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Abstract

Interleukin 11 (IL11) is a profibrotic cytokine, secreted by myofibroblasts and damaged epi-

thelial cells. Smooth muscle cells (SMCs) also secrete IL11 under pathological conditions

and express the IL11 receptor. Here we examined the effects of SMC-specific, conditional

expression of murine IL11 in a transgenic mouse (Il11SMC). Within days of transgene activa-

tion, Il11SMC mice developed loose stools and progressive bleeding and rectal prolapse,

which was associated with a 65% mortality by two weeks. The bowel of Il11SMC mice was

inflamed, fibrotic and had a thickened wall, which was accompanied by activation of ERK

and STAT3. In other organs, including the heart, lung, liver, kidney and skin there was a phe-

notypic spectrum of fibro-inflammation, together with consistent ERK activation. To investi-

gate further the importance of stromal-derived IL11 in the inflammatory bowel phenotype we

used a second model with fibroblast-specific expression of IL11, the Il11Fib mouse. This

additional model largely phenocopied the Il11SMC bowel phenotype. These data show that

IL11 secretion from the stromal niche is sufficient to drive inflammatory bowel disease in

mice. Given that IL11 expression in colonic stromal cells predicts anti-TNF therapy failure in

patients with ulcerative colitis or Crohn’s disease, we suggest IL11 as a therapeutic target

for inflammatory bowel disease.

Introduction

Non-striated smooth muscle cells (SMCs) line the walls of hollow organs and the vasculature.

In adults, SMCs are not terminally differentiated and their cellular phenotype remains plastic.

A variety of extracellular cues such as humoral factors, mechanical or oxidative stress and cell-

cell interactions can induce a spectrum of cellular states ranging from contractile SMCs to

highly synthetic and proliferative SMCs [1]. Synthetic SMCs are associated with a wide variety
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of vascular pathologies such as atherosclerosis or hypertension [1] and other disorders such as

asthma [2] and inflammatory bowel disease (IBD) [3]. Many fibro-inflammatory diseases have

a component, or are defined by, SMC dysfunction. This is exemplified by systemic sclerosis,

which presents with global organ fibrosis and specific vascular abnormalities [4] and is charac-

terized by elevated transforming growth factor beta (TGFB) 2 and interleukin 11 (IL11)

expression in dermal stromal cells [5, 6]. This co-occurrence of fibrosis and SMC dysfunction

may in part be explained by molecular similarities of the fibrogenic fibroblast-to-myofibroblast

conversion and the SMC contractile-to-synthetic phenotype switch. Both these cellular transi-

tions are characterized by extracellular matrix (ECM) production, cell proliferation, invasion

and migration. They can also be triggered by the same extracellular cues including TGFB fam-

ily members [1, 7].

We recently identified IL11 as a critical driver of fibroblast activation in the cardiovascular

system, liver and lung downstream of a variety of pro-fibrotic factors including TGFB1 [8–10].

In a study from 1999, IL11 was also found to be secreted by vascular SMCs (VSMCs) in

response to pathogenic stimuli, including interleukin 1 alpha (IL1A), TGFB and tumor necro-

sis factor (TNF) [11]. Although IL11 is upregulated in systemic sclerosis [6], TNF-resistant

ulcerative colitis [12, 13] and asthma [14] and despite SMCs being a source of IL11 [11], the

effect of IL11 function in SMC biology has not been studied. To address this gap in our knowl-

edge, we generated an inducible Il11 transgenic mouse to overexpress mouse Il11 in myosin

heavy chain 11 (Myh11)-positive smooth muscle cells (Il11SMC). Here we characterized key

organs that may be affected by SMC pathobiology in Il11SMC mice to better understand the

role of SMC-derived IL11.

Materials and methods

Mouse models

This study was carried out in compliance with the recommendations in the Guidelines on the
Care and Use of Animals for Scientific Purposes of the National Advisory Committee for Labora-
tory Animal Research (NACLAR). All experimental procedures were approved (2014/SHS/

0925) and conducted in accordance to the SingHealth Institutional Animal Care and Use

Committee (IACUC). All mice were from a C57BL/6JN genetic background and were bred

and housed in individually vented cages in the same room under ABSL-1 conditions in the

SingHealth Experimental Medicine Centre and provided normal chow (Specialty Feeds) and

water ad libitum. All research staff involved in animal studies underwent the Responsible Care
and Use of Laboratory Animal Course (RCULAC, Singapore) prior to study commencement.

Animals were euthanized at endpoint by ketamine (100 mg/kg) and xylazine (10 mg/kg) given

IP, followed by the removal of vital organs and tissues.

Mice were scruffed to restrict motion during tamoxifen administration IP and monitored

daily for clinical signs of distress and body weights were measured thrice per week upon

tamoxifen induction. When rectal inflammation/bleeding was observed, the wound was gently

disinfected with 70% methylated spirits and 10% povidone-iodine. Mice that displayed behav-

ioral abnormalities, weight loss, and/or rectal bleeding were therapeutically treated with bupre-

norphine (0.1 mg/kg SQ) and enrofloxacin (5 mg/kg SQ) where necessary. Animals that did

not recover with treatment or presented with deteriorated symptoms including pronounced

weight loss (>20% over 1 week or >10% over 24 hours) and the development of rectal pro-

lapse were euthanized following consultation with a veterinarian prior to the study endpoint

and were treated as deaths.

