
Supplemental Information

Plastin and spectrin cooperate to stabilize

the actomyosin cortex during cytokinesis

Ana Filipa Sobral, Fung-Yi Chan, Michael J. Norman, Daniel S. Osório, Ana Beatriz Dias, Vanessa Ferreira, Daniel J. Barbosa, Dhanya Cheerambathur, Reto Gassmann, Julio Monti Belmonte, and Ana Xavier Carvalho

Figure S1. Validation of RNAi efficiency. Related to Figure 1.

(A) Immunoblot of adult *C. elegans* lysate with an antibody raised against the actin-binding domain (ABD) of SMA-1, showing efficient depletion of SMA-1 after sma-1(RNAi). WT is wild-type. α -tubulin serves as the loading control. (B) (left) Stills of comma-stage embryos expressing endogenous UNC-70::GFP before and after unc-70(RNAi). Scale bar, 10 µm. (right) Percentage (mean ± 95% CI) of unc-70(RNAi) animals that develop to adulthood. Most *unc-70(RNAi)* animals arrest at the L1 stage, consistent with a previous study [S1]. Statistical significance was determined using unpaired two-tailed Student t-test: **** $p \le 0.0001$. (C) RT-PCR for cor-1 in N2 controls and after cor-1(RNAi) using primers Fw 5'-CGTCGACAAGGACTATCCA-3' and Rv 5'-GGAGCCAAAGTGCTCAAA-3' that amplify the 3 isoforms. Method was described previously [S2]. (D) Percentage of embryonic viability (mean \pm 95% CI) in N2 controls, after fln-1(RNAi), and ani-1(RNAi), consistent with previous studies [S3,S4]. Statistical significance was determined using one-way ANOVA followed by Dunnett's multiple comparison test: ****p ≤ 0.0001 . (E) Images of body wall muscles stained with phalloidin. atn-1(RNAi) results in curled F-actin fibers, as expected from previous study [S5]. Method was described previously [S6]. Scale bar, 10 µm. (F) Images of the equatorial region in dividing one-cell embryos expressing NMY-2::GFP. The first frame corresponds to anaphase onset. Symmetric furrow closure confirms efficient RNAi-mediated depletion of UNC-59, UNC-61 and ANI-1, as described previously [S7]. Prolonged cytokinesis confirms efficient RNAimediated depletion of PLST-1. Scale bar, $10 \mu m$.

Figure S2. SMA-1 deletion mutants that lack most of the actin binding domain are expressed at lower levels but this is unlikely to explain the cytokinesis failure in the *plst-1(prt89)* background. Related to Figure 4.

(A) Schematic of the first 6 exons and 5 introns of the *sma-1* gene in wild-type and after editing to obtain ABD deletions (\triangle ABD). Part of exon 3 and exon 4 encode the first CH domain (CH1), and exon 5 encodes the second CH domain (CH2). SMA-1 \triangle ABD#1 lacks most of exon 3, the entire exon 4, and most of exon 5. SMA-1 \triangle ABD#2 lacks exon 4. (B) Immunoblot of adult *C. elegans* lysate with an affinity-purified anti-SMA-1 antibody raised against the PH domain, showing SMA-1 levels in animals expressing the two different SMA-1 \triangle ABD versions. α -tubulin serves as the loading control. (C) Anti-SMA-1 immunoblot of adult *C. elegans* lysate, showing protein levels in *plst-1(prt89)* animals after partial or penetrant *sma-1(RNAi)*. α -tubulin serves as the loading control. (D) Percentage of cytokinesis completion/failure in one-cell *plst-1(prt89)* embryos after partial and penetrant depletion of SMA-1. N indicates the number of embryos analyzed.

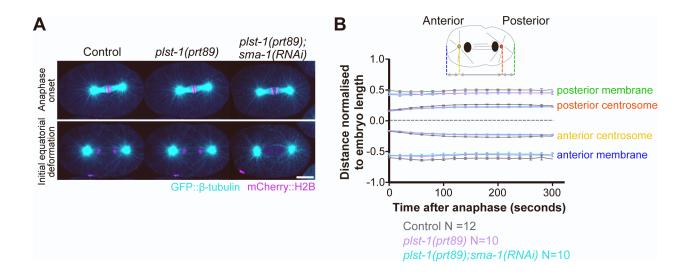


Figure S3. Mitotic spindle morphology and positioning is normal in *plst-1(prt89)* and *plst-1(prt89);sma-1(RNAi)* embryos. Related to Figure 5.

