
1578  |  	﻿� Ecology and Evolution. 2019;9:1578–1589.www.ecolevol.org

Received: 21 November 2017  |  Revised: 19 October 2018  |  Accepted: 24 October 2018

DOI: 10.1002/ece3.4747

O R I G I N A L R E S E A R C H

Animal Scanner: Software for classifying humans, animals, and
empty frames in camera trap images

Hayder Yousif1  | Jianhe Yuan1 | Roland Kays2,3 | Zhihai He1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Department of Electrical and Computer
Engineering, University of Missouri‐
Columbia, Columbia, Missouri
2Department of Forestry and Environmental
Resources, North Carolina State University,
Raleigh, North Carolina
3North Carolina Museum of Natural
Sciences, Raleigh, North Carolina

Correspondence
Hayder Yousif, Department of Electrical
and Computer Engineering, University of
Missouri‐Columbia, Columbia, MO.
Email: hyypp5@mail.missouri.edu

Funding information
National Science Foundation, Grant/Award
Number: CyberSEES-1539389

Abstract
Camera traps are a popular tool to sample animal populations because they are non‐
invasive, detect a variety of species, and can record many thousands of animal detec‐
tions per deployment. Cameras are typically set to take bursts of multiple photographs
for each detection and are deployed in arrays of dozens or hundreds of sites, often
resulting in millions of photographs per study. The task of converting photographs to
animal detection records from such large image collections is daunting, and made
worse by situations that generate copious empty pictures from false triggers (e.g.,
camera malfunction or moving vegetation) or pictures of humans. We developed
computer vision algorithms to detect and classify moving objects to aid the first step
of camera trap image filtering—separating the animal detections from the empty
frames and pictures of humans. Our new work couples foreground object segmenta‐
tion through background subtraction with deep learning classification to provide a
fast and accurate scheme for human–animal detection. We provide these programs
as both Matlab GUI and command prompt developed with C++. The software reads
folders of camera trap images and outputs images annotated with bounding boxes
around moving objects and a text file summary of results. This software maintains
high accuracy while reducing the execution time by 14 times. It takes about 6 sec‐
onds to process a sequence of ten frames (on a 2.6 GHZ CPU computer). For those
cameras with excessive empty frames due to camera malfunction or blowing vegeta‐
tion automatically removes 54% of the false‐triggers sequences without influencing
the human/animal sequences. We achieve 99.58% on image‐level empty versus ob‐
ject classification of Serengeti dataset. We offer the first computer vision tool for
processing camera trap images providing substantial time savings for processing
large image datasets, thus improving our ability to monitor wildlife across large scales
with camera traps.

K E Y W O R D S

background subtraction, camera trap images, deep convolutional neural networks, human–
animal detection, wildlife monitoring

www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-7638-9505
http://creativecommons.org/licenses/by/4.0/
mailto:hyypp5@mail.missouri.edu

     |  1579YOUSIF et al.

1  | INTRODUC TION

Motion‐sensitive wildlife cameras, commonly referred to as camera
traps, are increasingly popular survey tool for animal populations be‐
cause they are noninvasive and increasingly easy to use (Kays, 2016).
Comparisons with other wildlife monitoring methods have shown
camera traps to be the most effective and cost efficient approach
for many species (Bowler, Tobler, Endress, Gilmore, & Anderson,
2016). Ambitious projects are increasing the scale at which cameras
are used on the landscape, now rotating hundreds of sensors across
thousands of sites (Steenweg et al., 2016), sometimes with the assis‐
tance of citizen scientists (McShea, Forrester, Costello, He, & Kays,
2016).

Given the large amounts of pictures recorded by each camera
trap, and the increasing number of cameras used by each study, pro‐
cessing and managing camera trap images has become a major chal‐
lenge. For example, one two‐year study resulting 2.6 million images
from 98,189 detections (McShea et al., 2016) across six states in the
eastern USA. In some cases, false triggers and pictures of people
can outnumber animal pictures. For example, with 1/3 of their cam‐
eras set on hiking trails (Kays et al., 2016) recorded 30,975 detec‐
tions of people and 53,372 detections of wildlife in the eastern USA.
Habitats such as savannas or forest canopies are particularly likely to
produce false triggers due to vegetation blowing in the wind, for ex‐
ample, 98% (68,968 events) of all camera triggers in the forest can‐
opy were moving vegetation (Gregory, Carrasco Rueda, Deichmann,
Kolowski, & Alonso, 2014).