Smooth muscle-specific Il11 transgenic model. To direct transgene expression in smooth

muscle cells, we crossed the heterozygous Rosa26-Il11 (Gt(ROSA)26Sortm1(CAG-Il11)Cook)
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mouse [8] to the hemizygous SMMHC-CreERT2 (B6.FVB-Tg(Myh11-cre/ERT2)1Soff/J)

mouse [15] available from the Jackson Laboratory (031928 and 019079 respectively) to generate

double heterozygous SMMHC-CreERT2:Rosa26-IL11 offspring (referred to here as Il11SMC

mice). Only male Il11SMC mice were utilized as the Myh11-Cre/ERT2 transgene is inserted on

the Y chromosome. To induce Cre-mediated Il11 transgene induction, six week old Il11SMC

mice were intraperitoneal injected with 3 doses of 50 mg kg-1 tamoxifen (tam; T5648, Sigma

Aldrich) or an equivalent volume of corn oil vehicle (veh; C8267, Sigma Aldrich) for a week.

Single hemizygous SMMHC-CreERT2 littermates were designated as controls (referred to as

CreSMC). A total of forty-seven Il11SMC mice (tam-treated n = 35; veh-treated n = 12) and

twenty-seven CreSMC mice were used. Individual mice died due to bowel inflammation and

bleeding (n = 7) or were humanely euthanized when mice showed signs of pronounced weight

loss and rectal prolapse (n = 15).

For genotyping of mice genomic DNA, we performed polymerase chain reaction (PCR) on

the tail biopsies which were obtained at the time of weaning. Genotyping was conducted in

two sequential PCRs, for Myh11-Cre and Rosa26-Il11 genes separately. Agarose gel electropho-

resis was subsequently conducted to confirm the respective product sizes for genotyping. Gen-

otyping primer sequences are listed in S1 Table.

Fibroblast-specific Il11 transgenic model. To model fibroblasts-selective secretion of

IL11 in vivo, we crossed the heterozygous Rosa26-IL11 mice with Col1a2-CreER mice [16] to

generate double heterozygous Col1a2-CreER:Rosa26-Il11 mice (referred to as Il11Fib) [9]. For

Cre-mediated Il11 transgene induction, Il11Fib mice were intraperitoneal injected with 50 mg

kg-1 tamoxifen at 6 weeks of age for 10 consecutive days and the animals were sacrificed on

day 21. Wildtype littermates (designated as control) were injected with an equivalent dose of

tamoxifen for 10 consecutive days as controls. Both female and male mice were used.

Colon length was measured from the caecum to the anus. The most distal half was taken for

histology and the adjacent part was portioned and immediately snap frozen in liquid nitrogen

for downstream molecular work (hydroxyproline assay, western blot analysis and quantitative

polymerase chain reaction assessment). The excised heart was halved from the base to mid

ventricle for histology and the remainder separated into 3 portions for molecular work. The

left lung was isolated for histology and the right lung separated into 3 portions for molecular

work. The right lobe of the liver was excised for histology and the left lobe separated into 3 por-

tions for molecular work. The left kidney was fixed for histology and the right kidney separated

in thirds for molecular work. The dorsal skin was harvested and halved for histology and

molecular work.

Hydroxyproline assay

The amount of total tissue collagen was quantified using colorimetric detection of hydroxypro-

line using the Quickzyme Total Collagen assay kit (Quickzyme Biosciences) performed

according to the manufacturer’s protocol. All samples were run in duplicate and absorbance at

570 nm was detected on a SpectraMax M3 fluorescence microplate reader using SoftMax Pro

version 6.2.1 software (Molecular Devices).

Fecal calprotectin (S100A8/A9) levels

To characterize inflammation in the gut, we investigated levels of fecal calprotectin in the

Il11SMC and Il11Fib mice using the mouse S100A8/A9 heterodimer duoset ELISA kit (DY8596-

05, R&D systems). Calprotectin is a biomarker for inflammatory activity and has been clini-

cally applied as a diagnostic tool for inflammatory bowel diseases [17, 18]. Stool samples were

collected in a 1.5 ml tube and diluted with 50x (weight per volume) of extraction buffer (0.1 M
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Tris, 0.15 M NaCl, 1.0 M urea, 10 mM CaCl2, 0.1 M citric acid monohydrate, 5 g/l BSA (pH

8.0)) with the assumption of fecal density to be 1 g/ml. Samples were homogenized until no

large particles were present. Homogenate was transferred into a fresh tube and further centri-

fuged at 10,000 g at 4 ˚C for 20 minutes. The supernatant was assessed for S100A8/A9 levels by

ELISA as per the manufacturer’s instructions.

RT-qPCR

Total RNA was extracted from snap-frozen tissues using RNAzol RT (R4533, Sigma-Aldrich)

followed by Purelink RNA mini kit (12183025, Invitrogen) purification. The cDNA was pre-

pared using iScript cDNA synthesis kit (1708891, Bio-Rad) as per the manufacturer’s instruc-

tions. Quantitative RT-PCR gene expression analysis was performed on duplicate samples

using fast SYBR green (Qiagen) technology using the ViiA 7 Real-Time PCR System (Applied

Biosystem). RT-qPCR primers are listed in S2 Table. Expression data were normalized to

Gapdh mRNA expression levels and the 2-ΔΔCT method was used to calculate the fold change.

Immunoblotting

Western blots were carried out on total protein extracts from mouse tissues. Frozen tissues

were homogenized and lyzed in radioimmunoprecipitation assay (RIPA) buffer containing

protease and phosphatase inhibitors (Roche) followed by centrifugation. Equal amounts of

protein lysates were separated by SDS-PAGE, transferred onto PVDF membrane and immu-

noblotted for pERK1/2 (4370, CST), ERK1/2 (4695, CST), pSTAT3 (4113, CST), STAT3 (4904,

CST), GAPDH (2118, CST) and IL11 (X203, Aldevron). Proteins were visualized with appro-

priate secondary antibodies anti-rabbit HRP (7074, CST) and anti-mouse HRP (7076, CST).