(A) Images of the central plane in one-cell embryos co-expressing GFP:: β -tubulin and mCherry::histone H2B at anaphase onset and equatorial shallow deformation. Scale bar, 10 μ m. (B) Centrosome positioning (mean \pm 95% CI) along the anterior-posterior axis of the embryo over time after anaphase onset. Dashed line indicates the midpoint between the two centrosomes. N indicates the number of embryos analyzed.

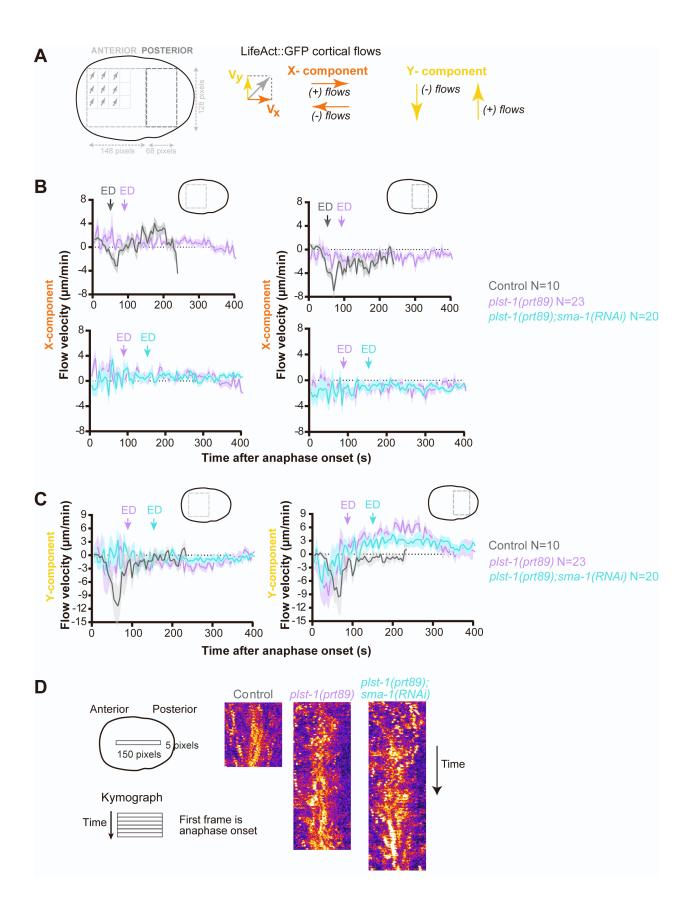
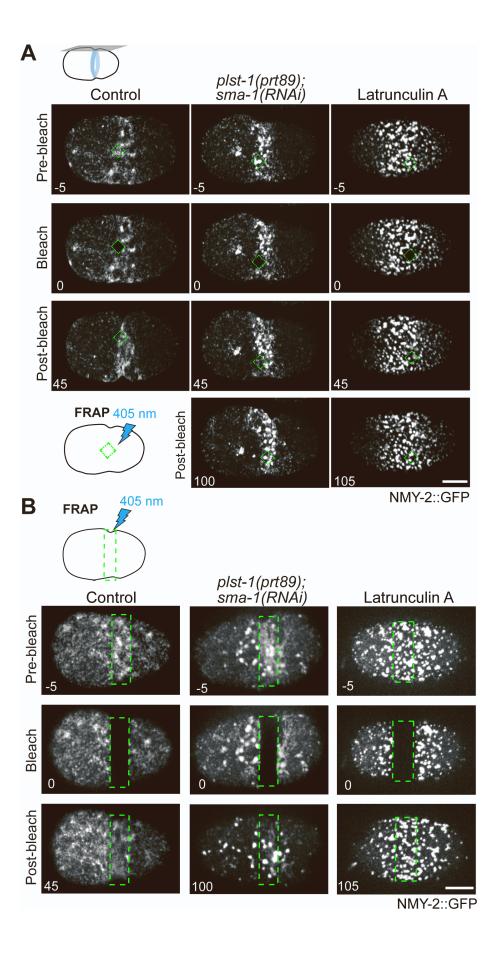



Figure S4. Failure of cytokinesis in *plst-1(prt89);sma-1(RNAi)* embryos is not due to perturbed F-actin cortical flows. Related to Figure 5.