Most recently, deep neural network approaches have shown
outstanding performance in image classification and object detec‐
tion. Deep Convolutional Neural Networks (DCNNs) model is one of
the most popular deep learning models that are widely used. A sim‐
ple DCNN model consists of convolution, pooling, and classification
layers. The convolution layers act as local and translation invariant
operators between the input image and set of filters. The pooling
layers are a down sampling using either max or average pooling.
DCNNs learn features hierarchy all the way from pixels to classifier
where the training is supervised with stochastic gradient descent
(Lee, Xie, Gallagher, Zhang, & Tu, 2014). In this paper, the output
from the classification layer is three scores which refer to human,
animal, and background classes.

Computer vision has the potential to offer an automated tool for
processing camera trap images if it can, first to identify the moving
animal within the image and subtract the background, and second,
to identify the moving object (He et al., 2016). Although these prob‐
lems are solved for many indoor environments (Huang, Hsieh, & Yeh,
2015), the challenge is much greater with camera traps images be‐
cause of their dynamic background scenes with waving trees, mov‐
ing shadows, and sun spots.

Previous efforts to distinguish animals from background in cam‐
era traps have been proposed for foreground detection. In general,
foreground areas are selected through one of two means, pixel‐
by‐pixel, in which an independent decision is made for each pixel,
and region‐based, in which a decision is made on an entire group

of spatially close pixels (Dong, Wang, Xia, Liang, & Feng, 2016).
Analytical approaches include constructing a background model
using the median pixel value (Miguel, Beery, Flores, Klemesrud, &
Bayrakcismith, 2016), a non‐parametric approach where the pixel‐
level background model is represented by a set of background
samples (Barnich & Van Droogenbroeck, 2011) and robust princi‐
ple component analysis (RPCA) (Candès, Li, Ma, & Wright, 2011).
Unfortunately, the success of these efforts has been limited by pro‐
ducing large number of false positives and difficulty in distinguish
between animal and human objects.

2  | METHODS

Our system (Figure 1) starts by detecting where the moving objects
(human, animal, or moving vegetation) are within the images using a
background subtraction method. Unlike many other image process‐
ing and vision analysis tasks, detecting and segmenting human–ani‐
mals from the camera trap images is very challenging since natural
scenes in the wild are often highly cluttered due to heavy vegeta‐
tion and highly dynamic due to waving trees, moving shadows, and
sun spots. Next, these moving objects are identified with classifiers
to distinguish them as human, animal, or moving background. After
describing these algorithms, we will explain how we reduce the false
positives (background patches mistakenly identified as animals or
people) using cross‐frame verification and present a study of the
complexity‐accuracy trade‐off of DCNNs to propose a fast and ac‐
curate scheme for human–animal classification. Finally, we describe
our GUI and command line data input and output.

2.1 | Object region segmentation

The first step in processing camera trap images is to distinguish the
moving objects in the foreground (aka foreground object propos‐
als) from the fixed background. We rescale each frame from a given
camera trap sequence into a specific width and height and then di‐
vide the rescaled image into 736 (or 32 × 23) regular blocks. We then
extract features from each block. To determine which block(s) con‐
tain moving animals, we use the minimum feature distance (MFD)
to all other co‐located blocks. These features include intensity,
Local Binary Pattern (LBP) (Ojala, Pietikäinen, & Mäenpää, 2001),
Gray Level Co‐occurrence Matrix (Baraldi & Parmiggiani, 1995), and
Histogram of Oriented Gradient (HOG) (Dalal & Triggs, 2005). Given
a sequence with 10 frames, for each block of the 736 blocks is com‐
pared with the other nine co‐located blocks to find the background
block which has MFD. Any block that has feature histogram differ‐
ence with the co‐located blocks larger than the MFD is classified as
a moving object (i.e., foreground). Our experiments found that the
HOG (Dalal & Triggs, 2005) is the best feature vector that can ef‐
ficiently represent the block information.

We compare consecutive images in a sequence to find the moving
object by subtracting feature histograms from same region position
on subsequent images. The regions with the highest differences are

1580  |     YOUSIF et al.

then connected contiguously to form the moving objects. The differ‐
ence value should be robust enough to reduce the number of false
alarms and able to detect any animal or human as precisely as pos‐
sible in the presence of challenges of camera trap images. Because

some camera brands only record 3 images per trigger, we initially use
information from three consecutive frames to find the moving object.
In a second method, we use the entire sequence frames to extract a
background frame in a composition manner, and then subtract each

F I G U R E 1   Flow chart of the proposed system. In the training stage, we generate the training patches to train the classification model. In
the detection stage, we use joint background modeling with the pre‐trained classification model from the training stage to detect the human
and animal

     |  1581YOUSIF et al.

frame features histogram from this composite background. After we
subtract a given frame from the background frame, we set a thresh‐
old value that defines whether this block belongs to background or
foreground. The foreground blocks are then connected to represent
the foreground region(s). These foreground regions are the region
proposals which need to be verified as human, animal, or background
in order to label them with tagged bounding boxes.

