainty is low and it is, therefore,
not necessary to check the Unrelated Distractors.

However, the most unexpected result of the present work was the significant number of
transitions toward unrelated distractors, together with semantic distractors, which, as shown
by the SVM analyses, also had a high discriminating power when comparing Simple and
Complex problems. In the Complex condition, the number of these transitions was greater
than the mean number of CT transitions alone or the mean number of AC&BT transitions,
or even the mean number of transitions from C or T to the semantically related distractors.
This is predicted by none of the models of analogical reasoning that we are aware of. This
makes sense if one considers that deciding that something is unrelated is especially hard in
a Complex case or when confidence is lacking in the correct target relation. These controls,
however, were less expected for unrelated distractors at the end of the trial than at its begin-
ning. In short, unrelated information should have been discarded earlier on. The analysis of
the AOIs revealed a flatter gaze profile in the complex condition across time slices, showing
that participants distributed their looking times evenly across stimulus types when trials were
more difficult.

Our main conclusion is that the task difficulty influenced the time course of the trial. Even
though Complex and Simple trials resemble one another (e.g., same AB transitions at the
beginning), they also differed in specific ways. In general, the time course of our verbal
analogies was similar to previous results (e.g., French et al., 2017; Thibaut & French, 2016).
Complex trials generated more exploration of the distractors and of the A-B pair, particularly
at the end of the trial, which was unexpected.

8.1. Experiment 2: Scene analogies. Comparison between two-relation and single-relation
problems

The present experiment is an extension of the Scene analogy used by Richland et al. (2006).
We compared two types of problems, one with two relations (Complex) and the other with a
single relation (Simple). As in Experiment 1, the main focus is on problem complexity, which
can induce novel strategies or at least can lead to search-strategy adaptations in different
contexts. This implies focusing on certain questions, such as when AC and BT alignments
take place, whether distracting or irrelevant information is looked at and rapidly discarded or
whether it is processed throughout the trial, and so on. It can be argued that for more complex
problems, it is harder to establish the items that play analogous roles in order to arrive at a
solution. Our hypotheses are similar to the ones in Experiment 1.
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Fig. 4. (a): Simple scene analogy with a single salient relation in the base domain, in the case “a cat chasing a
mouse.” (b). Complex scene analogy with two salient relations in the base domain: “a cat chasing a mouse” and
“a dog chasing a cat,” where B is the targeted stimulus and T is the participants’ choice.

8.2. Participants

Participants were 25 students at the University of Burgundy (M = 21.6 years; SD = 2.2;
range = 19-26 years). They participated voluntarily or for course credit and were unaware
of the experimental rationale. All participants had a normal or corrected-to-normal vision. In
the latter case, it was checked that glasses did not interfere with data collection.

8.3. Materials

The task consisted of 14 trials (two training trials and 12 test trials, six Simple problems and
six Complex problems). The scenes were the same as those used in Richland et al. (2006).
Their list of stimuli was slightly adapted for the present experiment. Here, we used only
the “distractor” condition used in Richland et al., which means that we did not have a “no-
distractor” condition. All trials were composed of two scenes, a base scene in the upper panel
of the figure and a target scene in the lower panel (Fig. 4). A distractor was chosen from the
base scene and, in a slightly modified form, was added to the target scene. This distractor in
the target scene was both visually and semantically related to one item in the relation in the
base picture. For example, there was a cat in the base scene (i.e., a cat is chasing a mouse) and
there was also a cat in the foreground of the target scene that depicted ““a boy chasing a girl.”
There were two levels of complexity. The first we called “simple” and consisted of a single
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relation (Fig. 4a) and the second one was called “complex” and consisted of two relations
(Fig. 4b). In the six simple problems, both scenes depicted a single interaction between two
entities (e.g., a cat and a mouse), whereas, in the six complex problems, both scenes depicted
an interaction between three entities (defining two relations, e.g., a dog chasing a cat that was
chasing a mouse, see Fig. 4). Participants had to determine the item in the lower drawing that
best corresponded to the item in the upper drawing that was indicated with an arrow. The
order of presentation of the test trials was random.

Each trial consisted of two scenes (501 x376 pixels for each scene) each containing either
five black-and-white (BW) line drawings framed by a black rectangle in the single-relation
problems, or six BW line drawings for two-relation problems. The scenes were displayed
on a Tobii T120 eye-tracker (120 Hz) with 1024 x768 screen resolution using an E-Prime®
software (version 2.8.0.22) embedded in a Tobii Studio (version 2.1.12) procedure to record
participants’ gazes.