(A) Schematic illustrating the analysis of cortical F-actin flows by particle image velocimetry. X- and Y-components of the velocity vectors in the anterior or posterior regions of the embryo were averaged for each time point after anaphase onset. For the X-component, negative velocity values indicate posterior-anterior oriented flows and positive velocity values indicate anterior-posterior oriented flows. (B,C) X-component (B) or Y-component (C) flow velocities (mean ± SEM) at anterior (left) and posterior (right) cortex over time after anaphase onset in embryos expressing LifeAct::GFP. ED, initial equatorial deformation. Posterior-anterior directed flows in control embryos were particularly prominent on the posterior side, initiated before equatorial deformation, and peaked shortly thereafter (panel B, top right). F-actin cortical flows in plst-1(prt89) and plst-1(prt89);sma-1(RNAi) embryos were erratic and decreased in velocity (panel B, bottom right). N indicates the number of embryos analyzed. (D) Kymographs of the region indicated in the schematic on the left showing LifeAct::GFP cortical flows along the longitudinal axis in one-cell embryos, starting at anaphase onset.

Figure S5. Myosin coalescence into bright puncta in *plst-1(prt89);sma-1(RNAi)* embryos coincides with F-actin cluster formation. Related to Figures 5 and 6.

(A) Images of the equatorial cortical region in one-cell embryos co-expressing NMY-2::mCherry and LifeAct::GFP. First frame corresponds to the initial enrichment of NMY-2::mCherry at the cell equator. Scale bar, 10 µm.

Figure S6. Fluorescence recovery after photobleaching of NMY-2::GFP at the cell equator. Related to Figure 6.

(A,B) Images of the cortex in *plst-1(prt89);sma-1(RNAi)* and Latrunculin A-treated one-cell embryos expressing NMY-2::GFP just before and after photobleaching of a portion (A) or the entire (B) cell equator at initial equatorial deformation, when myosin puncta start accumulating at the cell equator in *plst-1(prt89);sma-1(RNAi)* embryos. Numbers indicate the time in seconds relative to the photobleaching event. Schematics show the photobleached regions. Scale bars, 10 µm.

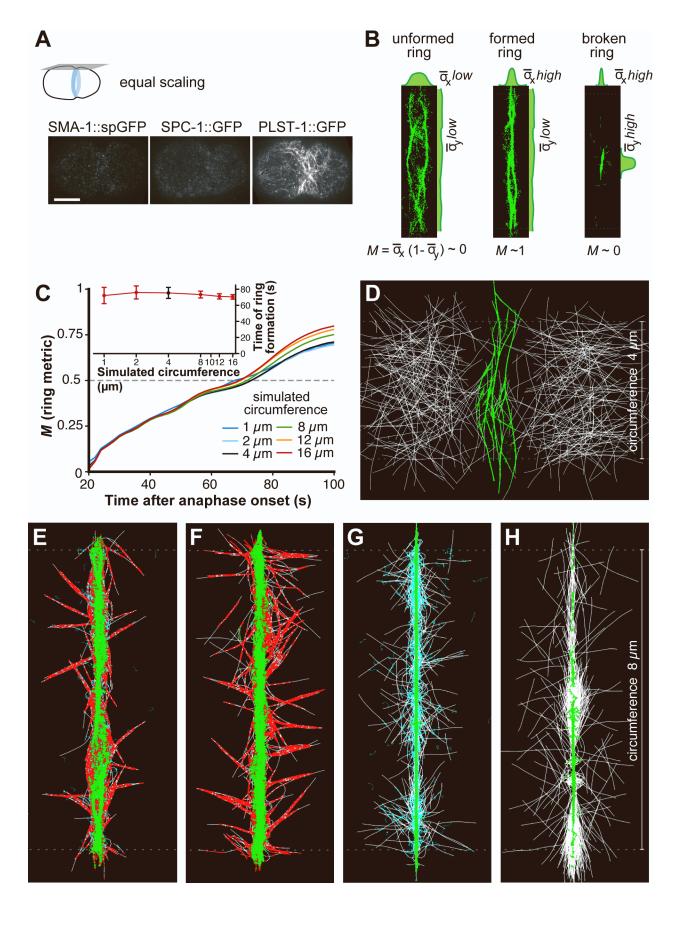


Figure S7. Relative expression levels of GFP-tagged SMA-1 and PLST-1 in the early embryo, simulation metric calculation, and scaling and effects of no end-dwelling on depolymerizing ends. Related to Figures 3 and 7.

