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Abstract
Camera traps are a popular tool to sample animal populations because they are non‐
invasive, detect a variety of species, and can record many thousands of animal detec‐
tions per deployment. Cameras are typically set to take bursts of multiple photographs 
for each detection and are deployed in arrays of dozens or hundreds of sites, often 
resulting in millions of photographs per study. The task of converting photographs to 
animal detection records from such large image collections is daunting, and made 
worse by situations that generate copious empty pictures from false triggers (e.g., 
camera malfunction or moving vegetation) or pictures of humans. We developed 
computer vision algorithms to detect and classify moving objects to aid the first step 
of camera trap image filtering—separating the animal detections from the empty 
frames and pictures of humans. Our new work couples foreground object segmenta‐
tion through background subtraction with deep learning classification to provide a 
fast and accurate scheme for human–animal detection. We provide these programs 
as both Matlab GUI and command prompt developed with C++. The software reads 
folders of camera trap images and outputs images annotated with bounding boxes 
around moving objects and a text file summary of results. This software maintains 
high accuracy while reducing the execution time by 14 times. It takes about 6 sec‐
onds to process a sequence of ten frames (on a 2.6 GHZ CPU computer). For those 
cameras with excessive empty frames due to camera malfunction or blowing vegeta‐
tion automatically removes 54% of the false‐triggers sequences without influencing 
the human/animal sequences. We achieve 99.58% on image‐level empty versus ob‐
ject classification of Serengeti dataset. We offer the first computer vision tool for 
processing camera trap images providing substantial time savings for processing 
large image datasets, thus improving our ability to monitor wildlife across large scales 
with camera traps.
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1  | INTRODUC TION

Motion‐sensitive wildlife cameras, commonly referred to as camera 
traps, are increasingly popular survey tool for animal populations be‐
cause they are noninvasive and increasingly easy to use (Kays, 2016). 
Comparisons with other wildlife monitoring methods have shown 
camera traps to be the most effective and cost efficient approach 
for many species (Bowler, Tobler, Endress, Gilmore, & Anderson, 
2016). Ambitious projects are increasing the scale at which cameras 
are used on the landscape, now rotating hundreds of sensors across 
thousands of sites (Steenweg et al., 2016), sometimes with the assis‐
tance of citizen scientists (McShea, Forrester, Costello, He, & Kays, 
2016).

Given the large amounts of pictures recorded by each camera 
trap, and the increasing number of cameras used by each study, pro‐
cessing and managing camera trap images has become a major chal‐
lenge. For example, one two‐year study resulting 2.6 million images 
from 98,189 detections (McShea et al., 2016) across six states in the 
eastern USA. In some cases, false triggers and pictures of people 
can outnumber animal pictures. For example, with 1/3 of their cam‐
eras set on hiking trails (Kays et al., 2016) recorded 30,975 detec‐
tions of people and 53,372 detections of wildlife in the eastern USA. 
Habitats such as savannas or forest canopies are particularly likely to 
produce false triggers due to vegetation blowing in the wind, for ex‐
ample, 98% (68,968 events) of all camera triggers in the forest can‐
opy were moving vegetation (Gregory, Carrasco Rueda, Deichmann, 
Kolowski, & Alonso, 2014).

Most recently, deep neural network approaches have shown 
outstanding performance in image classification and object detec‐
tion. Deep Convolutional Neural Networks (DCNNs) model is one of 
the most popular deep learning models that are widely used. A sim‐
ple DCNN model consists of convolution, pooling, and classification 
layers. The convolution layers act as local and translation invariant 
operators between the input image and set of filters. The pooling 
layers are a down sampling using either max or average pooling. 
DCNNs learn features hierarchy all the way from pixels to classifier 
where the training is supervised with stochastic gradient descent 
(Lee, Xie, Gallagher, Zhang, & Tu, 2014). In this paper, the output 
from the classification layer is three scores which refer to human, 
animal, and background classes.

Computer vision has the potential to offer an automated tool for 
processing camera trap images if it can, first to identify the moving 
animal within the image and subtract the background, and second, 
to identify the moving object (He et al., 2016). Although these prob‐
lems are solved for many indoor environments (Huang, Hsieh, & Yeh, 
2015), the challenge is much greater with camera traps images be‐
cause of their dynamic background scenes with waving trees, mov‐
ing shadows, and sun spots.