These stimuli were labeled (for the purposes of data analysis, not in the experiment itself)
A, B, C, T(arget), and Dis (the Distractor that was perceptually and semantically similar to
the object designated with an arrow in the upper scene). In the single-relation condition case,
the mouse and the cat were A and B, respectively, as shown in Fig. 4a, and the dog played no
role in the targeted “chasing” relation. In the lower scene, the woman was standing still on
the left, playing no role in the relation between the boy and the girl. In the two-relation scene,
two stimuli played the role of A in Fig. 4b—namely, the mouse and the dog—and two stimuli
played the role of C (the woman and the girl). The cat in the foreground of both Figs. 4a and
b was the distractor (Dis).

Fig. 4a depicts a one relation—simple—problem and Fig. 4b depicts a two-relation—
complex—problem, with the base scene in the upper panel and the target scene in the lower
panel. The arrow in the upper scene points to a stimulus (the cat) and the participants must
find the relational equivalent of the cat in the lower scene. By convention (see text), the non-
targeted objects in the upper scene were called A (the dog and the mouse) and the designated
object was called B. In the scene in the lower panel, C designated the woman and the girl and
the target T was the boy. The cat in the lower panel is the distractor (Dis). Note the differences
with the Simple condition (Fig. 4a) in which the stimuli are the same, with the exception that
neither the dog nor the woman is participating in the action (the dog is in the doghouse and
the woman is standing still to the left of the scene).

8.4. Procedure

Test sessions took place in a quiet experimental room in our laboratory. Each partici-
pant was tested individually. The distance between the participants’ face and the screen was
approximately 70 cm. After the eye-tracker was calibrated, participants were tested in the
Scene analogical reasoning task. Participants were first shown a practice trial. When they
had given an answer, the experimenter asked them to justify their answer and provided
feedback. In the event of an incorrect justification, the trial was explained in terms of the
relations linking A and B on one side, and C and T on the other side. For the test trials, partic-
ipants received no further feedback or information about whether they had replied correctly
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or not. Eye-tracking data were recorded when the presentation of the problem started and
stopped when an answer was given.

9. Results

Before analyzing the time course of eye movements, we checked whether Complex trials
were, in reality, more difficult than Simple trials. The mean number of correct answers was
significantly lower for Complex than for Simple scenes: #(24) = 2.7, p = .015; 772,, = 0.22,
with M = 83.3% and 73.3% correct for Simple and Complex scenes, respectively. RT analyses
showed responses to Complex scenes were significantly slower than for Simple scenes: #(24)
=7.87,p < .01, nzp = 0.25, with M = 4775 and 5925 ms for Simple and Complex scenes,
respectively. Thus, the two conditions do, indeed, differ in difficulty, which, as intended, raises
the question of differences in search strategies.

9.1. Eye-movement analysis

No trials were rejected because of insufficient gaze time (i.e., more than 50% of the gaze
time was not recorded). As in the first experiment, the dependent variables were the percent-
age of total looking time and the number of saccades. As in Experiment 1, we first analyzed
fixation durations (gazes) on each stimulus type (AOI) and, second, in order to compare the
Single-relation and Two-relation trials, we analyzed the number of transitions and focused
on the distribution of key saccades throughout the trial. As before, we divided all trials into
three equal time slices in order to capture differences between the two conditions temporal
dynamics.

9.1.1. Gaze (AOI) analysis

As in Experiment 1, we performed an analysis on fixation durations on five AOIs (A, B,
C, T, and Dis, see below). We defined the AOIs as A for the nontargeted item of the relation
(e.g., in Fig. 4a and b, A is the mouse), and B for the targeted item (the stimulus pointed
to by the arrow). In the two-relation (complex) case, we computed the mean for the two
nontargeted objects under A (e.g., in the example above, the mouse and the dog). In the below
scene, C was the nonrelational solution involved in the relation (e.g., the girl in Fig. 4a). In
the two-relation case, C was the aggregation of the two nontargeted stimuli in the relation
(e.g., the woman and the girl in Fig. 4b). T(arget) was the correct relational answer. The
distractor (Dis) was the same stimulus as stimulus B from the above scene (i.e., the cat). This
distractor (Dis) is an important stimulus to be checked since it was meant to be perceptually
and semantically related to the designated stimulus in the base (i.e., upper) scene and, thus,
to attract participants’ attention in the target (lower) scene. Note that it is a distractor because
it is perceptually and semantically related to the equivalent stimulus in the base scene. For
each participant, the time spent on a given AOI (e.g., A) was defined as the mean proportion
of looking time spent on this AOI across the six trials defining a condition.
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Fig. 5. Time slice by AOI interaction. It shows that participants were gazing at B in the first slice and also to the
target. This pattern was reversed at the end of the trial. A, C, and distractors were less frequently focused on.