(A) Equally scaled images of the cortex in one-cell embryos expressing SMA-1::spGFP, SPC-1::GFP or PLST-1::GFP. Scale bar, 10 μ m. (B) Simulation snapshots showing only myosin motors for simulations that (from left to right): fail to form a compact ring (double amount of plastin); successfully form a ring (reference simulation, same as last panel in Figure 7B); experience ring rupture (scenario with no plastins). Next to all snapshots are sketch plots that illustrate the measurements of x and y that are used for the ring metric (eq. 1). (C) Use of longer or shorter lengths of simulated circumference does not affect simulation results. Main plot: ring metric evolution for different circumference lengths. Inset: timing of ring formation or different circumference lengths \pm SD. (D) Allowing motors to immediately fall off from depolymerizing barbed ends, instead of end-dwelling, leads to the gradual removal of F-actin from the ring midline and the ring forms with only a few F-actin fibers. (E-H) Simulation snapshots at 100 s after anaphase for scenarios with (E) all elements, (F) no spectrin, (G) no plastin, and (H) no plastin and no spectrin. Color legend: white - actin fibers, green - myosin, red - plastin, and cyan - β H/ α -spectrin tetramer.

Fluorescent probe (expressed from transgene or endogenous locus; found in which strains)	Method used for strain generation	Test of functionality	Reference
LifeAct::GFP (transgene; GCP22, GCP927, GCP1163, GCP1164, GCP1169, GCP1170, GCP1176, GCP1187)	Bombardment	Normal cytokinesis timing in 1-cell embryo. Normal strain growth.	[58]
LifeAct::RFP (transgene; GCP1207)	Bombardment	Normal cytokinesis timing in 1-cell embryo. Normal strain growth.	[59]
PLST-1::GFP (endogenous locus; GCP831, GCP832, RZB217)	CRISPR/Cas9 ^a	Normal cytokinesis timing in 1-cell embryo. Normal strain growth.	[58]
NMY-2::GFP (endogenous locus; GCP113 and GCP570)	CRISPR/Cas9 ^a	Normal cytokinesis timing in 1-cell embryo. Normal strain growth.	[58]
NMY-2::mCherry (transgene; GCP22, GCP927, GCP1163, GCP1164, GCP1169, GCP1170, GCP1176, GCP1187)	MosSci ^b , Chromosome II	NMY-2::mCherry is able to replace endogenous nmy-2. Normal strain growth.	[S10]
GFP::ANI-1 (transgene; OD130)	Bombardment	Normal strain growth. Pattern of localization of GFP::ANI-1 identical to that observed in strain MDX29, where the endogenous locus of ani-1 is tagged with mNeonGreen (Rehain-Bell et al., 2017).	[S11]
UNC-59::GFP (transgene; OD121)	Bombardment	UNC-59::GFP expression under the control of the pie-1 regulatory sequences	[S12]

		rescues the localization of UNC-61 (the other septin with which UNC-59 oligomerizes)	
SMA-1::splitGFP (endogenous locus; GCP991, GCP1207, GCP1208)	CRISPR/Cas9 ^a	Normal strain growth.	This study
SPC-1::GFP (endogenous locus; GOU2936)	CRISPR/Cas9 ^a	Normal strain growth.	[S13]

^a CRISPR/Cas9 - Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein

Table S1. Summary of fluorescent tagged proteins used in this study. Related to Figures 1-7.