2.2 | Region proposals verification

Before we proceed to the final step of identifying the moving object as
an animal or person, we first use a verification of region proposals to de‐
termine if they are from the foreground or background. We observe that
some of the false positive foreground generated by background sub‐
traction are caused by the intensity changes within the same sequence.

F I G U R E 2   Foreground verification by histogram shrinking. The first row shows candidate foreground proposals identified by changing
pixels between frames while the second row shows their intensity histograms. (a) Dark region far away from camera flash. (b) Sunspot region.
(c) Gray region within the camera flash range. (a), (b), and (c) are false positive patches where the SHL values are very small, (d) is a patch
where the SHL value is big

F I G U R E 3   Screenshots from our designed GUI

1582  |     YOUSIF et al.

We define a threshold value called Shrinked Histogram Length
(SHL) to determine whether an image patch is foreground (human or
animal) or background based on the intensity information only. Let
ni be the number of occurrences of intensity level i, then the SHL for
an image patch of size w × h is:

where L is the total number of intensity levels in the patch. Figure 2
shows how the false alarms are detected through the SHL value.
Region verification through SHL requires less than 50 ms for each
patch.

2.3 | Foreground proposals classification

After finding objects within a given frame (aka proposals), the next
step is to classify them into human, animal, or background. We cre‐
ated a training dataset of images from these three classes (human/
animal/background) by cropping rectangular regions (aka patches)
from 459,427 camera trap images and manually labeling them.
These images were all from Reconyx or Bushnell brand cameras,
and included color and black/white pictures with mainly two image
resolution 1,024 × 1,536 pixels and 1,920 × 2,048 pixels. The
original images come from three countries (Panama, Netherlands,
and USA), and thus represent a great variety of types of animals

and people. We use this dataset to train and test three different
classifiers: Bag of visual word (BOW) (Fei‐Fei & Perona, 2005),
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), and our DCNN
model (AlexNet‐96). The input image size for AlexNet and BOW is
256 × 256 pixels and 96 × 96 pixels for AlexNet‐96. Our software
can accept any size of camera trap images (i.e., 1,024 × 1,536 and
1,920 × 2,048). It should be noted that cropped region proposals
(image patches), which have different sizes and aspect ratios, need
to be rescaled to match with the classifier required input size. The
training set is completely separate from the testing data and both
include randomly chosen sequences with different camera trap cir‐
cumstances including color and black/white, trail road, grass, and
top‐tree images. Each of the training and testing dataset contains
30,000 image patches consisting of 10,000 patches for each class.

We evaluate the performance of our human–animal detection
method on 200 camera trap sequences each consisting of 10 im‐
ages. We manually labeled all animals and persons with bounding
boxes in these 2,000 images. To evaluate the detection perfor‐
mance, we compared the segmented output patch and the man‐
ually labeled patches with the intersection over the union (IoU).
We consider our classifier as accurate (true positive = TP) if the
patch has an IoU ≥ 0.5 and is classified correctly (person, animal).
Any background classified as human or animal, or any IoU ≤ 0.5
are False Positives (FP), and False Negatives (FN) are human and
animal patches that are classified as background allowing us to
calculate performance metrics: (a) Recall TP/(TP + FN); and (b)
Precision (TP)/(TP + FP).

SHL=

L−1�
i=0

pi, pi=

⎧
⎪⎨⎪⎩

1 if
ni

wh
> thhs

0 otherwise

F I G U R E 4   GUI image analysis flow

     |  1583YOUSIF et al.

2.4 | Software

We implemented our algorithms in two forms, a graphical user inter‐
face and command line, to facilitate use by camera trappers and also
to make the individual components available to other computer pro‐
grammers who want to modify it or incorporate it into other software.