Previous efforts to distinguish animals from background in cam‐
era traps have been proposed for foreground detection. In general, 
foreground areas are selected through one of two means, pixel‐
by‐pixel, in which an independent decision is made for each pixel, 
and region‐based, in which a decision is made on an entire group 

of spatially close pixels (Dong, Wang, Xia, Liang, & Feng, 2016). 
Analytical approaches include constructing a background model 
using the median pixel value (Miguel, Beery, Flores, Klemesrud, & 
Bayrakcismith, 2016), a non‐parametric approach where the pixel‐
level background model is represented by a set of background 
samples (Barnich & Van Droogenbroeck, 2011) and robust princi‐
ple component analysis (RPCA) (Candès, Li, Ma, & Wright, 2011). 
Unfortunately, the success of these efforts has been limited by pro‐
ducing large number of false positives and difficulty in distinguish 
between animal and human objects.

2  | METHODS

Our system (Figure 1) starts by detecting where the moving objects 
(human, animal, or moving vegetation) are within the images using a 
background subtraction method. Unlike many other image process‐
ing and vision analysis tasks, detecting and segmenting human–ani‐
mals from the camera trap images is very challenging since natural 
scenes in the wild are often highly cluttered due to heavy vegeta‐
tion and highly dynamic due to waving trees, moving shadows, and 
sun spots. Next, these moving objects are identified with classifiers 
to distinguish them as human, animal, or moving background. After 
describing these algorithms, we will explain how we reduce the false 
positives (background patches mistakenly identified as animals or 
people) using cross‐frame verification and present a study of the 
complexity‐accuracy trade‐off of DCNNs to propose a fast and ac‐
curate scheme for human–animal classification. Finally, we describe 
our GUI and command line data input and output.

2.1 | Object region segmentation

The first step in processing camera trap images is to distinguish the 
moving objects in the foreground (aka foreground object propos‐
als) from the fixed background. We rescale each frame from a given 
camera trap sequence into a specific width and height and then di‐
vide the rescaled image into 736 (or 32 × 23) regular blocks. We then 
extract features from each block. To determine which block(s) con‐
tain moving animals, we use the minimum feature distance (MFD) 
to all other co‐located blocks. These features include intensity, 
Local Binary Pattern (LBP) (Ojala, Pietikäinen, & Mäenpää, 2001), 
Gray Level Co‐occurrence Matrix (Baraldi & Parmiggiani, 1995), and 
Histogram of Oriented Gradient (HOG) (Dalal & Triggs, 2005). Given 
a sequence with 10 frames, for each block of the 736 blocks is com‐
pared with the other nine co‐located blocks to find the background 
block which has MFD. Any block that has feature histogram differ‐
ence with the co‐located blocks larger than the MFD is classified as 
a moving object (i.e., foreground). Our experiments found that the 
HOG (Dalal & Triggs, 2005) is the best feature vector that can ef‐
ficiently represent the block information.

We compare consecutive images in a sequence to find the moving 
object by subtracting feature histograms from same region position 
on subsequent images. The regions with the highest differences are 
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then connected contiguously to form the moving objects. The differ‐
ence value should be robust enough to reduce the number of false 
alarms and able to detect any animal or human as precisely as pos‐
sible in the presence of challenges of camera trap images. Because 

some camera brands only record 3 images per trigger, we initially use 
information from three consecutive frames to find the moving object. 
In a second method, we use the entire sequence frames to extract a 
background frame in a composition manner, and then subtract each 

F I G U R E  1   Flow chart of the proposed system. In the training stage, we generate the training patches to train the classification model. In 
the detection stage, we use joint background modeling with the pre‐trained classification model from the training stage to detect the human 
and animal
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frame features histogram from this composite background. After we 
subtract a given frame from the background frame, we set a thresh‐
old value that defines whether this block belongs to background or 
foreground. The foreground blocks are then connected to represent 
the foreground region(s). These foreground regions are the region 
proposals which need to be verified as human, animal, or background 
in order to label them with tagged bounding boxes.