^b MosSci - Mos1-mediated Single Copy Insertion

Oligonucleotide purpose	Oligonucleotide sequence (5'-3')		
For production of dsRNA against ani-1 (Y49E10.19)_Fwd	taatacgactcactataggTCAAACTCAATGGAGAGGACAA-3' T7 promoter sequence is in lowercase		
For production of dsRNA against ani-1 (Y49E10.19)_Rev	aattaaccctcactaaaggCATTGTGCTTCAAATTCCTCAC T3 promoter sequence is in lowercase		
For production of dsRNA against atn-1 (W04D2.1)_Fwd	aattaaccctcactaaaggCAAAAGCTCGAGGACTACCG T3 promoter sequence is in lowercase		
For production of dsRNA against atn-1 (W04D2.1)_Rev	taatacgactcactataggAGCTGCGAATCTCTTCTTGG T7 promoter sequence is in lowercase		
For production of dsRNA against fln-1 #1 (Y66H1B.2)_Fwd	aattaaccctcactaaaggCCGATTTCCAACTTCACTTCC T3 promoter sequence is in lowercase		
For production of dsRNA against fln-1 #1 (Y66H1B.2)_Rev	taatacgactcactataggGACTTCACCAGCAACCTTAAC T7 promoter sequence is in lowercase		
For production of dsRNA against fln-1 #2 (Y66H1B.2)_Fwd	aattaaccctcactaaaggTGGATGGGCAACTGTTTATG T3 promoter sequence is in lowercase		
For production of dsRNA against fln-1 #2 (Y66H1B.2)_Rev	taatacgactcactataggGAGCTCCTCCTTCAGAGAAT T7 promoter sequence is in lowercase		
For production of dsRNA against plst-1 (Y104H12BR.1)_Fwd	aattaaccctcactaaaggACTCGGAGTCCATGGAAATG T3 promoter sequence is in lowercase		
For production of dsRNA against plst-1 (Y104H12BR.1)_Rev	taatacgactcactataggCACCATTTTTGGCTTCACCT T7 promoter sequence is in lowercase		
For production of dsRNA against unc-59 (W09C5.2)_Fwd	taatacgactcactataggCGTGAAACTCGTGGAGAACA T7 promoter sequence is in lowercase		
For production of dsRNA against unc-59 (W09C5.2)_Rev	aattaaccctcactaaaggTTGTGGTGGAGTTCAACGTG T3 promoter sequence is in lowercase		
For production of dsRNA against unc-61 (Y50E8A.4)_Fwd	taatacgactcactataggAGCTGTCGAAGCTGGATTTC T7 promoter sequence is in lowercase		
For production of dsRNA against unc-61 (Y50E8A.4)_Rev	aattaaccctcactaaaggACGGCTGAACTCGTCTTGAT T3 promoter sequence is in lowercase		
For production of dsRNA against unc-70 (K11C4.3)_Fwd	aattaaccctcactaaaggCACTGTCTTGAGAACGTTGAG T3 promoter sequence is in lowercase		

For production of dsRNA against unc-70 (K11C4.3)_Rev	taatacgactcactataggAATGGATTTCTCATCAGGTTGG T7 promoter sequence is in lowercase		
For production of dsRNA against erm-1 (C01G8.5)_Fwd	aattaaccctcactaaaggCTTCTACGCTCCACGACTCC T3 promoter sequence is in lowercase		
For production of dsRNA against erm-1 (C01G8.5)_Rev	taatacgactcactataggCTCCATATGCAGAACGTCGTA T7 promoter sequence is in lowercase		
Single guide RNA #1 used to generate $sma-1\Delta ABD\#1$ mutant	TCACGCATTCGGACACTGC		
Single guide RNA #2 used to generate <i>sma-1</i> ΔABD#1 mutant	GTGCAACTCCTTTCTTAAT		
Single guide RNA #3 used to generate $sma-1\Delta ABD#1$ mutant	ATTGACTTCTCGTCAGGCC		
Repair template used to generate $sma-1\Delta ABD\#1$ mutant	cagGTTCGTGTTCCAACAAGTGGTGCACCACCAGTTCG CGCAGATGCCAATGGAACAGATCAGGACGAGTTCAA TAATGAGACACTGTACTTTGAAAGATCACGCATTCGG ACACTGCAAGACGAACGTGTGAAGCAAAAGACTGAG ATGACAGGAGCTCGACGTATTGCTAATgtaagtgtttataagtt catg in bold are silent mutations introduced to avoid repair template recognition by Cas9 or to maintain codon balance; bases in lowercase indicate intron regions		
For screening of <i>sma-1</i> ΔABD#1 successful events_Fwd	GGAAAGACGCTGAGCTAGTA		
For screening of <i>sma-1</i> ΔABD#1 successful events_Rev	CTCCTTGTACTTTGGTGGTTTC		
crRNA #1 used to generate <i>sma-1</i> ΔABD#2 mutant	CTCGTCTTGATCTGTTCCAT		
crRNA #2 used to generate <i>sma-1</i> ΔABD#2 mutant	TTAAATTTTCAGGATGAGG		
Repair template used to generate $sma-1\Delta ABD\#2$ mutant	aaagttttaaagatccgaaaaaaaactgagaacgtttagaaatatttaacagttcaattagcatcaagttcataatgattttttcagGTTCGTGTTCCAACAAGTGGTGCACCACCAGTTAATCGG-intron3/4-GATGAGGAAGAGCGTGGAGAGAGCGAAAACATGCCAAAGATGCCTTGCTGTTGTGGTGTCAGAGAAAACAGCTGGATATCCAAATGTTCGCATCGAGAACTTCACTACAAGTTGGbases in lowercase indicate intron regions; intron3/4 as in sma-1 transcript R31.1a, Wormbase version WS279		
For screening of <i>sma-1</i> ΔABD#2 successful events_Fwd	AACGGAAAGACGCTGAGCTAGT		