2.5 | Graphic user interface

We have packaged our algorithms with a user friendly graphical user
interface to allow ecologists to easily use our algorithms without de‐
tailed programing knowledge (Figure 3). The workflow (Figure 4) has
the ecologist retrieving the SD card with images from the camera
trap and uploading a series of images from one location (i.e., one
camera trap deployment) into the software at once. The GUI auto‐
matically divides the deployment images into sequences based on
time stamps by combining photos within 60 s of each other. The user
can select one of the two background subtraction methods. Users
can choose to run the software on the whole deployment or a spe‐
cific sequence. The detection results (images with object bounding
box) are stored as JPG images with the color of the box indicating

the classification: blue for humans, red for animals, and no bound‐
ing boxes for background (e.g., blowing leaves or sunspots). The
program shows statistics about the detected objects and saves the
results for the full deployment as a text file. After processing, the
user can choose delete human and/or empty sequences and save the
filtered results into a specified folder. Figure 4 illustrates the main
steps of our proposed software which includes: (a) sequence separa‐
tion, (b) moving object segmentation using background subtraction,
(c) region verification and fast DCNN classification, and (d) reports
and processed images as output. The GUI is available in two ver‐
sions: Windows1 and Linux2

2.6 | Command line interface

We have developed a C/C++ command line interface program for
fast human‐animal detection. The input argument required to run
this program is only the program name and the input file that con‐
tains a list of all sequence images. Running the program on a batch
of sequences requires a single text file contains the names of se‐
quences files. For example, if I have 10 sequences, there will be 11
files, 10 files listing the name and the path of the images in each
sequence, one file has the name and the path of each of the 10 files.
Here is an example:

>>> HumanAnimal.exe test.txt3

3  | RESULTS

3.1 | Fast DCNN analysis

We studied how the relationship between complexity and classifi‐
cation accuracy by gradually reducing the input size of each image,
and changing the number of filters. There was little effect of reduc‐
ing input size from 256 × 256 pixels to 96 × 96 pixels (classification

F I G U R E 5   (a) Effect of input image size on the DCNN accuracy on a 2.6 GHz CPU and 16 GB RAM. (b) Effect of input image size on the
DCNN execution time per patch. (c) Effect of reducing the number convolutional layer filters in each of the five convolutional layers (Conv)
on execution time of 96 × 96 input size DCNN

TA B L E 1   Influence of reducing number convolutional layer
filters for different convolutional (conv) layers on the accuracy and
classification time

conv # of filters Accuracy (%) Time (ms)

1 16 90.06 198

2 32 90.92 138

3 64 93.38 184

4 64 91.24 211

5 32 93.26 252

Classifier Accuracy (%) Time (ms)

BOW (Fei‐Fei & Perona, 2005; Uijlings, Smeulders,
& Scha, 2010)

84.1 786

AlexNet (Krizhevsky et al., 2012) 95.6 2,655

Ours 93.38 184

TA B L E 2   Accuracy and classification
time per patch among different algorithms
classifying images as background, animals,
or humans after being trained on 30,000
images

1584  |     YOUSIF et al.

accuracy dropped from 95.6% to 93.4%, Figure 5a,b), although lower
resolution pictures were less accurate. However, this reduces the
complexity (and thus processing time) by 10 times, with a relatively
small loss of classification accuracy (2.2%). Figure 5c shows the com‐
plexity analysis associated with reducing the number of filters for
each convolutional layer of input size 96 × 96 AlexNet (AlexNet‐96)
(Yousif, Yuan, Kays, & He, 2017b).

By reducing the number of convolutional filters on each layer
of AlexNet‐96 DCNN model, we maintained the accuracy over
90% for rapid classification (Table 1). We were able to reduce the

classification time from 2,655 ms (accuracy of 95.6%) to 184 ms (ac‐
curacy of 93.38%). At this optimization point, we sacrificed 2.22%
of the accuracy while the classification time is reduced by 14 times.
We compare three image classifiers in terms of accuracy and speed
in Table 2. For near real time with reliable performance, we use our
DCNN model to classify the image patches.

3.2 | Object detection evaluation

Our proposed background modeling outperforms other published
alternatives in both recall and precision (Table 3), and works even
with difficult images typical of camera trapping (Figure 6). In Table 4,
we compare our detection results with the other state‐of‐the‐art

TA B L E 3   Performance comparison on background subtraction
in the Camera Trap dataset with other methods

Method Recall (%) Precision

RPCA‐PCP (Candès et al., 2011) 59.56 75.12

ROSL (Shu, Porikli, & Ahuja,
2014)

68.18 80.42

GRASTA (He, Balzano, & Szlam,
2012)

28.84 56.2191

LRGeomCG (Vandereycken,
2013)

58.7 74.59

Deep‐Semi‐NMF (Trigeorgis,
Bousmalis, Zafeiriou, & Schuller,
2014)