Histology

Tissues from Il11SMC and Il11Fib mice were fixed in 10% neutral-buffered formalin for 24–48

hours, tissue processed and paraffin-embedded. Sections were obtained at 5 μm and stained

with Masson’s trichrome staining for collagen. Brightfield photomicrographs of the sections

were randomly captured by a researcher blinded to the treatment groups using the Olympus

BX51 microscope and Image-Pro Premier 9.2 (Media Cybernetics).

Photomicrographs of the colon taken at 200X magnification were used to calculate muscle

wall thickness. The distance between the inner and outer circumference of the muscularis pro-

pria was measured using the incremental distance tool at a calibrated step size of 25 μm on

Image-Pro Premier 9.2 (Media Cybernetics). A total of 75 to 250 measurements across three to

five photomicrographs per section were taken and averages reported per photomicrograph.

Muscle thickness was reported as an average across 3 cross-sections of the colon per animal.

Photomicrographs of the dorsal skin were captured in 3 fields per section at 100X magnifi-

cation and used to calculate epidermal and dermal thickness. The epidermis was measured

from the stratum basale to the stratum granulosum using hand-drawn line segments on

Image-Pro Premier 9.2 (Media Cybernetics). The dermis was measured from the dermal-epi-

dermal junction to the hypodermis. Measurements were recorded using the incremental dis-

tance tool at a calibrated step size of 50 μm on Image-Pro Premier 9.2 (Media Cybernetics). A

total of 75 to 200 measurements across three photomicrographs per section were taken and

averages reported per photomicrograph. Overall epidermal and dermal thickness was reported

as an average across the 3 fields per animal.

Fibrosis quantification was conducted as referenced [19]. Color deconvolution version 1.5

plugin using the Masson Trichrome vector on ImageJ (version 1.52a, NIH) and thresholding

was applied for area quantification. Perivascular fibrosis was measured as a ratio of the fibrosis
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area to the vessel area. Vascular hypertrophy was quantified as the ratio of media wall area to

the lumen area.

Immunohistochemistry

Paraffin-embedded colon tissue were sectioned at 5 μm, deparaffinized and permeabilized

with Triton X-100 (Sigma-Aldrich) and heat antigen retrieved with Bull’s Eye Decloaker (Bio-

care Medical). Slides were then blocked for endogenous peroxidase with Bloxall™ blocking

solution (Vector Lab) followed by blocking with either 3% bovine serum albumin, or mouse

on mouse blocking reagent (Vector Lab). Anti-IL11 (ab10558; PA5-36544, Invitrogen), anti-

CD45 (1:100; ab10558, Abcam), anti-LGALS3 (1 μg/ml; CL8942AP, Cedarlane) amd anti-

LAMP2 (1 μg/ml; 550292, BD Bioscience) were added and incubated overnight at 4˚C. Anti-

rabbit (1:100; ab27478, Abcam) and anti-rat IgG (1 μg/ml; sc-2026, Santa Cruz) isotype con-

trols were added as respective negative controls. Slides were incubated with anti-rabbit IgG

peroxidase (1:500, A0545, Sigma-Aldrich) and anti-rat IgG peroxidase (MP-7404, Vector Lab)

followed by chromogen development with ImmPACT1DAB peroxidase substrate kit (SK-

4105, Vector Lab) according to manufacturer’s instructions. Lastly, Gill’s haematoxylin (H-

3401, Vector Lab) was added for nuclear counterstain. To control for unspecific binding, pri-

mary antibody isotype controls were included and images are presented in S3 Fig.

Statistical analysis

Data are presented as mean ± standard deviation or median ± range as stated in the figure leg-

ends. Statistical analyses were performed on GraphPad Prism 8 software (version 8.1.2). Outli-

ers (ROUT 2%, GraphPad Prism software) were removed prior to analyses. Comparison of

survival curves was analyzed with the log-rank Mantel-Cox test. Bodyweight progression was

analyzed with two-way ANOVA with Sidak multiple comparisons. A comparison of mice

strains for all other parameters was analyzed with a two-tailed unpaired t-test. The criterion

for statistical significance was established at P< 0.05.

Results

Expression of Il11 in smooth muscle cells results in ill health and early

mortality

We generated an Il11SMC mouse model that overexpresses IL11 specifically in Myh11+ve

SMCs: Conditional transgenic mice with mouse Il11 inserted into the Rosa26 locus

(Rosa26-Il11-Tg) [8] were crossed with smooth muscle-specific Myh11-cre/ERT2 mice [15]

(Fig 1a and 1b). We then injected tamoxifen (tam) three times at day 0, 3 and 5 into 6-week

old Il11SMC mice to induce recombination in Myh11+ve cells and monitored the survival and

body weight for 14 days. Following tam-induced Il11 expression in SMCs, mice started dying

from day three onwards, with only 37% of Il11SMC mice surviving to day 14. This was signifi-

cantly different from the survival of either vehicle (veh)-treated Il11SMC animals or tam-treated

CreSMC control mice, which were unaffected and both had 100% survival (both P< 0.001; Fig

1d and S1b Fig). Starting from day four onwards, tam-treated Il11SMC mice progressively lost

weight as compared to veh -treated and tam-treated CreSMC controls (both P< 0.001; Fig 1e

and S1d Fig). Following two weeks of tam-induced Il11 expression, Il11SMC mice were signifi-

cantly smaller in body weight and length as compared to tam-treated CreSMC controls (both