9.1.1.1. Fixations: We focused on the time course of fixations toward A and B compared
to C and T, and on the difference between Complex and Simple trials in each time slice. A
three-way repeated measure ANOVA, with Type of Stimulus (A, B, C, T, and Dis), Com-
plexity (One-relation and Two-relation), and Slice (first, middle, and last) as within-subject
factors, was performed on the mean percentage of gazes for the five AOIs in order to assess
the temporal dynamics of rates of fixations. The analysis revealed a main effect of AOI, F(4,
92) = 122.3, p < .0001, nzp = 0.84; a main effect of Complexity, F(1, 23) = 3918, p <
0001, n?, = 0.99 interactions between AOI and Slice, F(8, 184) = 30.63, p < .0001, n*, =
0.57, and between AOI and Complexity, F(4, 92) = 3.70, p < .01, 772,, = 0.14, which was the
most interesting result. The triple interaction was not significant (p > .1). As Fig. 5 shows, for
the AOI x slice interaction, participants mostly gazed at B at the beginning of the trial with
fewer gazes at Target, followed by the reverse pattern later on. Note, interestingly, that A and
C received fewer gazes. This was confirmed by Tukey HSD comparisons, showing that there
were more B in slice 1 than in slices 2 and 3, more T in slice 3 than in slices 1 and 2 and in
slice 2 than in slice 1. As for the intra slice pattern, it was similar to the pattern observed in
the following interaction and we will not repeat it.

As for the Complexity x AOI interaction, Fig. 6 shows that both conditions had a similar
gaze profile. B and T received a majority of gazes, and all the others far fewer. This was con-
firmed by an a posteriori Tukey HSD which showed that there were significantly fewer gazes
toward A, C, and Dis in both the simple and the complex conditions and significantly more
looks toward the target than all the other stimuli in both conditions. In the complex condition,
there were significantly fewer gazes toward the distractor than toward the other stimuli. The
comparison between the complex and the simple conditions proved nonsignificant for the five
stimulus types. In sum, gazes revealed that B and T overwhelmingly dominated attention with
a smooth transition from B to T from the first to the third slice, with C receiving intermedi-
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ate attention (recall that the scenes came from a corpus initially targeted at children, thus of
moderate difficulty).

9.1.2. Transitions

In this analysis, we were primarily interested in sets of transitions that revealed strategy dif-
ferences (if any) in solving Simple versus Complex scene problems. Six transition types were
considered—namely: AB, CT, AC&BT, and C&T_Dis were also used in Experiment 1, with
AC&BT being defined as the average number of AC and BT transitions. These two transitions
were predicted by an alignment-first model because they involve alignments between equiva-
lent stimuli in the two scenes. We also introduced two new types of transition, AT&BC, which
was the average of AT and BC transitions. It plays the role of a control transition because,
according to existing models, it should have no central role in solving the analogy and, hence,
should be less frequent than AC&BT transitions, which are key transitions in some of the
models. A second new type of transition was BDis. It refers to transitions between B and Dis.
Richland et al. (2006) have shown that they are important because they refer to transitions
between B, the stimulus pointed to in the base-above scene (e.g., a cat), and the equivalent
stimulus in the target scene (e.g., another similar cat) and Dis is the most common mistake
children made in their experiment. C&T_Dis is the average of transitions involving C and T
toward the semantic-perceptual distractor, Dis, the cat in the foreground, with T being the rela-
tional Target. A three-way repeated-measures ANOVA, with Transitions (AB, CT, AC&BT,
AT&BC, BDis, and C&T_Dis), Complexity (One-relation and Two-relation), and Slice (first,
middle, and last) as within-subject factors, was performed on the log of the number of
transitions (not normally distributed). The analysis revealed a main effect of Complexity,
F(1,23)=13.72, p < .001, nzp = 0.37; of transition-type, F(5, 115) = 39.16, p < .0001, nzp
= 0.63. There were interactions between transitions and complexity, F(5, 115) = 8.96, p <
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Fig. 7. Interaction between Complexity and Transitions. See text for transition names. (Error bars are SEM.)

.0001, %, = 0.28 and between transitions and slice time, F(10, 230) = 3.02, p < .005, n?, =
0.121, the former interaction being the most interesting.