55.01 72.32

Proposed 73.13 83.55

F I G U R E 6   Example detection result of our proposed algorithm classifying humans in white bounding box and animals in black. These
show that our method can handle challenging conditions including object deformation, occlusion, and low contrast. A misclassification
sample is shown in the last row. Thin and bold boarder bounding boxes refers to our results and ground‐truth, respectively

TA B L E 4   Human–animal detection comparison with other
methods in our dataset. Metrics showing average detection time
per image (seconds) and average human–animal recall

Method
Human–animal recall
(%)

CPU time
(s) per
frame

Faster‐RCNN (Ren et al.,
2015)

43.7 19.2

SSD (Liu et al., 2016) 65.2 52.7

RRC (Ren et al., 2017) 33.6 —

Proposed 68.89 0.6

     |  1585YOUSIF et al.

methods. Again, our method shows a superior result in both perfor‐
mance and time compared with other state‐of‐arts.

3.3 | Sequence‐level evaluation

Although our algorithm evaluates individual images, this information
can be pooled across sequential frames to classify the contents of a
sequence, and then remove the empty sequences and people. We
classify a camera trap sequence as (a) background when there is no
human/animal is detected, (b) human when all the detected objects
are humans, and (c) animal if there is an animal is detected. We evalu‐
ated the performance of our detection method based on sequence
labeling using six deployments that reflect different camera circum‐
stances that often result in many non‐animal pictures (Table 5).

We evaluate the performance using three different metrics: (a)
Recall TP/(TP + FN); (b) False Negative Rate FNR = FN/(FN + FP); (c)
True Negative Rate TNR = TN/(TN + FP); and Accuracy = (TP + TN)/
(TP + TN + FP + FN). For more comprehensive evaluation, we also
present detailed confusion matrix results (Table 5; Figure 7). The
diagonal cells correspond to correctly classified observations. The
off‐diagonal cells correspond to incorrectly classified observations.
The column on the far right of the plot shows the percentages pre‐
cision and false discovery rate. The row at the bottom of the plot
shows recall (or true positive rate) and false negative rate. The cell in
the bottom right of the plot shows the overall accuracy and error.4

In our experiments, the training and testing set are taken from
different studies to make sure that the solution can be robust.
However, the classifiers are not perfect, and we highlight examples
of successful classifications and ongoing challenges in Figure 8.

3.4 | Image‐level classification evaluation

For this task, we use the camera trap images from Snapshot Serengeti
project and have included this with the GUI. The Snapshot Serengeti
project is a study with 225 camera traps running continuously in
Serengeti National Park, Tanzania, since 2010 (Norouzzadeh et al.,
2018; Swanson et al., 2015). For each image, multiple users label
the species present, number of individuals, various behaviors, and

presence of young. Simple algorithm had been applied to aggregate
these individual classifications into a final consensus dataset, yield‐
ing a final classification for each image and a measure of agreement
among individual answers.

Three main things can be done to deal with data imbalance: ig‐
noring the problem, undersampling the majority classes, or oversam‐
pling the minority classes. Because DCNNs need to be learned from
vast amounts of data, we choose oversampling. Instead of generat‐
ing copies from the original training samples, we propose to modify
the color contents of the new samples. A large portion of camera
trap images are grayscale or have untrue color because of the cam‐
era malfunctions. From the experiments, we show that having differ‐
ent color versions from the same scene during training stage leads
for better classification. This is mainly caused by making the DCNN
use the shape and texture features rather than color features. The
first task of analyzing Snapshot Serengeti dataset is to separate the
animal frame from the empty frame. We achieve 99.58% in this task
while Norouzzadeh et al. achieves 96.28%. We choose 80% of im‐
ages for training and use 20% for testing.

4  | CONCLUSION AND FUTURE WORK

With the growing reliance of camera traps for wildlife research,
there is an increasing interest in developing computer vision tools
to overcome the challenges associated with big data projects. Our
tool offers an important advance in this effort by helping biolo‐
gists remove useless images. This is a time‐consuming task, made
especially bad in grassy or canopy habitats where 98% or more
of the pictures consist only of moving vegetation. The removal of
humans is also useful for busy hiking trails where they make up
the majority of pictures. Our process to automatically identifying
people in pictures could also aid in situations where the privacy of
people being photographed is of concern, or in educational pro‐
grams where school kids are running camera traps and looking
through the pictures.