P< 0.001; S1f and S1g Fig) and veh-treated Il11SMC mice (P = 0.002 and P < 0.001 respec-

tively; Fig 1f and 1g). In contrast, the indexed weight of the heart, lung and kidney in tam-

treated Il11SMC animals was significantly elevated (PHeart < 0.001; PLung < 0.001; PKidney =
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Fig 1. Expression of Il11 in smooth muscle cells is associated with body weight loss, elevated organ weights and spontaneous death. (a) Schematic diagram of

the targeted expression of Il11 in Myh11+ve SMC. In Rosa26-Il11 mice, a floxed cassette containing both the neomycin (neo) resistance and stop elements is

positioned before the murine Il11 transgene cassette, which undergoes tamoxifen (tam) initiated Cre-mediated recombination when crossed to the Myh11-Cre/
ERT2 mouse. (b) Breeding scheme to generateMyh11Cre/+Rosa26Il11/+ (Il11SMC) and Myh11Cre/+Rosa26+/+ (CreSMC) offspring mice. Note that the Myh11-Cre gene

is expressed on the Y chromosome and therefore only male offspring carry the transgene. (c) Genotyping of tail biopsy DNA. A 287 bp band indicates the presence

of the Cre transgene whereas the 180 bp band determines the presence of the internal positive control (top gel). Polymerase chain reaction with the Rosa26-Il11
primer set detects a 270 bp band indicative of the Rosa26-Il11 transgene whereas the 727 bp band indicates the presence of the wild-type transgene (bottom gel).

Uncropped blots are presented in S2 Fig. (d) Survival curve of Il11SMC mice treated with tam (n = 35) and corn oil vehicle (veh; n = 12) mice following tamoxifen

initiation at day 0 and followed until day 14. Survival curves were compared using the log-rank Mantel-Cox test. (e) Body weight changes (expressed as percentage

of day 0 body weight) in Il11SMC mice treated with tam or veh (n = 8 per group). Green arrows denote individual injections. Statistical analyses by two-way
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0.006) when compared to veh-treated mice (Fig 1h). We did not observe differences in liver

weight or colon length in veh or tam treated Il11SMC animals (data not shown).

IL11 expression causes severe inflammatory bowel disease associated with

fibrosis

The most obvious and striking feature of Il11SMC mice treated with tam was progressive rectal

prolapse and pale loose stool formation from as early as day three after gene induction (Fig 2a

and S1c Fig). Gross anatomical inspection of the gastrointestinal tract revealed inflammation

and swelling of the small and large intestines of tam-treated Il11SMC mice when compared to

veh-treated controls (Fig 2b). Intestinal inflammation was specifically indicated by an increase

in fecal calprotectin, a biomarker used to monitor disease activity in human colitis, in tam-

treated Il11SMC mice when compared to veh treatment (P< 0.001; Fig 2c). Masson’s trichrome

staining of the colon indicated a very large increase in collagen deposition (P < 0.001; Fig 2d

and 2e). Histology also showed a significant increase in the thickness of the smooth muscle-

dominant muscularis propria (P = 0.040; Fig 2f). Quantitative hydroxyproline assessments

revealed an increase in colonic collagen content in Il11SMC mice after tam treatment

(P< 0.001; Fig 2g), confirming the histological data.

We then performed an immunohistochemical staining for IL11, CD45, lysosomal-associ-

ated membrane protein 2 (LAMP2) and lectin, galactose binding, soluble 3 (LGALS3) in the

smooth muscle and crypt compartment of the colon in veh and tam-treated Il11SMC mice (Fig

2h). In Il11SMC mice, IL11 staining was diffuse in the smooth muscle, perhaps with a higher

background staining, and also localized more strongly to other stromal cells that are likely

fibroblasts, which express the IL11 receptor [8]. Furthermore, CD45+ve leukocytes were

increased in the fibrotic regions and crypts of the tam-treated Il11SMC mouse colon. LAMP2

and LGALS3 are markers for epithelial cells and activated macrophages contributing to intesti-

nal inflammation. Tam-treated Il11SMC colon demonstrated increased expression of LAMP2

and LGALS3 in the epithelial cells and leukocytes of the crypts, consistent with inflammation

in these regions [20–23]. In tam-treated Il11SMC treated with Tam as compared to veh-treated

mice, there was also activation of leukocytes in the Peyer’s patches of the colon, which are a

primary site of mucosal immune response (Fig 3a), as well as in localized areas of disrupted

villi architecture (Fig 3b). Interestingly, the myenteric plexus of the colon demonstrated gan-

glionic hyperplasia and fibrosis (Fig 3c), typical of neuroinflammation associated with inflam-

matory bowel disease.

IL11 expression in smooth muscle cells activates non-canonical IL11

signaling pathways

Given that smooth muscle cells are expressed in the walls of most organs, including the vascu-

lature, bronchi, gastrointestinal and abdominal organs, we sought to confirm the expression of

Il11 in Il11SMC mice across tissues and performed western blotting at 14 days after tamoxifen

administration. This confirmed that IL11 protein was significantly upregulated at the protein

level across all tissues tested (Pcolon = 0.034; Pheart = 0.002; Plung = 0.039; Pliver < 0.001; Pkidney =

0.004; and Pskin = 0.004; Fig 4).

ANOVA with Sidak multiple comparisons; data expressed as mean ± standard deviation. (f) Collated body weights (left) and (g) body lengths (right) of Il11SMC

mice treated with tam or veh measured at d14 post initial tamoxifen dose (n = 12–13 per group). (h) Organ weights of the heart, (i) lung and (j) kidney normalized

to body weight in Il11SMC mice treated with tam or veh (n = 12–13 per group). All comparisons were conducted in mice 14 days post-veh and tam treatment.