2.2 | Region proposals verification

Before we proceed to the final step of identifying the moving object as 
an animal or person, we first use a verification of region proposals to de‐
termine if they are from the foreground or background. We observe that 
some of the false positive foreground generated by background sub‐
traction are caused by the intensity changes within the same sequence.

F I G U R E  2   Foreground verification by histogram shrinking. The first row shows candidate foreground proposals identified by changing 
pixels between frames while the second row shows their intensity histograms. (a) Dark region far away from camera flash. (b) Sunspot region. 
(c) Gray region within the camera flash range. (a), (b), and (c) are false positive patches where the SHL values are very small, (d) is a patch 
where the SHL value is big

F I G U R E  3   Screenshots from our designed GUI
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We define a threshold value called Shrinked Histogram Length 
(SHL) to determine whether an image patch is foreground (human or 
animal) or background based on the intensity information only. Let 
ni be the number of occurrences of intensity level i, then the SHL for 
an image patch of size w × h is:

where L is the total number of intensity levels in the patch. Figure 2 
shows how the false alarms are detected through the SHL value. 
Region verification through SHL requires less than 50 ms for each 
patch.

2.3 | Foreground proposals classification

After finding objects within a given frame (aka proposals), the next 
step is to classify them into human, animal, or background. We cre‐
ated a training dataset of images from these three classes (human/
animal/background) by cropping rectangular regions (aka patches) 
from 459,427 camera trap images and manually labeling them. 
These images were all from Reconyx or Bushnell brand cameras, 
and included color and black/white pictures with mainly two image 
resolution 1,024 × 1,536 pixels and 1,920 × 2,048 pixels. The 
original images come from three countries (Panama, Netherlands, 
and USA), and thus represent a great variety of types of animals 

and people. We use this dataset to train and test three different 
classifiers: Bag of visual word (BOW) (Fei‐Fei & Perona, 2005), 
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), and our DCNN 
model (AlexNet‐96). The input image size for AlexNet and BOW is 
256 × 256 pixels and 96 × 96 pixels for AlexNet‐96. Our software 
can accept any size of camera trap images (i.e., 1,024 × 1,536 and 
1,920 × 2,048). It should be noted that cropped region proposals 
(image patches), which have different sizes and aspect ratios, need 
to be rescaled to match with the classifier required input size. The 
training set is completely separate from the testing data and both 
include randomly chosen sequences with different camera trap cir‐
cumstances including color and black/white, trail road, grass, and 
top‐tree images. Each of the training and testing dataset contains 
30,000 image patches consisting of 10,000 patches for each class.

We evaluate the performance of our human–animal detection 
method on 200 camera trap sequences each consisting of 10 im‐
ages. We manually labeled all animals and persons with bounding 
boxes in these 2,000 images. To evaluate the detection perfor‐
mance, we compared the segmented output patch and the man‐
ually labeled patches with the intersection over the union (IoU). 
We consider our classifier as accurate (true positive = TP) if the 
patch has an IoU ≥ 0.5 and is classified correctly (person, animal). 
Any background classified as human or animal, or any IoU ≤ 0.5 
are False Positives (FP), and False Negatives (FN) are human and 
animal patches that are classified as background allowing us to 
calculate performance metrics: (a) Recall TP/(TP + FN); and (b) 
Precision (TP)/(TP + FP).

SHL=

L−1�
i=0

pi, pi=

⎧
⎪⎨⎪⎩

1 if
ni

wh
> thhs

0 otherwise

F I G U R E  4   GUI image analysis flow
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2.4 | Software

We implemented our algorithms in two forms, a graphical user inter‐
face and command line, to facilitate use by camera trappers and also 
to make the individual components available to other computer pro‐
grammers who want to modify it or incorporate it into other software.