Our model works on both color and infrared photos and has
been trained and tested with difficult and challenging images

TA B L E 5   Sequence-level performance evaluation on Camera Trap deployments with different circumstances

Deployment Description # of Sequences # of Images Animal Recall (%) FNR (%) TNR (%) Accuracy (%)

SD‐1 Mostly Animals 54 835 89.6 100 100 88.7

SD‐2 Animals with false
triggers

60 660 100 3.7 5.5 11.7

SD‐3 Mostly Partial
animal bodies

73 1,130 88.4 100 100 87.5

SD‐4 Animals with sun
spots

64 2,261 98.3 66.67 33.3 90.6

SD‐5 Moving grass 136 4,755 100 0 54.07 54.4

SD‐6 Top‐swaying trees 192 1,395 100 0 30.97 33.9

Note. High values of recall and TNR indicates better object detection and specificity, respectively. While the low values for FNR indicates less misclas‐
sifying object as background than misclassifying background as object.

1586  |     YOUSIF et al.

F I G U R E 7   Detailed confusion matrices for six deployments, see Table 5 for descriptions

     |  1587YOUSIF et al.

typical of camera trapping. Many camera traps now record video,
although this is not often used by biologists because of the added
time needed to process. Our algorithms would be more accurate
with these higher frame rate sequences, and thus could help bi‐
ologists bridge the technical gap to make video processing more
efficient.

Our algorithms could also be useful for the larger goal of iden‐
tifying the species of animals in each frame. By recognizing mov‐
ing objects and placing the bounding boxes around animals, our
algorithm prepares camera trap images for automatic identification
of species through additional algorithms (He et al., 2016). Using

algorithms to identify the species within a bounding box should
be much more successful than using the entire frame, for exam‐
ple, when the animal itself is small or only partially in view. Our
work also points out the challenge of identifying a non‐moving an‐
imals in an image by segmenting each frame into regions using the
DCNN feature maps and classify each region with a faster DCNN
model (Yousif, Kays, & He, 2017a). The segmented object regions
are then verified and fused in the temporal domain using the same
background modeling used in this paper that leads to improve the
performance by more than 5%. Other object detection methods
(i.e., Faster‐RCNN (Ren, He, Girshick, & Sun, 2015), SSD (Liu et al.,

F I G U R E 8   Sample output labeled sequences from each deployment showing three correct identifications (a–c) and three mistakes (d–f).
Row a shows the correct identification of an animal (purple bounding box) toward the back of a scene. Rows b and c correctly identify the
moving objects as background grass and leaves, respectively, showing no bounding boxes. Row d shows four frames correctly identified as
human (yellow bounding box), with the fifth mistakenly classifying the object as an animal. Row e shows moving grass that was classified as
an animal and human. Row f shows an animal that was not detected because it did not move during the sequence

1588  |     YOUSIF et al.

2016), and RRC (Ren et al., 2017)) use only the single frame infor‐
mation to find the target object which makes them inefficient for
the highly cluttered scene of the camera trap images (Norouzzadeh
et al., 2018). Our sequence‐level background subtraction shows an
effective approach to localize the moving objects. Most of the re‐
cent papers on camera trap images aims to classify the whole image
using the available DCNN models. Image‐level classification is un‐
able to (a) localize the object, (b) differentiate between an image
that contains a small animal and a background image, and (c) clas‐
sify a multiple object image.

This work introduces a near real‐time software with outstand‐
ing performance compared with the other state‐of‐the‐art. In
our unpublished work, we have improved the performance much
higher but still can not be run on CPU computers. There is still
ongoing work to implement this work beside animal species classi‐
fication from eastern North America camera trap images as a cloud
service.

ACKNOWLEDG MENTS

This work has been supported by National Science Foundation
under grant CyberSEES‐1539389.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

Hayder Yousif constructed the main ideas of the research, carried
out most experiments, and drafted the original manuscript. Jianhe
Yuan did the training and testing with DCNN part. Roland Kays and
Zhihai He offered useful suggestions for improving the accuracy and
revising the manuscript.

DATA ACCE SSIBILIT Y

The softwares used in this paper have been archived on figshare
(https://figshare.com/s/cfc1070ca5a9bdda4cd8).

ENDNOTE S
1https://drive.google.com/open?xml:id=1c5Hw8TQATdsuTpw_2ly‐

W31RIj5-ck0HM.

2https://drive.google.com/open?xml:id=1qs_rsypapAqn-UZIqjoINEAXcn‐
875vfY.

3https://drive.google.com/open?xml:id=1VBwCzg9e0mjMFO-hO_
FkLwue2SWzgDzm.