Statistical analyses by two-tailed unpaired t-test; data expressed as median ± IQR, whiskers represent the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0227505.g001
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Fig 2. Il11 expression results in fibro-inflammatory disease of the colon. (a) Representative images of the Il11SMC mice

before (d0) and up to 7 days (d7) treatment with either corn oil vehicle (veh) or tamoxifen (tam). Presence of rectal prolapse are

indicated with white arrows. Images represent the same animal across time points not taken to the same scale. (b) Excised

gastrointestinal tract of representative Il11SMC mice at day 14 post-treatment with veh or tam. Scale bar represents 5 cm. (c)

Fecal calprotectin in representative Il11SMC mice treated with veh or tam assessed by ELISA (n = 6–8 per group). (d)

Representative cross-section and longitudinal section of the colon stained with Masson’s trichrome (left) and at 200X

magnification (right). Scale bar of cross and longitudinal sections represents 500 μm and at 200X magnification represents

200 μm. (e) Colon fibrosis determined as a percentage of collagen positive area (blue) from histological images taken at 200X
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PLOS ONE | https://doi.org/10.1371/journal.pone.0227505 January 9, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0227505


magnification (n = 6 per group). (f) Tunica muscularis (smooth muscle) thickness of the colon (n = 6 per group). (g) Total

collagen content assessed by hydroxyproline assay and expressed as fold change (FC) of veh-treated Il11SMC mice (n = 10–11

per group). (h) Representative images of the colonic smooth muscle and crypts taken at 400X magnification for Masson’s

trichrome and immunohistochemistry staining for IL11, cluster of differentiation 45 (CD45), lysosome-associated membrane

protein 2 (LAMP2), and galectin-3 (LGALS3) (n = 3 per group). Black arrows denote focal staining of positive cells, white

arrows denote myenteric plexus which are positive for IL11 and CD45 expression, and white arrowheads denotes leukocyte

aggregation. Scale bars represent 100 μm. All comparisons were conducted in organs harvested from mice 14 days post-veh and

tam treatment. Statistical analyses by two-tailed unpaired t-test; data expressed as median ± IQR, whiskers represent the

minimum and maximum values.

https://doi.org/10.1371/journal.pone.0227505.g002

Fig 3. Il11 expression in smooth muscle cells leads to lymphoid cell aggregates, villi distortion and ganglionic hyperplasia. (a) Peyer’s patch of tam-treated

Il11SMC mice showed increased expression of IL11, CD45, LAMP2 and LGALS3 compared to veh-treated controls. (b) Cross- and longitudinal sections of the

mucosa region of the colon in tam-treated Il11SMC mice have inflammatory cell infiltrates that extend from the submucosa to the mucosa region resulting in

distortion of villi architecture. (c) Ganglionic hyperplasia and fibrosis in the myenteric plexus of tam-treated Il11SMC mice compared to vehicle controls. White

arrowheads denote ganglionic cells. Black boxes were imaged at 400X magnification. All scale bars represent 200 μm.

https://doi.org/10.1371/journal.pone.0227505.g003
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IL11 is a member of the IL6 family of cytokines, which are considered to signal via the

Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway [24].

However, we recently showed that the IL11 effect, both in vitro in fibroblasts and in vivo at the

tissue level, is also dependent on non-canonical signaling via extracellular signal-regulated

kinase (ERK) [8–10]. To investigate both canonical and non-canonical signaling pathways

after Il11 expression, we performed western blotting of phosphorylated (p) STAT3 or ERK1/2

and total protein levels and derived indices of kinase activation by normalizing phosphoryla-

tion amounts to total protein levels (Fig 4). At baseline, ERK was phosphorylated at low levels

in most tissues except for the skin. Upon IL11 expression, we detected a strong and significant

activation of ERK in all tissues (Pcolon = 0.002; Pheart = 0.004; Plung = 0.049; Pliver = 0.056;

Pkidney = 0.001; and Pskin < 0.001; Fig 4). STAT3 phosphorylation was unchanged in the heart,

lung and liver but was elevated in the colon and skin (P = 0.05 and 0.001 respectively; Fig 4).

In contrast, total levels of STAT3 appeared to be increased in the liver and kidney of tam-

treated Il11SMC animals (Fig 4d and 4e). Overall, while both pathways were affected, ERK sig-

naling was consistently activated across tissues tested whereas STAT3 was not.

IL11 destroys tissue integrity and promotes collagen deposition

To investigate the effect of Il11 expression in SMCs on tissue composition beyond the colon,

we performed histological analyses of the heart, lung, liver, kidney and skin. Masson’s tri-

chrome staining was used to visualize collagen and quantify extracellular matrix deposition. In

Fig 4. Il11SMC mice exhibit activated ERK1/2 signaling across organs. Immunoblots of IL11 expression, phospho- (p) and total ERK1/2 and STAT3 protein in

(a) colon, (b) heart, (c) liver, (d) lung, (e) kidney, (f) skin tissue of Il11SMC mice treated with vehicle (veh) or tamoxifen (tam) (n = 3 per group). Dotted boxes in

the immunoblots represent the veh-treated (black) and tam-treated (red) groups for all organs. All comparisons were conducted in organs harvested from mice 14

days post-veh or tam treatment.

https://doi.org/10.1371/journal.pone.0227505.g004
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the heart, we observed collagen deposition in the perivascular region (P = 0.002; Fig 5a and

5b). We also observed vascular hypertrophy (P = 0.019; Fig 5c) and mild ventricular hypertro-

phy in the absence of dilatation (data not shown). Hydroxyproline assay of the whole heart

confirmed cardiac fibrosis (P = 0.026; Fig 5d). In the lung, Ashcroft scores of pulmonary histo-

logical images showed lung damage after tam-induced Il11 expression (P < 0.001; Fig 5e and

5f). Masson’s trichrome staining indicated elevated collagen expression throughout the lung in

Il11SMC mice and pulmonary fibrosis was confirmed by the hydroxyproline assay (P = 0.001;

Fig 5g).