The Complexity x Transition-type interaction is interesting (Fig. 7) as it shows that there
are more transitions for Complex scenes, for AB, for AT (i.e., A-Target), for BDis, and for
CT. Once again, we found no evidence of AC or BT alignments. This is particularly interest-
ing because there is a considerable comparison of A and the Target, but participants did not
compare B with T, which is unexpected. BDis transitions make sense because B is the cat in
the upper scene and semantically similar “cat” (Dis) in the lower scene. These are presumably
perceived as the “same” stimuli.

The typical transitions, again, seem to be AB and then CT. The surprising feature is that the
passage from the upper scene to the lower scene occurs via a transition from A (in the upper
scene) to Target (in the lower scene). This was observed in both Complex and Simple con-
ditions, even though there were more AT transitions in the two-relation Complex condition.
Appendix A provides the confidence intervals corresponding to this interaction.

This was confirmed by a Tukey HSD post-hoc. As in Experiment 1, we only retained p
values under .005. Results showed that there were significantly more AB and AT&BC in the
Complex condition compared to the Simple condition (p < .0005).

Comparisons within conditions showed, in the Simple condition, that there were signifi-
cantly more AB, CT, and BDis transitions than AC&BT, AT&BC, and C&T_Dis transitions,
and surprisingly, more AT&BC than AC&BT (p < .005). In the Complex condition, there
were significantly more AB and CT transitions than AC&BT and C&T_Dis, more AT&BC,
and BDis, than AC&BT and C&T_Dis (p < .005). Overall, Simple scenes required fewer
overall comparisons to establish the relationship between A and B, as being the key to solv-
ing the problem. Surprisingly, the two scenes aligned along nonanalogous stimuli—namely,
A with T and B with C. Both conditions were organized around AB, CT, and BDis transitions,



J.-P. Thibaut, Y. Glady, R. M. French/ Cognitive Science 46 (2022) 31 of 41

mSlicel mSlice 2 Slice 3

number of)
e o
0w

| —

- gl

,,,,,,

Transitions (Log

0,05 e z
0,0 - 3 ﬁl_ J =, &E_] ==
AB CcT AC&BT AT &BC BDis C&T_Dis
Transitions

Fig. 8. Interaction between Transitions and Slice. (Error bars are SEM.)

overall. As in the first experiment, the very small number of AC and BT transitions does not
fit with the predictions of alignment-first models, and the presence of AT&BC transitions is
not predicted by any model we are aware of.

The Slice x Transition Interaction (Fig. 8) shows that the relevant transitions are produced
during all three slices, except that the order slightly differs from one transition to another.
A Tukey HSD post-hoc analysis showed, for slice 1, there were significantly more AB and
CT transitions than AC&BT, C&T_Dis, and fewer AB than BDis (p < .005). Importantly, as
mentioned above, there were few AC and BT transitions, which is difficult for an alignment-
first model to explain, and few CDis and TDis transitions, which could be interpreted as
meaning that participants saccaded only rarely to the Distractor item within the target scene.
In contrast, BDis transitions show that the targeted item in the base and its perceptual/semantic
counterpart were extensively compared.

Fig. 8 shows that the second and third time slices had similar patterns of transitions, with
significantly less AC&BT and CD-TDis than all the others and less CT than BDis. For Slice
3, there were also significantly less AT&BC than BDis and than CT (p < .005). Overall,
participants compared AB and CT, which were dominant across slices together with BDis,
the latter becoming somewhat less important at the beginning of the trial (i.e., no significant
difference with CT in the second and third slices, but in the first one). This is surprising since,
given the dominant theories, the distractor should be discarded soon after the beginning of the
trial, whereas data suggest that participants continue to saccade to it across the two scenes at
the end of the trial. For all time slices, essentially no AC or BT transitions were observed.

9.2. Classification prediction based on subsets of transitions

We used the same SVM+LOOCV methodology as in Experiment 1. We started with a
broad set of transitions in order to find out transitions, or pairs or triplets of transitions that
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would differentiate Simple from Complex scenes. Again, in comparison to the behavioral
analysis characterizing children’s focus with a subset of main transitions as a function of the
time slice, SVM analyses also give combinations of transitions with predictive power, not
necessarily the most frequent ones. The set of nine transitions was AB, AC, BC, AT, BT,
CT, BDis, CDis, and TDis. One purpose is to look at transitions involving Dis (the semantic-
perceptual distractor in the below scene). In slicel, BDis was the most predictive transition
(0.58) not at a high level, though. Three pairs were beyond 0.75, all involving Dis (CDis
and TDis) and two CT. As for the two triplets, they confirm the presence of Dis in CDis
(twice) and TDis. Thus, early control of Dis (with C and T) in the solution (target scene)
space seems to be important. In Slice 3, no single transition approached our fixed threshold.
A pair composed of BDis and CT, and two triplets both with BDis (2) CT (2) confirmed the
predictive power of transitions involving BDis up to the end of the trial. The suggested pattern
is that, by the end of the trial, participants compared C and T in order to decide which of the
two is the correct solution. However, a parallel and last check that Dis is not the solution
confirms that participants go for the distractors until they reach a decision. AC and BT had
very low discriminative power alone (<0.30) and were not found in highly discriminative
pairs or triplets.