For screening of <i>sma-1</i> \Delta ABD#2 successful events_Rev	GATCCGGACGGTGCGAATGG
crRNA #1 used to generate <i>sma-1</i> ΔSH3 mutant	ATTGACTGGTAGTAGCAGTG
crRNA #2 used to generate <i>sma-1</i> ΔSH3 mutant	TCTAGACTGACCATGACCTT
Repair template used to generate $sma-1\Delta SH3$ mutant	gcagGAGTGACATCAGTCGACTCGAGGAGATGCAAAG TCAGCTAGCAAACGAAGGTCATGGTCAGTCTAGAAA AATCGAAGTTCGTCAACATAAGATCAA bases in lowercase indicate intron regions
For screening of <i>sma-1</i> ΔSH3 successful events_Fwd	CAGTCGACTCGAGGAGATGC
For screening of <i>sma-1</i> ΔSH3 successful events_Rev	TGGTTTCAAATCACGCTCCA
Single guide RNA #1 used to generate <i>sma-1</i> ΔPH mutant	TGGGTGCTATTGACATGAA
Single guide RNA #2 used to generate <i>sma-1</i> ΔPH mutant	ACGACTTGAGCTGATTACT
Repair template used to generate $sma-1\Delta PH$ mutant	CGTTCAATACTCGTCGTACTCAATCAATCCGCAAAGG AAGTCGCTGGGAAGATATGGGTCCATCCAATCAACT GAAATCGTATGCGTACAACGgttagttaattactatttaaattattaacc agtttgcttctcag in bold are silent mutations introduced to avoid repair template recognition by Cas9 or to maintain codon balance
For screening of <i>sma-1</i> ΔPH successful events_Fwd	GCAAAGACTACCGCTGATTT
For screening of <i>sma-1</i> ΔPH successful events_Rev	GTTGATCTGGACTTTGGAAGAG
Single guide RNA #1 used to generate <i>sma-</i> $I\Delta$ 11SR mutant	CGTGACCTCGGTCGAGATGT
Single guide RNA #2 used to generate <i>sma-</i> $I\Delta$ 11SR mutant	TTACAAGATAAGGAAGCGAC
Repair template used to generate $sma-1\Delta11SR$ mutant	GTGACGTTGACGAGTTTGAGCAATGGATGGCAGACA AAATGGCCAACATGGTAGCAATGGAACAGGAAGATC TTTCGAGAGCTGATCTTGCTTCCGTGAA
For screening of <i>sma-1</i> Δ11SR successful events_Fwd	AGCAGGAAGCACTCAGAACC
For screening of <i>sma-1</i> Δ11SR successful events_Rev	GCCGAGTATCTGGGAACGAG

Single guide RNA #1 used to generate $atn-1\Delta ABD$ mutant	AGGACTGTTAGATCCAGCA		
Single guide RNA #2 used to generate $atn-I\Delta ABD$ mutant	GGACTGTTAGATCCAGCAT		
Single guide RNA #3 used to generate <i>atn-1</i> ΔABD mutant	ATGCTGGATCTAACAGTCC		
Repair template used to generate <i>atn-1</i> ΔABD mutant	CATACCATCAGCCGGGCTACGACTACACTCAACAAG AGGAAGAATGGGACCGTGAAGGATTACTGGATCCT GCCTGGGAGGCATTTCGTAACATGCGTGATCCTCCAC CACCAGTTATTCGCCAACCACCACCACAGCGTGTTGT TGTTGCTCCACCTCCAGAG in bold are silent mutations introduced to avoid repair template recognition by Cas9 or to maintain codon balance		
For screening of <i>atn-1</i> ΔABD successful events_Fwd	CCTTCTTCACACCGTTCATC		
For screening of <i>atn-1</i> ΔABD successful events_Rev	GAGACAAGGACAATGGACATTTA		
Single guide RNA #1 used to generate <i>sma-1::spGFP</i>	TCGGATCGTTATTCAAGCG		
Single guide RNA #2 used to generate <i>sma-1::spGFP</i>	GGTATCTACTTTGAATGTT		
Single guide RNA #3 used to generate <i>sma-1::spGFP</i>	TGAAGATCAGCGTGTGGTG		
For screening of <i>sma-1::spGFP</i> successful events_Fwd	GCGAATTCATTACTTGGGTAGA		
For screening of <i>sma-1::spGFP</i> successful events_Rev	GTCTTCCAGCTTTGGTGATAG		
Single guide RNA used to generate <i>plst-1::mCherry</i>	CCATTAATCATCGGAACAAT		
For screening of <i>plst-1::mCherry</i> successful events_Fwd	GGTGGCATGGATGAATTG		
For screening of <i>plst-1::mCherry</i> successful events_Rev	CCAAATTTAGGCTAGAAACTCGAT		