The effect of Il11 expression on the liver was overall mild and characterized by perisinusoi-

dal fibrosis (Fig 5h to 5j). Renal tissue structure was also affected only mildly, with limited

fibrosis occurring around the blood vessels (Fig 5k to 5m). The effect of IL11 on the skin of

tam-treated Il11SMC animals was more profound and both the dermal and epidermal thickness

was significantly increased (Fig 5n to 5p; P = 0.041 and P = 0.001 respectively). Dorsal skin sec-

tions showed that epidermal and dermal cell infiltrates were increased and the adipose tissue

layer in the hypodermis was largely depleted. Confirming Masson’s trichrome staining of skin

sections, we observed increased collagen deposition in the skin of tam-treated Il11SMC mice

using the hydroxyproline assay (P < 0.001; Fig 5q).

IL11 secretion from smooth muscle cells drives fibrogenic gene expression

We assessed the RNA expression of fibrogenic genes to complement our histology studies,

which further substantiated the presence of multi-organ fibrosis. Reverse transcription-poly-

merase chain reaction (RT-PCR) was performed using RNA from colonic, ventricular, pulmo-

nary, hepatic, renal and skin tissue of veh- or tam-treated Il11SMC mice. Collagen, type I, alpha

1 (Col1a1) RNA was significantly upregulated in all tissues (Pcolon = 0.005; Pheart = 0.005; Plung

< 0.001; Pliver = 0.016; Pkidney = 0.022; Pskin = 0.016; Fig 6), confirming the effect of Il11 expres-

sion on global organ fibrosis that we observed on the protein level (Fig 5). Additional markers

for fibrosis such as collagen, type I, alpha 2 (Cola1a2), collagen, type III, alpha 1 (Col3a1),

fibronectin 1 (Fn1), tissue inhibitor of metalloproteinase 1 (Timp1) and matrix metallopepti-

dase 2 (Mmp2) were also assessed via RT-PCR (Fig 6a to 6f). These genes were elevated in

most tissues of tam-treated Il11SMC mice. Timp1 transcripts were significantly upregulated in

the heart (P < 0.001), lung (P = 0.004), liver (P = 0.003), kidney (P = 0.003) and skin

(P = 0.017), which is a recognized feature of pathological ECM remodeling [25].

IL11 secreted from smooth muscle cells causes inflammation across tissues

In addition to fibrosis, SMC-driven diseases are often characterized by tissue inflammation.

To better understand whether IL11 secretion from SMCs can contribute to this pathology, we

performed RT-PCR experiments of inflammatory marker genes across multiple tissues. Inter-

leukin 6 (IL6) also signals via gp130, similar to IL11, but its specific IL6 receptor subunit is

expressed on a different subset of cells, most of which belong to the immune system [8]. IL6 is

also a well-established therapeutic target for inflammatory diseases such as rheumatoid arthri-

tis [26]. Upon tam-induced Il11 expression in Il11SMC mice, we found Il6 mRNA to be signifi-

cantly upregulated across all tissues tested (Pcolon = 0.001; Pheart < 0.001; Plung = 0.015; Pliver =

0.007; Pkidney < 0.001; and Pskin = 0.003; Fig 7).

In the colon, we also detected increased RNA expression of the inflammatory chemokine

C-C motif chemokine ligand 2 (Ccl2) (P = 0.017), whereas C-C motif chemokine ligand 5

(Ccl5) was not significantly elevated but trended upwards (P = 0.141). Interestingly, these

inflammatory chemokines are upregulated in the colonic mucosa of IBD patients [27, 28].

However, CCL2 transcripts, and not CCL5 transcripts, were found to be expressed in vessel-

IL11 causes fibro-inflammation and IBD

PLOS ONE | https://doi.org/10.1371/journal.pone.0227505 January 9, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0227505


Fig 5. Il11 expression in smooth muscle cells causes fibrosis across organs. (a) Representative Masson’s trichrome stained mid-

ventricle sections of the heart harvested at 14 days post-vehicle (veh) or tamoxifen (tam) initiation (left) and 200X magnification

images demonstrating perivascular fibrosis (right). Scale bars for mid-ventricle sections and 200X magnification denote 500 μm and

200 μm respectively. (b) Perivascular fibrosis quantification of histological images from veh- and tam-treated Il11SMC mice at 200X

magnification (n = 6 per group). (c) Vascular hypertrophy quantification of veh- and tam-treated Il11SMC mice (n = 6 per group). (d)

Total collagen content in the heart assessed by hydroxyproline assay and shown as fold change (FC) of veh- and tam-treated Il11SMC
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associated cells such as SMCs in IBD [27]. Given that Il11SMC mice express Il11 in SMCs, it is

consistent that the transcript expression of the chemokine expressed in this particular cellular

niche in the colon is most affected. In the skin, all three inflammatory markers tested were

highly upregulated. This points to an inflammatory gene expression signature in the skin that

is reminiscent of that seen in systemic sclerosis, since IL6, CCL2, and CCL5 are elevated in the

serum of patients [29, 30]. Of note, CCL2 levels were correlated with the extent of skin fibrosis

in systemic sclerosis, a pathogenic feature also triggered by IL11 expression in SMCs (Fig 7)

[29].

Fibroblast-selective expression of Il11 recapitulates the features of colonic

inflammatory phenotype seen in Il11SMC mice

We have previously described a model of Il11 expression in fibroblasts (Il11Fib) that drives

fibrosis in the heart, kidney, and lung [8, 9]. To examine further the effect of Il11 expression in

stromal cells on the colon, we studied colonic phenotypes in this second model of Il11 expres-

sion from the stromal niche (Fig 8a). Gross examination of the gastrointestinal tract of Il11Fib

mice revealed macroscopic appearances consistent with inflammation of the colon to a similar

extent as in Il11SMC mice (Fig 8b). The total gastrointestinal gut length of Il11Fib mice was

unchanged overall but the colon length alone was reduced (P = 0.030; Fig 8b to 8d), which is a

feature of experimental colitis in mice [31]. In this model, as compared to Il11SMC mice, we

detected Il6 but not Ccl2 or Ccl5, upregulation in the colon (Fig 8d and 8e). Inflammation of

the gut was apparent in the Il11Fib model as fecal calprotectin was significantly elevated

(P = 0.003; Fig 8f). Histological examination revealed marked colonic dilation and increased

SMC thickness (Fig 8g and 8h). In contrast to the Il11SMC model of Il11 expression, colonic

fibrosis as determined by histology, hydroxyproline assay or ECM gene expression, was not

significantly different between tam-treated Il11Fib and controls (data not shown). Taken

together, fibroblast-driven Il11 expression recapitulates primarily the SMC-driven inflamma-

tory, but not the fibrotic, phenotype in the mouse.