2.5 | Graphic user interface

We have packaged our algorithms with a user friendly graphical user 
interface to allow ecologists to easily use our algorithms without de‐
tailed programing knowledge (Figure 3). The workflow (Figure 4) has 
the ecologist retrieving the SD card with images from the camera 
trap and uploading a series of images from one location (i.e., one 
camera trap deployment) into the software at once. The GUI auto‐
matically divides the deployment images into sequences based on 
time stamps by combining photos within 60 s of each other. The user 
can select one of the two background subtraction methods. Users 
can choose to run the software on the whole deployment or a spe‐
cific sequence. The detection results (images with object bounding 
box) are stored as JPG images with the color of the box indicating 

the classification: blue for humans, red for animals, and no bound‐
ing boxes for background (e.g., blowing leaves or sunspots). The 
program shows statistics about the detected objects and saves the 
results for the full deployment as a text file. After processing, the 
user can choose delete human and/or empty sequences and save the 
filtered results into a specified folder. Figure 4 illustrates the main 
steps of our proposed software which includes: (a) sequence separa‐
tion, (b) moving object segmentation using background subtraction, 
(c) region verification and fast DCNN classification, and (d) reports 
and processed images as output. The GUI is available in two ver‐
sions: Windows1 and Linux2

2.6 | Command line interface

We have developed a C/C++ command line interface program for 
fast human‐animal detection. The input argument required to run 
this program is only the program name and the input file that con‐
tains a list of all sequence images. Running the program on a batch 
of sequences requires a single text file contains the names of se‐
quences files. For example, if I have 10 sequences, there will be 11 
files, 10 files listing the name and the path of the images in each 
sequence, one file has the name and the path of each of the 10 files. 
Here is an example:

>>> HumanAnimal.exe test.txt3

3  | RESULTS

3.1 | Fast DCNN analysis

We studied how the relationship between complexity and classifi‐
cation accuracy by gradually reducing the input size of each image, 
and changing the number of filters. There was little effect of reduc‐
ing input size from 256 × 256 pixels to 96 × 96 pixels (classification 

F I G U R E  5   (a) Effect of input image size on the DCNN accuracy on a 2.6 GHz CPU and 16 GB RAM. (b) Effect of input image size on the 
DCNN execution time per patch. (c) Effect of reducing the number convolutional layer filters in each of the five convolutional layers (Conv) 
on execution time of 96 × 96 input size DCNN

TA B L E  1   Influence of reducing number convolutional layer 
filters for different convolutional (conv) layers on the accuracy and 
classification time

conv # of filters Accuracy (%) Time (ms)

1 16 90.06 198

2 32 90.92 138

3 64 93.38 184

4 64 91.24 211

5 32 93.26 252

Classifier Accuracy (%) Time (ms)

BOW (Fei‐Fei & Perona, 2005; Uijlings, Smeulders, 
& Scha, 2010)

84.1 786

AlexNet (Krizhevsky et al., 2012) 95.6 2,655

Ours 93.38 184

TA B L E  2   Accuracy and classification 
time per patch among different algorithms 
classifying images as background, animals, 
or humans after being trained on 30,000 
images
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accuracy dropped from 95.6% to 93.4%, Figure 5a,b), although lower 
resolution pictures were less accurate. However, this reduces the 
complexity (and thus processing time) by 10 times, with a relatively 
small loss of classification accuracy (2.2%). Figure 5c shows the com‐
plexity analysis associated with reducing the number of filters for 
each convolutional layer of input size 96 × 96 AlexNet (AlexNet‐96) 
(Yousif, Yuan, Kays, & He, 2017b).

By reducing the number of convolutional filters on each layer 
of AlexNet‐96 DCNN model, we maintained the accuracy over 
90% for rapid classification (Table 1). We were able to reduce the 

classification time from 2,655 ms (accuracy of 95.6%) to 184 ms (ac‐
curacy of 93.38%). At this optimization point, we sacrificed 2.22% 
of the accuracy while the classification time is reduced by 14 times. 
We compare three image classifiers in terms of accuracy and speed 
in Table 2. For near real time with reliable performance, we use our 
DCNN model to classify the image patches.