Table S2. List of oligonucleotides used in this study. Related to Figures 1-4 and 7.

Parameter	Symbol	Value Range (standard value)
Actin Rigidity	μ_{actin}	0.075 pN μm ^{2 [S14]}
Actin Segmentation Length	l_{actin}	0.1 μm
Actin Fiber Length (initial)	L_{actin}	1 μm ^[S15]
Growing Speed of Barbed End	v_{b+}	0 - 0.8 μm/s (0.08 μm/s) [S16]
Shrinking Speed of Barbed End	v_{b-}	0 - 0.56 μm/s (0.056 μm/s) ^[S16]
Growing Speed of Pointed End	v_{p+}	0 μm/s
Shrinking Speed of Pointed End	v_{p-}	0 - 0.14, μm/s (.014 μm/s) ^[S16]
Switch Rate to Depolymerization	r_c	8 Hz
Switch Rate to Polymerization	r_r	4 Hz
Backbone Length of Myosin	L_{motor}	0.15 μm ^[S17]
Number of Binding Heads of Myosin	n	8
Binding Range of Motor Head	d_{bind}	0.01 μm
Binding Rate of Motor Head	b_{motor}	10 Hz ^[S18]
Unbinding Rate of Motor Head	u_{motor}	0.3 Hz ^[S18]
Maximum Motor Speed	v_0	0.1 μm/s ^[S19]
Stall Force	f_0	4 pN [S20]
Backbone Resting Length of Plastin	$l_{plastin}$	0.012 μm ^[S21]
Spring Stiffness	k	250 pN/μm
Binding Range of Plastin	d_{bind}	0.01 μm
Binding Rate of Plastin	$b_{plastin}$	10 Hz
Unbinding Rate of Plastin	$u_{plastin}$	0.5 Hz
Maximum Allowed Angular Difference	$\Delta heta_{max}$	10 degrees
Rescue Probability of Plastin	$r_{plastin}$	0.1

βH-Spectrin Rigidity	$\mu_{spectrin}$	7.5*10 ⁻⁵ pN μm ² [S22]
βH-Spectrin Segmentation Length	$l_{spectrin}$	0.05 μm
βH-Spectrin Backbone Length	$L_{spectrin}$	0.15-0.35 μm (0.2 μm)
Binding Range of Binding Head	d_{bind}	0.01 μm
Binding Rate of Binding Head	$b_{spectrin}$	10 Hz
Unbinding Rate of Binding Head	$u_{spectrin}$	0.5 Hz
Rescue Probability of βH-Spectrin	$r_{spectrin}$	0.1
Width (Non Periodic Boundary)	x_0	10 μm
Height (Periodic Boundary)	y_0	1-16 μm (4 μm)
Initial Component Horizontal Range	x_i	3 μm
Background Viscosity	ν	1 pN s / μm ^{2 [S23]}
Background Temperature	kT	0.0042 pN μm
Fiber Count	N_F	94-1,500 (375)
Motor Count	N_M	260-4,168 (1,042)
Plastin Count	N_P	0-120,000 (30,000)
βH-spectrin Count	N_S	0-5,600 (1,400)

Table S3. Cytosim parameters used in simulations (where parameters were varied, base values are shown in parentheses). Related to Figures 7 and S7.