Discussion

In humans, IL11 is highly upregulated in the colonic mucosa of patients with either ulcerative

colitis or Crohn’s disease who do not respond to anti-TNF therapy, with recent single cell

RNA-seq studies localizing IL11 to inflammatory mucosal stromal cells [32–34]. To better

understand the effect of IL11 in the colon, recombinant human IL11 has been used in rodent

models of IBD [34–38] and it was suggested that IL11 may have a protective role in the bowel.

However, a caveat with these studies is that human IL11 was administered to rodents despite

mice (n = 7–8 per group). (e) Representative Masson’s trichrome stained whole lung sections (left) and 200X magnification images

(right). Scale bars for whole lung sections and 200X magnification denote 500 μm and 200 μm respectively. (f) Pulmonary fibrosis

quantification as assessed by the Ashcroft score (n = 6–8 per group). (g) Total collagen content in the lung assessed by hydroxyproline

assay as above (n = 7–8 per group). (h) Representative Masson’s trichrome stained liver sections taken at 400X magnification

demonstrating perisinusoidal fibrosis. Scale bar at 400X magnification indicates 100 μm. (i) Fibrosis quantification of liver sections

(400X magnification) from veh- and tam-treated Il11SMC mice (n = 6 per group). (j) Total collagen content in the liver assessed by

hydroxyproline assay as above (n = 10–11 per group). (k) Representative Masson’s trichrome stained cross-section of the kidney (left)

and 200X magnification images (right). Scale bars for the cross-section of the kidney and 200X magnification denote 500 μm and

200 μm respectively. (l) Fibrosis quantification of kidney sections (200X magnification) from veh- and tam-treated Il11SMC mice (n = 6

per group). (m) Total collagen content in the kidney assessed by hydroxyproline assay as above (n = 10–11 per group). (n)

Representative Masson’s trichrome stained section of the dorsal skin at 100X magnification (left) and at 400X magnification (right).

Scale bar at 100X and 400X magnification represents 200 μm and 100 μm respectively. (o) Dermal and (p) epidermal thickness of the

dorsal skin. (q) Total collagen content in the skin assessed by hydroxyproline assay as above (n = 10–11 per group). All comparisons

were conducted in organs harvested from mice 14 days post-veh and tam treatment. Statistical analyses by two-tailed unpaired t-test;

data shown as median ± IQR, whiskers represent the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0227505.g005
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Fig 6. Relative gene expression of fibrogenic genes in organs from tam-treated Il11SMC mice. Relative mRNA

expression of collagen type 1a1 (Col1a1), type 1a2 (Col1a2), type 3a1 (Col3a1), fibronectin-1 (Fn1), tissue inhibitor of

metalloproteinase 1 (Timp1) and matrix metalloproteinase 2 (Mmp2) normalized to Glyceraldehyde 3-phosphate

dehydrogenase (Gapdh) expression in the (a) colon, (b) heart, (c) lung, (d) liver, (e) kidney and (f) skin. All

comparisons were conducted 14 days post-veh (black) and tam (red) initiated mice. Statistical analyses by two-tailed

unpaired t-test; data expressed as median ± IQR, whiskers represent the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0227505.g006
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the fact that human IL11 does not activate mouse stromal cells [8]. More recently, we have

found that human IL11 unexpectedly acts as an inhibitor of endogenous mouse IL11 activity

in the liver [39]. Thus, previous studies in IBD that showed that when human IL11 is injected

into mice it protects them from IBD may paradoxically support the opposite conclusion: IL11

is not protective at all, but a driver of IBD. In light of this, there is a great need to assess the

effects of species-specific IL11 in the mouse, which we undertook in this study by expressing

murine Il11 in SMCs or fibroblasts in adult mice.

To enable our studies, we developed the Il11SMC mouse as a tool to study the effect of

murine IL11 secreted from SMCs, an established source of IL11 in the vasculature, airway, and

Fig 7. Relative gene expression of inflammatory genes in organs from tam-treated Il11SMC mice. Relative mRNA expression of interleukin 6 (Il6), C-C motif

chemokine ligand 2 (Ccl2), C-C motif chemokine ligand 5 (Ccl5) normalized to Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) expression in the (a) colon,

(b) heart, (c) lung, (d) liver, (e) kidney and (f) skin respectively. All comparisons were conducted in 14 days post-veh (black) and tam (red) initiated mice.