10. Discussion

Experiment 2 sought to establish search profiles for two levels of relational Complexity in
Scene analogies, and to ascertain whether participants would adapt their search strategies to
the level of difficulty of the problems. Unsurprisingly, there was a main effect of the number
of transitions with more transitions for Complex than for Simple problems. We observed rel-
atively more AB transitions decreasing over time, while CT transitions increased and, again,
we found no evidence of AC and BT alignment, even in the Complex condition. The transi-
tions between B (in the base scene) and the Distractor (Dis, in the target scene) make sense
since the two stimuli are the “same” (i.e., cats) in both scenes. This indicates that participants
check the status of these two occurrences of the same stimulus in both scenes. The unexpected
number of AT and BC transitions seems to suggest that participants also check both the rela-
tion B with respect to C and A with respect to T, presumably to be sure that these relations
are not part of the solution. Complexity played a role, with the increased number of AB and
AT&BC transitions for Complex problems. This suggests that establishing the role of B took
required more saccades than in Simple problems and, in addition, required checking irrele-
vant pairings, such as AT, BC, and BDis. To summarize, complexity did not produce more
alignments, in particular, AC and BT, but did require more comparisons in order for partici-
pants to establish the role of the designated stimulus (B), and to check irrelevant associations,
such as AT and BC, while discarding Dis as an option over the course of the entire trial. This
confirms the results of Experiment 1 in which distractors were more focused on when Com-
plex problems were being solved. The SVM analyses confirm that transitions involving Dis
played an important role in differentiating the two conditions.
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10.1. General discussion

The overarching goal of the present paper is to better understand the impact of different
analogy formats and complexity on analogy problem-solving strategies and find the gaze sig-
natures characterizing each condition. We showed, using techniques from machine learning,
that certain combinations of transitions, which define the search strategies employed by par-
ticipants, were highly predictable of the type and difficulty of the analogies being solved.

Most of the available research using eye-tracking to study analogy-making has dealt with
well-identified dimensions of analogy problems, such as those specified in matrices (Bethell-
Fox et al., 1984; Chen et al., 2016; Hayes et al., 2011), and were restricted to only a sin-
gle test format, such as scene analogies (Gordon & Moser, 2007) or proportional analogies
(French et al., 2017; Starr et al., 2018; Thibaut & French, 2016; Thibaut et al., 2011). These
previous studies did not manipulate for difficulty level, or did not systematically study the
temporal dynamics of solution reaching. such as constructive matching (Bethell-Fox et al.,
1984), in which participants first generate relations found in the base domain and, subse-
quently, apply them to the target domain. For example, Starr et al. (2018) translated each of
the two hypothetical strategies into an algorithm combining early gazes and transitions which
was then applied to each trial and led to its categorization as supporting one strategy type or
the other. As the algorithms aggregated gaze length and positions, and transitions in a single
measure, it was not meant to capture the temporal dynamics we were looking for here. Hayes
et al. (2011) and Hayes and Petrov (2016) elaborated metrics to capture strategy regularities
in Raven Progressive Matrices (Raven & Court, 1998). In Hayes et al. (2011), the authors
measured participants’ within the matrix and between the matrix and options transitions (see
Bethell-Fox et al., 1984) and the relative weight of these two strategies. However, they did
not look at the temporal dynamics of their integration. Hayes and Petrov (2016) introduced
a method combining verbal protocols and pupillary responses, in an attempt to disentangle
what they called exploration (new hypotheses) and exploitation (pattern descriptions) during
solving. Their main point was to study “explore” and “exploit” search behaviors through their
pupil diameter correlates and their distribution as a function of problem difficulty and time
in a trial. Their approach, however, targeted these two broad categories (explore and exploit)
and was not meant to study how participants distributed their gazes on stimuli as a function
of their status (e.g., distractor).

Compared to these prior contributions, our paper raised five main issues—namely:

(i) the generality of search patterns across analogy formats and across levels of
difficulty;
(i) the role of alignment across formats and difficulty levels;
(iii)) the unanticipated focus on distractors over the course of a trial and as a function of
difficulty level;
(iv) the time course of the rejection of the distractors; and finally,
(v) the predictability of subsets of transitions and AOIs.