3.2 | Object detection evaluation

Our proposed background modeling outperforms other published 
alternatives in both recall and precision (Table 3), and works even 
with difficult images typical of camera trapping (Figure 6). In Table 4, 
we compare our detection results with the other state‐of‐the‐art 

TA B L E  3   Performance comparison on background subtraction 
in the Camera Trap dataset with other methods

Method Recall (%) Precision

RPCA‐PCP (Candès et al., 2011) 59.56 75.12

ROSL (Shu, Porikli, & Ahuja, 
2014)

68.18 80.42

GRASTA (He, Balzano, & Szlam, 
2012)

28.84 56.2191

LRGeomCG (Vandereycken, 
2013)

58.7 74.59

Deep‐Semi‐NMF (Trigeorgis, 
Bousmalis, Zafeiriou, & Schuller, 
2014)

55.01 72.32

Proposed 73.13 83.55

F I G U R E  6   Example detection result of our proposed algorithm classifying humans in white bounding box and animals in black. These 
show that our method can handle challenging conditions including object deformation, occlusion, and low contrast. A misclassification 
sample is shown in the last row. Thin and bold boarder bounding boxes refers to our results and ground‐truth, respectively

TA B L E  4   Human–animal detection comparison with other 
methods in our dataset. Metrics showing average detection time 
per image (seconds) and average human–animal recall

Method
Human–animal recall 
(%)

CPU time 
(s) per 
frame

Faster‐RCNN (Ren et al., 
2015)

43.7 19.2

SSD (Liu et al., 2016) 65.2 52.7

RRC (Ren et al., 2017) 33.6 —

Proposed 68.89 0.6
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methods. Again, our method shows a superior result in both perfor‐
mance and time compared with other state‐of‐arts.

3.3 | Sequence‐level evaluation

Although our algorithm evaluates individual images, this information 
can be pooled across sequential frames to classify the contents of a 
sequence, and then remove the empty sequences and people. We 
classify a camera trap sequence as (a) background when there is no 
human/animal is detected, (b) human when all the detected objects 
are humans, and (c) animal if there is an animal is detected. We evalu‐
ated the performance of our detection method based on sequence 
labeling using six deployments that reflect different camera circum‐
stances that often result in many non‐animal pictures (Table 5).

We evaluate the performance using three different metrics: (a) 
Recall TP/(TP + FN); (b) False Negative Rate FNR = FN/(FN + FP); (c) 
True Negative Rate TNR = TN/(TN + FP); and Accuracy = (TP + TN)/
(TP + TN + FP + FN). For more comprehensive evaluation, we also 
present detailed confusion matrix results (Table 5; Figure 7). The 
diagonal cells correspond to correctly classified observations. The 
off‐diagonal cells correspond to incorrectly classified observations. 
The column on the far right of the plot shows the percentages pre‐
cision and false discovery rate. The row at the bottom of the plot 
shows recall (or true positive rate) and false negative rate. The cell in 
the bottom right of the plot shows the overall accuracy and error.4

In our experiments, the training and testing set are taken from 
different studies to make sure that the solution can be robust. 
However, the classifiers are not perfect, and we highlight examples 
of successful classifications and ongoing challenges in Figure 8.

3.4 | Image‐level classification evaluation

For this task, we use the camera trap images from Snapshot Serengeti 
project and have included this with the GUI. The Snapshot Serengeti 
project is a study with 225 camera traps running continuously in 
Serengeti National Park, Tanzania, since 2010 (Norouzzadeh et al., 
2018; Swanson et al., 2015). For each image, multiple users label 
the species present, number of individuals, various behaviors, and 

presence of young. Simple algorithm had been applied to aggregate 
these individual classifications into a final consensus dataset, yield‐
ing a final classification for each image and a measure of agreement 
among individual answers.

Three main things can be done to deal with data imbalance: ig‐
noring the problem, undersampling the majority classes, or oversam‐
pling the minority classes. Because DCNNs need to be learned from 
vast amounts of data, we choose oversampling. Instead of generat‐
ing copies from the original training samples, we propose to modify 
the color contents of the new samples. A large portion of camera 
trap images are grayscale or have untrue color because of the cam‐
era malfunctions. From the experiments, we show that having differ‐
ent color versions from the same scene during training stage leads 
for better classification. This is mainly caused by making the DCNN 
use the shape and texture features rather than color features. The 
first task of analyzing Snapshot Serengeti dataset is to separate the 
animal frame from the empty frame. We achieve 99.58% in this task 
while Norouzzadeh et al. achieves 96.28%. We choose 80% of im‐
ages for training and use 20% for testing.