Statistical analyses by two-tailed unpaired t-test; data expressed as median ± IQR, whiskers represent the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0227505.g007
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Fig 8. Mice with fibroblast-specific Il11 expression develop inflammatory bowel disease. (a) Schematic diagram demonstrating tamoxifen (tam) injection

procedure in 6-week-old Il11Fib and wildtype (control) littermates. (b) Excised gastrointestinal tract of representative Il11Fib mice at day 21 compared to

controls. Scale bar represents 5 cm. (c) Indexed GIT length in reference to body length (BL) was unchanged in Il11Fib mice but (d) indexed colon length was

markedly reduced as compared to controls (n = 4 per group). (e) Expression of inflammatory genes (Il6, Ccl2 and Ccl5) in the colon tissue of Il11Fib mice as

compared to controls (n = 4–5 per group). (f) Fecal calprotectin in stool samples collected from Il11Fib and control mice (n = 4–5 per group) as assessed by

ELISA. (g) Representative cross-sections of the colon of Il11Fib and control mice stained with Masson’s Trichrome (left) and at 200X magnification (right)
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colon [11, 40, 41]. Surprisingly, expression of Il11 in SMCs was sufficient to induce severe

colonic inflammation and rectal prolapse within 3 days, which was followed by early mortality

in Il11SMC animals. We also documented increased colonic muscle thickness, which is a char-

acteristic of the dextran sulphate sodium-induced colitis model [42]. In humans, histological

features of clinical colitis include architectural distortion, shortening and size variation of

crypts, immune cell infiltration, and granuloma formation [43]. Occurrences of architectural

distortion of the glands and crypts in these mice were rare but present, although this may be

reflective of the very short duration of IL11 expression. In contrast, these mice demonstrated

thicker muscularis mucosa, increased immune cell infiltration, increased pro-inflammatory

markers LAMP2 and LGALS3 in epithelial cells and the stroma and increased fibrosis in the

mucosa sharing close similarities to intestinal fibrosis as observed in patients with ulcerative

colitis [44]. Interestingly, IL11 expression in smooth muscle cells demonstrated signs of neu-

roinflammation in the myenteric plexus, which has been observed in inflammatory bowel dis-

ease [45].

We explored further the IL11 effect in the bowel using an additional model that expresses

mouse Il11 in a second stromal cell type: the fibroblast. This complementary model also devel-

ops severe diarrhea and inflammation of the small intestines and colon, reinforcing the data

generated in the Il11SMC mice. In this model, the colon becomes distended with thicker mus-

cularis mucosa, suggesting that IL11 secreted from fibroblasts acts in a paracrine fashion to

cause smooth muscle hypertrophy. A lack of grossly detectable intestinal fibrosis in the colon

in this model, which is very different to findings in the heart, kidney and lung [8,9], may reflect

differing cellular composition of fibroblasts and smooth muscle cells in the intestinal wall,

where smooth muscle cells appear to play a larger role. This would be consistent with the sug-

gestion that smooth muscle hyperplasia and hypertrophy contributes mostly to the fibrosteno-

sis and inflammation in IBD [46] and underlies the colonic contractile dysfunction [47].

Taken together these data show that Il11 expression in stromal cells is sufficient to cause an

IBD phenotype and challenges the earlier data, based on the use of recombinant human IL11 in

the mouse, that IL11 is protective in the bowel. Considered along with patient studies that show

IL11 to be highly upregulated in the colonic mucosa of patients with ulcerative colitis or

Crohn’s disease and that IL11 predicts treatment failure [32–34], our results highlight IL11 as a

promising therapeutic target for IBD, particularly in the context of anti-TNF therapy resistance.

Supporting information

S1 Table. Genotyping primers.

(DOCX)

S2 Table. RT-qPCR primers.

(DOCX)

S1 Fig. Comparison of tamoxifen-treated Il11SMC and CreSMC mice. (a) Schematic diagram

demonstrating the tamoxifen (tam) injection procedure in 6-week-old Il11SMC and CreSMC

mice. (b) Survival curve of tam-treated Il11SMC (n = 35) compared to CreSMC mice (n = 27)

mice from 1st injection starting at 6 weeks of age. Survival curves were compared with the log-

rank Mantel-Cox test. (c) Representative images of the CreSMC and Il11SMC mice before (d0)

and up to 14 days (d14) post-tam initiation (left). Note the presence of pale and loose stools in

(n = 6 biological replicates). Scale bars indicate 500 μm and 200 μm respectively. (h) Thickness of the smooth muscle layer (muscularis propria) in tam-

treated Il11Fib mice compared to controls (n = 6 per group). All comparisons were conducted in 21 days post-tam initiation in control (black) and Il11Fib

(green) mice. Statistical analyses by two-tailed unpaired t-test; data expressed as median ± IQR, whiskers represent the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0227505.g008
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Il11SMC mice (right). The presence of rectal prolapse is indicated with white arrows. Tam-

treated Il11SMC images presented here are different from Fig 1c. Images were not taken to

scale. (d) Baseline body weight of 6-week-old CreSMC and Il11SMC mice before induction

(n = 16 per group). Statistical analyses by two-tailed unpaired t-test; data expressed as

median ± IQR, whiskers represent the minimum and maximum values. (e) Representative

images of CreSMC and Il11SMC mice at d14 post-Tam initiation. (f) Collated body weights and

(g) body lengths of tam-treated CreSMC and Il11SMC mice measured at d14 post-Tam initiation.

(n = 12–17 per group). Statistical analyses by two-tailed unpaired t-test; data expressed as

median ± IQR, whiskers represent the minimum and maximum values.

(TIF)

S2 Fig. Uncropped blots for PCR genotyping from CreSMC and Il11SMC mice treated with

either tamoxifen (Tam) or vehicle (Veh). PCR products of DNA extracted from tail biopsies

of 21-day-old mice by use of set primers for Myh11-Cre (left) and Rosa26-Il11 (right) (primers

as listed in S1 Table) and analyzed by agarose gel electrophoresis. Dashed boxes indicate

cropped blots used in Fig 1c.

(TIF)

S3 Fig. Immunohistochemistry with rat and rabbit IgG isotype controls as negative stain-

ing control in Fig 2h. Smooth muscle and crypt staining with rat and rabbit IgG isotype con-

trols demonstrate no positive staining in both veh- and tam-treated Il11-Tg colon. Scale bar

represents 100 μm.

(TIF)
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