Our most general result was that all analogy formats and difficulty levels elicit similar
global search patterns, largely characterized by a projection-first approach. Increasing diffi-
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culty led to more gazes within the source domain—A and B, and of AB transitions. Another
general result was that AC and BT transitions were essentially absent in all conditions or
played no role, in conjunction, in differentiating the conditions. We initially hypothesized
that Scene analogies and more complex conditions might elicit these alignments, but this
turned out not to be the case. Another significant result was the discovery, throughout trials,
that there is a systematic examination of the distractors, both those related and unrelated to
the A item (Experiment 1). As far as we know, this examination throughout the entire trial
of distractors is not predicted by any current theory of analogy-making. Finally, explorations
involving the distractors (AOIs and transitions with SemDis and UnDis, or BDis in the second
experiment) could actually increase at the end of the trials. This result is also not predicted by
the models of analogical reasoning we are aware of that see analogy solving as a progressive
convergence toward the correct solution, which would imply a decrease in the examination of
distractor items at the end of the trial.

On the other hand, participants did adapt their search strategies to different analogy for-
mats, semantic distances between items, and the number of relations involved. Overall, Scene
analogies gave rise to more gazes toward B than to A. Scene and Proportional analogies dif-
fered in that the target was examined earlier in Scene analogies, whereas Proportional analogy
problems had more CT transitions than Scene analogy problems. The increased level of explo-
ration of distractors (UnDis in Experiment 1 and Dis in Experiment 2) at the end of the trials
was more pronounced in Complex conditions.

The examination of distractors, whether semantically related to C or not, throughout the
trial is one of the main findings of the present research. Most models predict a progressive
convergence toward an analogical match as the trial proceeds, with local, perceptual, irrele-
vant matches progressively discarded, and not semantically related items to C being the first
to go. Experiment 1 revealed that, by the end of Complex problems, participants were increas-
ingly testing both semantically related and unrelated distractors, suggesting that participants
continued to test these solutions in parallel to the correct solution. Sometimes, the number of
transitions to distractor items in Complex problems even exceeded the number of C-to-Target
relations (CT).

How is this result to be interpreted? Our search-space hypothesis predicts that, when the
relational solution is less salient, participants will tend to test unrelated distractors more sys-
tematically, whether or not they are relationally connected to C by a low saliency relation
between A and B. This takes more time since an infinite number of descriptors is potentially
available for each item (Goldstone, 1994b; Goodman, 1972; Murphy & Medin, 1985).

In addition, paradoxically, it can be easier to establish that a semantically related distractor
is not the relational (i.e., analogical) solution because, once a relation between the distractor
and C is identified, it is easy to check whether this relation holds in the base domain. Simi-
larly, Experiment 2 showed that participants continued to compare B in the upper scene (the
cat chasing the mouse) with Dis in the lower scene (the cat in the foreground, the seman-
tic distractor) throughout the entire trial, rather than only in the early stages of solving the
analogy (see also Gordon & Moser, 2007, for results and a discussion of the precedence of
perceptual matches over relational matches). This suggests that there is no deactivation of the
distractor over the course of the trial, which means that participants continue to transition to
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it or gaze at it. This casts doubt on the standard view of convergence to a solution in which
the items that are irrelevant to a solution are gradually discarded. At a more methodological
level, our data suggest that segmenting trials into a number of time slices is an appropriate
approach to study the evolution over time of solving an analogy problem.

Our machine learning approach provides a new tool aiming at better characterizing the
underlying dynamics of analogy-making, which was developed and described in French et al.
(2017). We looked for the smallest subset of transitions that could accurately predict as early
in the trial as possible the type of problem being solved (Complex vs. Simple, Correct vs.
Errors). Perhaps the most important contribution of the SVM+LOOCYV technique is that these
techniques show the extent to which, very early on in a trial, one can actually predict well
above chance the difficulty of a problem based on the number and type of transitions observed,
this corresponding to the search strategy adopted by the participant.

10.2. Modeling analogical reasoning

As already argued by Thibaut and French (2016), we believe that our data impose certain
important constraints on models of analogy-making, not only in terms of what participants
actually examine when solving a problem, but also when they examine various items and
relations. Our experiments made no attempt to evaluate formal modeling approaches to ana-
logical reasoning but, rather, examined some of the behavioral predictions derived from these
models. The strengths and weaknesses of these models have been the focus of other papers
(e.g., French, 2002; Gentner & Forbus, 2011, for reviews of computational modeling efforts).