4https://www.mathworks.com/help.

ORCID

Hayder Yousif https://orcid.org/0000-0002-7638-9505

R E FE R E N C E S

Baraldi, A., & Parmiggiani, F. (1995). An investigation of the textural char‐
acteristics associated with gray level cooccurrence matrix statistical
parameters. Geoscience and Remote Sensing, IEEE Transactions on, 33,
293–304. https://doi.org/10.1109/36.377929

Barnich, O., & Van Droogenbroeck, M. (2011). Vibe: A universal back‐
ground subtraction algorithm for video sequences. IEEE Transactions
on Image Processing, 20, 1709–1724. https://doi.org/10.1109/
TIP.2010.2101613

Bowler, M. T., Tobler, M. W., Endress, B. A., Gilmore, M. P., & Anderson,
M. J. (2016). Estimating mammalian species richness and occupancy
in tropical forest canopies with arboreal camera traps. Remote
Sensing in Ecology and Conservation, 3, 146–157.

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal com‐
ponent analysis? Journal of the ACM, 58, 11–37. https://doi.
org/10.1145/1970392.1970395

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human
detection. Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pp. 886–
893. IEEE.

Dong, P., Wang, S., Xia, Y., Liang, D., & Feng, D. D. (2016). Foreground
detection with simultaneous dictionary learning and historical pixel
maintenance. IEEE Transactions on Image Processing, 25, 5035–5049.
https://doi.org/10.1109/TIP.2016.2598680

Fei‐Fei, L., & Perona, P. (2005). A bayesian hierarchical model for learning
natural scene categories. Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, volume 2,
pp. 524–531. IEEE.

Gregory, T., Carrasco Rueda, F., Deichmann, J., Kolowski, J., & Alonso, A.
(2014). Arboreal camera trapping: Taking a proven method to new
heights. Methods in Ecology and Evolution, 5, 443–451. https://doi.
org/10.1111/2041-210X.12177

He, J., Balzano, L., & Szlam, A. (2012). Incremental gradient on the grass‐
mannian for online foreground and background separation in sub‐
sampled video. Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pp. 1568–1575. IEEE.

He, Z., Kays, R., Zhang, Z., Ning, G., Huang, C., Han, T. X., … McShea,
W. (2016). Visual informatics tools for supporting large‐scale col‐
laborative wildlife monitoring with citizen scientists. IEEE Circuits
and Systems Magazine, 16, 73–86. https://doi.org/10.1109/
MCAS.2015.2510200

Huang, H. C., Hsieh, C. T., & Yeh, C. H. (2015). An indoor obstacle detec‐
tion system using depth information and region growth. Sensors, 15,
27116–27141. https://doi.org/10.3390/s151027116

Kays, R. (2016). Candid creatures: How camera traps reveal the mysteries of
nature. Baltimore, MD: JHU Press.

Kays, R., Parsons, A. W., Baker, M. C., Kalies, E. L., Forrester, T., Costello,
R., … McShea, W. J. (2016). Does hunting or hiking affect wildlife
communities in protected areas? Journal of Applied Ecology, 54, 242–
252. https://doi.org/10.1111/1365-2664.12700

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classifi‐
cation with deep convolutional neural networks. Advances in Neural
Information Processing Systems, 25, 1097–1105.

Lee, C. Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2014). Deeply‐super‐
vised nets. arXiv preprint arXiv:14095185.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg,
A. C. (2016). Ssd: Single shot multibox detector. European conference on
computer vision (pp. 21–37). Cham, Switzerland: Springer.

McShea, W. J., Forrester, T., Costello, R., He, Z., & Kays, R. (2016).
Volunteer‐run cameras as distributed sensors for macrosystem mam‐
mal research. Landscape Ecology, 31, 55–66. https://doi.org/10.1007/
s10980-015-0262-9

Miguel, A., Beery, S., Flores, E., Klemesrud, L., & Bayrakcismith, R.
(2016). Finding areas of motion in camera trap images. Image