Supplemental References

- S1. Moorthy, S., Chen, L., and Bennett, V. (2000). Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J. Cell Biol. *149*, 915–930.
- S2. Chan, F.-Y., Silva, A.M., Saramago, J., Pereira-Sousa, J., Brighton, H.E., Pereira, M., Oegema, K., Gassmann, R., and Carvalho, A.X. (2019). The ARP2/3 complex prevents excessive formin activity during cytokinesis. Mol. Biol. Cell *30*, 96–107.
- S3. Kovacevic, I., and Cram, E.J. (2010). FLN-1/filamin is required for maintenance of actin and exit of fertilized oocytes from the spermatheca in C. elegans. Dev. Biol. *347*, 247–257.
- S4. Maddox, A.S., Habermann, B., Desai, A., and Oegema, K. (2005). Distinct roles for two C. elegans anillins in the gonad and early embryo. Development *132*, 2837–2848.
- S5. Moulder, G.L., Cremona, G.H., Duerr, J., Stirman, J.N., Fields, S.D., Martin, W., Qadota, H., Benian, G.M., Lu, H., and Barstead, R.J. (2010). α-actinin is required for the proper assembly of Z-disk/focal-adhesion-like structures and for efficient locomotion in Caenorhabditis elegans. J. Mol. Biol. *403*, 516–528.
- S6. Ono, S. (2001). The Caenorhabditis elegans unc-78 gene encodes a homologue of actininteracting protein 1 required for organized assembly of muscle actin filaments. J. Cell Biol. *152*, 1313–1319.
- S7. Maddox, A.S., Lewellyn, L., Desai, A., and Oegema, K. (2007). Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev. Cell *12*, 827–835.
- S8. Leite, J., Chan, F.-Y., Osório, D.S., Saramago, J., Sobral, A.F., Silva, A.M., Gassmann, R., and Carvalho, A.X. (2020). Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol *8*, 573393.
- S9. Ding, W.Y., Ong, H.T., Hara, Y., Wongsantichon, J., Toyama, Y., Robinson, R.C., Nédélec, F., and Zaidel-Bar, R. (2017). Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. J. Cell Biol. *216*, 1371–1386.
- S10. Osório, D.S., Chan, F.-Y., Saramago, J., Leite, J., Silva, A.M., Sobral, A.F., Gassmann, R., and Carvalho, A.X. (2019). Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in C. elegans. Development *146*.
- S11. Lewellyn, L., Carvalho, A., Desai, A., Maddox, A.S., and Oegema, K. (2011). The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. J. Cell Biol. *193*, 155–169.
- S12. Carvalho, A., Desai, A., and Oegema, K. (2009). Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell *137*, 926–937.
- S13. Jia, R., Li, D., Li, M., Chai, Y., Liu, Y., Xie, Z., Shao, W., Xie, C., Li, L., Huang, X., et al. (2019). Spectrin-based membrane skeleton supports ciliogenesis. PLoS Biol. *17*, e3000369.
- S14. Gittes, F., Mickey, B., Nettleton, J., and Howard, J. (1993). Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. *120*, 923–934.

- S15. Burlacu, S., Janmey, P.A., and Borejdo, J. (1992). Distribution of actin filament lengths measured by fluorescence microscopy. American Journal of Physiology-Cell Physiology *262*, C569–C577.
- S16. Shekhar, S., and Carlier, M.-F. (2017). Enhanced depolymerization of actin filaments by ADF/Cofilin and monomer funneling by capping protein cooperate to accelerate barbed-end growth. Curr. Biol. *27*, 1990–1998.e5.
- S17. Billington, N., Wang, A., Mao, J., Adelstein, R.S., and Sellers, J.R. (2013). Characterization of three full-length human nonmuscle myosin II paralogs. J. Biol. Chem. *288*, 33398–33410.
- S18. Guo, B., and Guilford, W.H. (2006). Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl. Acad. Sci. U. S. A. *103*, 9844–9849.
- S19. Barua, B., Nagy, A., Sellers, J.R., and Hitchcock-DeGregori, S.E. (2014). Regulation of nonmuscle myosin II by tropomyosin. Biochemistry *53*, 4015–4024.
- S20. Walcott, S., Warshaw, D.M., and Debold, E.P. (2012). Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements. Biophys. J. *103*, 501–510.
- S21. Matsudaira, P., Mandelkow, E., Renner, W., Hesterberg, L.K., and Weber, K. (1983). Role of fimbrin and villin in determining the interfilament distances of actin bundles. Nature *301*, 209–214.
- S22. Stokke, B.T., Mikkelsen, A., and Elgsaeter, A. (1985). Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy. Biochim. Biophys. Acta *816*, 102–110.
- S23. Daniels, B.R., Masi, B.C., and Wirtz, D. (2006). Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. *90*, 4712–4719.