10.3. What our data show

10.3.1 Relational-priming models

These models predict essentially none of the back-and-forth dynamics that we observed
empirically as participants solve standard types of analogy problems (Leech et al., 2008).
The underlying assumption is that once the relation between A and B is perceived, no further
exploration is required and a solution to the problem is quasi-immediate. Our data clearly
do not support this view of analogical reasoning for which the AB relation would prime the
CTarget relation, once it has been discovered. Instead, we observed extensive evidence of sys-
tematic comparisons between C, the Target, and the distractors in both Experiments, including
ongoing comparisons involving the unrelated distractors in Experiment 1. In the latter case,
transitions between C and the Unrelated Distractors were among the most numerous transi-
tions and, moreover, occurred throughout the trial, something that is certainly not predicted
by an automatic-priming view that predicts a rapid selection of the relational solution, but no
systematic gazes and comparisons with distractors at the end of the trial.

10.3.2 Projection-first models

Our results are largely consistent with the idea of an exploration of the source domain for
relations, which are then generalized to the target domain. This is consistent with a model,
such as LISA (Hummel & Holyoak, 1997) in which mappings are conceived as guided
pattern-matching. For example, in the cat-mouse pair, pointing to the cat will activate the
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proposition “chase(mouse, cat).” This should be followed by CT saccades corresponding to
“chase(girl, boy),” since the relation chase exists in both domains. This approach predicts
that the higher the activation of a relation, the lower the activation of other relations, which,
over time, predicts less activation of items that are irrelevant to the solution of the analogy
problem. It is, however, not clear how this model would account for the high level of transi-
tions involving semantic distractors and, especially, transitions involving unrelated distractors
throughout the trial, and for the TSemDis transitions at the end of the trials in Experiment 1.

10.3.3 Alignment-first models

These models are based on the alignment of entities that play equivalent roles. The basic
idea is that participants start looking for mappings of various sorts, including perceptual map-
pings, which, at least initially, consist of many local mappings. The purpose is to discover
mappings that transfer global relational meaning between the source and target domains.
However, one of the main claims of the model is that there will be between-domain alignments
(notably, AC and BT). However, for the two types of analogy formats presented in this paper,
for each of the levels of difficulty of problems, and for each of the time slices within prob-
lems, we found no evidence of these cross-domain alignments. Further, there were numerous
alignments not predicted by this model, in particular, transitions between AT and BC.

10.3.4. Parallel-terraced scan models

These models make no claim as to alignment-first or projection-first strategies, being rather
a fluid combination of both approaches, based on activations in an associated semantic net-
work. However, the lack of AC and BT transitions that we have shown empirically is prob-
lematic for this model, as is the initial overfocusing in children on relations centered around C
(French et al., 2017; Thibaut & French, 2016). Also, they do not predict transitions to the dis-
tractors, especially the fact that these transitions tend to increase at the end of trials involving
Complex trials.

10.4. Adapting models to the current results

Our paper offers a combination of three related results—namely, the generality of strategies
across analogy-problem formats, the importance of search-strategy changes that depend on
the intrinsic difficulty of the task, and the continued transitioning to distractors, including
unrelated ones, throughout the trial.

Most approaches posit a type of cognitive-resource sharing, whereby the higher the acti-
vation of a particular relation, the lower the activation of other relations, which, over time,
predicts less activation of items that are irrelevant to the solution of the analogy problem.
Thus, one challenge for these models is to account for the high level of transitions involving
semantic distractors in both experiments and, to an even larger extent, with unrelated distrac-
tors throughout the trial. These results would seem to suggest that the analogical choice is
paralleled by a continued search for other, potentially less obvious solutions when the correct
answer has a low level of activation. Continued saccading to unrelated distractors that have
no clear semantic relation with C is problematic for most models.
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Further, models of analogy need to move away from a clear separation of data representa-
tion and the processing of those representations, in the sense that processing (i.e., comparisons
of pairs of stimuli) potentially leads to rerepresentation of the original data (i.e., possible rela-
tions between items in a pair). In the Complex problems presented here, we have seen how
participants adapt their representations as they are solving the problem. A rerepresentation can
also be conceived as dynamically changing built-in representations or as constructing novel
representations on the fly. It is difficult to imagine that all possible relations necessary to solve
any particular analogy problem could be built into the system a priori. These relations must be
discovered on the fly and cannot reasonably be anticipated a priori (e.g., French, 1995; Hof-
stadter & Sander, 2013; Kokinov, Bliznashki, Kosev, & Hirstova, 2007; Schyns, Goldstone,
& Thibaut, 1998). The issue we raise here is certainly not new. The possibility of preencoded
versus dynamically encoded representations is a longstanding and difficult issue originating
in early works on semantic memory (e.g., Smith, 1978).