https://figshare.com/s/cfc1070ca5a9bdda4cd8
https://drive.google.com/open?xml:id=1c5Hw8TQATdsuTpw_2lyW31RIj5-ck0HM
https://drive.google.com/open?xml:id=1c5Hw8TQATdsuTpw_2lyW31RIj5-ck0HM
https://drive.google.com/open?xml:id=1qs_rsypapAqn-UZIqjoINEAXcn875vfY
https://drive.google.com/open?xml:id=1qs_rsypapAqn-UZIqjoINEAXcn875vfY
https://drive.google.com/open?xml:id=1VBwCzg9e0mjMFO-hO_FkLwue2SWzgDzm
https://drive.google.com/open?xml:id=1VBwCzg9e0mjMFO-hO_FkLwue2SWzgDzm
https://www.mathworks.com/help
https://orcid.org/0000-0002-7638-9505
https://orcid.org/0000-0002-7638-9505
https://doi.org/10.1109/36.377929
https://doi.org/10.1109/TIP.2010.2101613
https://doi.org/10.1109/TIP.2010.2101613
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1109/TIP.2016.2598680
https://doi.org/10.1111/2041-210X.12177
https://doi.org/10.1111/2041-210X.12177
https://doi.org/10.1109/MCAS.2015.2510200
https://doi.org/10.1109/MCAS.2015.2510200
https://doi.org/10.3390/s151027116
https://doi.org/10.1111/1365-2664.12700
https://doi.org/10.1007/s10980-015-0262-9
https://doi.org/10.1007/s10980-015-0262-9

     |  1589YOUSIF et al.

Processing (ICIP), 2016 IEEE International Conference on, pp.
1334–1338. IEEE.

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S.,
Packer, C., & Clune, J. (2018). Automatically identifying, counting, and
describing wild animals in camera‐trap images with deep learning.
Proceedings of the National Academy of Sciences, 115, E5716–E5725.
https://doi.org/10.1073/pnas.1719367115

Ojala, T., Pietikäinen, M., & Mäenpää, T. (2001). A generalized local binary
pattern operator for multiresolution gray scale and rotation invariant
texture classification. IEEE International Conference on Advances in
Pattern Recognition (pp. 397–406). Berlin, Heidelberg: Springer.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R‐CNN: Towards real‐
time object detection with region proposal networks. arXiv preprint
arXiv:150601497.

Ren, J., Chen, X., Liu, J., Sun, W., Pang, J., Yan, Q., …Xu, L. (2017). Accurate
single stage detector using recurrent rolling convolution. Computer
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,
pp. 752–760. IEEE.

Shu, X., Porikli, F., & Ahuja, N. (2014). Robust orthonormal subspace
learning: Efficient recovery of corrupted low‐rank matrices. In
Proceedings of the IEEE conference on computer vision and pattern rec-
ognition (pp. 3874–3881).

Steenweg, R., Whittington, J., Hebblewhite, M., Forshner, A., Johnston,
B., Petersen, D., … Lukacs, P. M. (2016). Camera‐based occupancy
monitoring at large scales: Power to detect trends in grizzly bears
across the canadian rockies. Biological Conservation, 201, 192–200.
https://doi.org/10.1016/j.biocon.2016.06.020

Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., & Packer, C.
(2015). Snapshot Serengeti, high‐frequency annotated camera trap
images of 40 mammalian species in an African savanna. Scientific
Data, 2, 150026. https://doi.org/10.1038/sdata.2015.26

Trigeorgis, G., Bousmalis, K., Zafeiriou, S., & Schuller, B. (2014). A deep semi‐
nmf model for learning hidden representations. ICML, 1692–1700.

Uijlings, J. R., Smeulders, A. W., & Scha, R. J. (2010). Real‐time visual
concept classification. IEEE Transactions on Multimedia, 12, 665–681.
https://doi.org/10.1109/TMM.2010.2052027

Vandereycken, B. (2013). Low‐rank matrix completion by riemannian op‐
timization. SIAM Journal on Optimization, 23, 1214–1236. https://doi.
org/10.1137/110845768

Yousif, H., Yuan, J., Kays, R., & He, Z. (2017b). Fast human‐animal detec‐
tion from highly cluttered camera‐trap images using joint background
modeling and deep learning classification. Circuits and Systems, 2017.
ISCAS 2017. IEEE International Symposium on, pp. 1894–1897. IEEE.

Yousif, H., Kays, R., & He, Z. (2017a). Object segmentation in the deep
neural network feature domain from highly cluttered natural scenes.
In IEEE International Conference on Image Processing.

How to cite this article: Yousif H, Yuan J, Kays R, He Z.
Animal Scanner: Software for classifying humans, animals,
and empty frames in camera trap images. Ecol Evol.
2019;9:1578–1589. https://doi.org/10.1002/ece3.4747

https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1016/j.biocon.2016.06.020
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1109/TMM.2010.2052027
https://doi.org/10.1137/110845768
https://doi.org/10.1137/110845768
https://doi.org/10.1002/ece3.4747