4  | CONCLUSION AND FUTURE WORK

With the growing reliance of camera traps for wildlife research, 
there is an increasing interest in developing computer vision tools 
to overcome the challenges associated with big data projects. Our 
tool offers an important advance in this effort by helping biolo‐
gists remove useless images. This is a time‐consuming task, made 
especially bad in grassy or canopy habitats where 98% or more 
of the pictures consist only of moving vegetation. The removal of 
humans is also useful for busy hiking trails where they make up 
the majority of pictures. Our process to automatically identifying 
people in pictures could also aid in situations where the privacy of 
people being photographed is of concern, or in educational pro‐
grams where school kids are running camera traps and looking 
through the pictures.

Our model works on both color and infrared photos and has 
been trained and tested with difficult and challenging images 

TA B L E  5   Sequence-level performance evaluation on Camera Trap deployments with different circumstances

Deployment Description # of Sequences # of Images Animal Recall (%) FNR (%) TNR (%) Accuracy (%)

SD‐1 Mostly Animals 54 835 89.6 100 100 88.7

SD‐2 Animals with false 
triggers

60 660 100 3.7 5.5 11.7

SD‐3 Mostly Partial 
animal bodies

73 1,130 88.4 100 100 87.5

SD‐4 Animals with sun 
spots

64 2,261 98.3 66.67 33.3 90.6

SD‐5 Moving grass 136 4,755 100 0 54.07 54.4

SD‐6 Top‐swaying trees 192 1,395 100 0 30.97 33.9

Note. High values of recall and TNR indicates better object detection and specificity, respectively. While the low values for FNR indicates less misclas‐
sifying object as background than misclassifying background as object.
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F I G U R E  7   Detailed confusion matrices for six deployments, see Table 5 for descriptions
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typical of camera trapping. Many camera traps now record video, 
although this is not often used by biologists because of the added 
time needed to process. Our algorithms would be more accurate 
with these higher frame rate sequences, and thus could help bi‐
ologists bridge the technical gap to make video processing more 
efficient.

Our algorithms could also be useful for the larger goal of iden‐
tifying the species of animals in each frame. By recognizing mov‐
ing objects and placing the bounding boxes around animals, our 
algorithm prepares camera trap images for automatic identification 
of species through additional algorithms (He et al., 2016). Using 

algorithms to identify the species within a bounding box should 
be much more successful than using the entire frame, for exam‐
ple, when the animal itself is small or only partially in view. Our 
work also points out the challenge of identifying a non‐moving an‐
imals in an image by segmenting each frame into regions using the 
DCNN feature maps and classify each region with a faster DCNN 
model (Yousif, Kays, & He, 2017a). The segmented object regions 
are then verified and fused in the temporal domain using the same 
background modeling used in this paper that leads to improve the 
performance by more than 5%. Other object detection methods 
(i.e., Faster‐RCNN (Ren, He, Girshick, & Sun, 2015), SSD (Liu et al., 

F I G U R E  8   Sample output labeled sequences from each deployment showing three correct identifications (a–c) and three mistakes (d–f). 
Row a shows the correct identification of an animal (purple bounding box) toward the back of a scene. Rows b and c correctly identify the 
moving objects as background grass and leaves, respectively, showing no bounding boxes. Row d shows four frames correctly identified as 
human (yellow bounding box), with the fifth mistakenly classifying the object as an animal. Row e shows moving grass that was classified as 
an animal and human. Row f shows an animal that was not detected because it did not move during the sequence
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2016), and RRC (Ren et al., 2017)) use only the single frame infor‐
mation to find the target object which makes them inefficient for 
the highly cluttered scene of the camera trap images (Norouzzadeh 
et al., 2018). Our sequence‐level background subtraction shows an 
effective approach to localize the moving objects. Most of the re‐
cent papers on camera trap images aims to classify the whole image 
using the available DCNN models. Image‐level classification is un‐
able to (a) localize the object, (b) differentiate between an image 
that contains a small animal and a background image, and (c) clas‐
sify a multiple object image.

This work introduces a near real‐time software with outstand‐
ing performance compared with the other state‐of‐the‐art. In 
our unpublished work, we have improved the performance much 
higher but still can not be run on CPU computers. There is still 
ongoing work to implement this work beside animal species classi‐
fication from eastern North America camera trap images as a cloud 
service.
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