10.5. Limitations of the present contribution

One limitation of the present work is its exhaustiveness. We have concentrated on types of
analogy problems that are widely used in the research literature on analogy-making and for
which the solution is to be found among a small set of options. Other types of problems are,
of course, available. For example, one might argue that an analogy verification task, in which
valid or invalid analogies have to be verified (e.g., “Is dog:bone::bird:seeds valid?”’), would
be a better case for alignments.

In conclusion, our hope is this paper will ultimately lead to appropriate adjustments to the
current models of analogy-making that we believe have difficulty accounting for the results
we have presented.
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Appendix A: Experiment 1. AOIs—confidence intervals
Simple Complex

Mean -95% 95% Mean -95% 95%
Slice 1 A&B 22.20 20.25 24.14 Slice 1 A&B 15.16 13.18 17.15
Slice 1 C&T 6.53 5.81 7.26 Slicel C&T 6.41 5.77 7.04
Slice 1 SemDis 2.52 1.52 3.51 Slice1  SemDis 6.37 5.25 7.48
Slice 1 UnDis 2.09 1.19 2.99 Slice 1 UnDis 5.40 4.28 6.51
Slice2 A&B 3.85 2.81 4.89 Slice2 A&B 7.61 6.41 8.82
Slice2  C&T 8.28 7.38 9.19 Slice2 C&T 7.14 6.48 7.80
Slice2  SemDis 10.88 9.71 12.05 Slice2  SemDis 10.09 9.22 10.96
Slice2  UnDis 10.51 9.54 11.48 Slice2  UnDis 8.49 7.54 9.43
Slice3 A&B 4.76 3.11 6.42 Slice3 A&B 6.63 5.45 7.82
Slice3 C&T 13.82 12.58 15.06 Slice3 C&T 10.97 9.96 11.99
Slice3  SemDis 7.59 6.22 8.95 Slice3  SemDis 8.57 7.34 9.81

Slice3 UnDis  7.16 5.82 8.50 Slice3  UnDis  7.16 5.69 8.62
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Appendix A: Experiment 1. Transitions—confidence intervals
Simple Complex
Mean -95% 95% Mean -95% 95%
Slice 1 AB .14 1.09 1.18 AB 1.24 1.14 1.34
Slice 1 AC&BT 0.04 -0.01 0.09 AC&BT 0.07 0.02 0.11
Slice 1 CT 0.17 0.10 025 CT 0.46 0.36 0.56
Slice 1 C&T_SembDis 0.14 007 021 C&T_SembDis 0.31 022 039
Slice 1 C&T&SemDis_Undis 020 0.12 0.28 C&T&SemDis Undis 0.59 047  0.72
Slice2 AB 048 035 061 AB 0.97 0.83 1.11
Slice 2 AC&BT 0.09 003 0.14 AC&BT 0.14  0.09 0.20
Slice2 CT 047 041 052 CT 0.61 0.55 0.68
Slice 2 C&T_SembDis 028 022 034 C&T_SemDis 0.48 038  0.57
Slice 2 C&T&SemDis_Undis 0.80 0.75 0.85 C&T&SemDis_Undis 0.79  0.71 0.88
Slice 3 AB 0.51 036 065 AB 0.84 0.71 0.97
Slice 3 AC&BT 022 0.16 028 AC&BT 0.30 023 037
Slice3 CT 043 037 050 CT 0.59 051 0.66
Slice 3 C&T_SembDis 038 026 050 C&T_SemDis 0.66 054 0.78
Slice 3 C&T&SemDis_Undis 0.69 0.63 0.74 C&T&SemDis_Undis 0.80 0.69  0.92

Appendix A: Experiment 2. AOIs—confidence intervals
Significant interaction involving complexity but no difference between simple and complex
conditions.

Appendix A: Experiment 2. Transitions—confidence intervals

Simple Complex

Transitions Mean -95% 95% Transitions Mean -95% 95%
AB 0.22 0.11 0.33 AB 0.36 0.21 0.50
CT 0.27 0.20 0.34 CT 0.30 0.20 0.39
AC-BT 0.05 0.01 0.09 AC-BT 0.04 0.01 0.08
AT-BC 0.16 0.07 0.24 AT-BC 0.30 0.18 0.41
Bdis 0.25 0.14 0.35 Bdis 0.32 0.22 0.42
CDis-TDis 0.04 0.01 0.06 CDis-TDis 0.00 0.00 0.00




