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Astrocytes play a crucial role in the maintenance of the normal functions of the Central
Nervous System (CNS). During the pathogenesis of neurodegenerative diseases,
astrocytes undergo morphological and functional remodeling, a process called reactive
astrogliosis, in response to the insults to the CNS. One of the key aspects of the reactive
astrocytes is the change in the expression and function of connexins. Connexins are
channel proteins that highly expressed in astrocytes, forming gap junction channels and
hemichannels, allowing diffusional trafficking of small molecules. Alterations of astrocytic
connexin expression and function found in neurodegenerative diseases have been
shown to affect the disease progression by changing neuronal function and survival.
In this review, we will summarize the role of astroglial connexins in neurodegenerative
diseases including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and
amyotrophic lateral sclerosis. Also, we will discuss why targeting connexins can be a
plausible therapeutic strategy to manage these neurodegenerative diseases.
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INTRODUCTION

Neurodegenerative diseases, presented as the progressive loss of structure or function of neurons,
are the main threat to human health, especially for the geriatric population. The most common
forms of neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) (Erkkinen et al., 2018). It is believed
that different pathophysiological mechanisms causing these diseases are different and thus lead to
different neurological outcomes. Some can cause memory and cognitive impairment (e.g., AD and
PD), and others can affect people’s ability to move, speak, and breathe (e.g., PD, HD, and ALS)
(Abeliovich and Gitler, 2016; Canter et al., 2016; Taylor et al., 2016; Wyss-Coray, 2016). However,
treatment strategies which have been developed against the classical mechanisms are in-effective,
yet treatments are urgently needed to stop or reverse the neurodegenerative diseases. This suggests
that we may have missed some vital aspects in the bigger picture of neurodegenerative diseases.

For a long time, neuron-centered theories dominated the research interest of pathogenesis of
neurological disorders, whereas the critical role of astrocytes in this process had been over-looked.
In the last two decades, the role of astrocytes in the healthy and diseased brain started to gain
some recognition. In the adult brain, astrocytes play several crucial roles in supporting neuronal
functions, including forming the blood-brain barrier by interacting with endothelial cells, providing
nutrients and metabolites support to neurons, and maintaining extracellular ion balance. These
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functions highly depend on the coordination of hundreds of
astrocytes through the formation of an astrocytic network
(Santello et al., 2019), which is crucial for cognition and other
CNS function. The impairment of the astrocytic network has
been found in neurodegenerative diseases (Cooper et al., 2020),
where astrocytes undergo reactive gliosis with morphological
and functional remodeling. Such changes have been suggested
to contribute to the pathogenesis of neurodegenerative diseases
(Pekny and Pekna, 2014).

The communication between astrocytes in the astrocytic
network is achieved by sharing cytoplasmic content through
specific membrane units called “gap junctions.” Gap junctions
allow the transcellular exchange of ions and small molecules, such
as Adenosine 5′-diphosphate, glucose, glutamate, glutathione,
as well as secondary messengers including cAMP and inositol
triphosphate. Connexin (Cx) is a protein family that forms the
structural basis of gap junctions. Cx proteins are tetraspanins
with two extracellular and one intracellular loop, while the NH2-
and COOH-terminal tails are located in the intracellular space
(Skerrett and Williams, 2017). Cx monomers are assembled
into a hexamer connexon (also called “hemichannel”) on cell
membranes, and two adjacently docked connexons in the
neighboring cell membranes form gap junction channels (GJCs)
(Figure 1). A cluster of GJCs composes the gap junction
(Nielsen et al., 2012).

During reactive gliosis, the expression and function of
these Cx proteins changes in astrocytes (Giaume et al., 2010,
2021), especially the opening of Cx hemichannel. The opening
of the hemichannel could be triggered in certain conditions,
including lower pH, mechanical stimulation, oxidative stress,
as well as inflammation caused by ischemic stroke and other
injuries (Retamal et al., 2006, 2007; Sanchez et al., 2014;
Turovsky et al., 2020). The opening of Cx hemichannels
can release gliotransmitters including ATP, glutamate, and
D-serine, to support normal neuronal function in the
physiological situation (Meunier et al., 2017). However,
overactivation of Cx hemichannels found in reactive astrogliosis
during neurodegeneration has been shown to disrupt the
microenvironment homeostasis and contribute to disease
progression (Vis et al., 1998; Orellana et al., 2011b; Takeuchi
et al., 2011; Wang et al., 2013; Almad et al., 2016; Yi et al., 2016;
Maatouk et al., 2019).

In addition, the pannexin (Panx) protein family could also
perform Cx-hemichannel-like activity (Yeung et al., 2020). Panx
usually does not form GJCs (Sosinsky et al., 2011; Sahu et al.,
2014) and Panx channels have similar membrane topology and
pharmacological properties to Cx hemichannels. However, Panx
and Cx exhibit no significant sequence homology (Yeung et al.,
2020). Panx1 and Panx2 expression have been found in neurons,
however, their expression in astrocytes is still controversial, which
may depend on the pathological condition (Vogt et al., 2005;
Yeung et al., 2020).

This review will focus on the current understanding of
astrocytic Cx in neurodegenerative diseases, including AD, PD,
HD, and ALS. We will examine how astroglial Cx, together
with Panx, function as hemichannels and contribute toward the
development of neurodegenerative diseases. Furthermore, we

propose that astroglial hemichannels are potential therapeutic
targets for the neurodegenerative diseases.

CONNEXIN EXPRESSION AND
FUNCTION IN ASTROCYTES

In astrocytes, the dominant Cx proteins are Cx43 and Cx30,
while Cx26 expression is also detectable (Rash et al., 2001a,b).
Cx43 and Cx30 normally function as GJCs, as was repeatedly
shown by experiments in acute brain slices from knockout
mice, including the astrocytic Cx43 conditional knockout mice
(hGFAP-cre:Cx43f l/fl), the Cx30 knockout mice (Dere et al.,
2003; Theis et al., 2003), and the double KO mice (hGFAP-
cre:Cx43f l/fl:Cx30 KO) (Wallraff et al., 2006; Rouach et al., 2008;
Pannasch et al., 2011; Roux et al., 2011). The expression levels
of these two Cxs in astrocytes varies in different brain regions
(Batter et al., 1992; Nadarajah et al., 1996; Nagy et al., 1999),
and can be changed in neurodegenerative diseases, such as AD
(Mei et al., 2010; Yi et al., 2016; Angeli et al., 2020). Additionally,
Cx26 has also been detected in certain astrocytes to a lesser
extent (Altevogt and Paul, 2004; Lynn et al., 2011; Nagy et al.,
2011). Panx1 was reported to be expressed and also contribute
to hemichannel function in reactive astrocytes in disease models
(Silverman et al., 2009; Karpuk et al., 2011; Santiago et al., 2011;
Orellana et al., 2015; Yi et al., 2016; Maturana et al., 2017).

The CX43- and CX30-formed GJCs organize astrocytic
networks with certain selectivity, which is crucial for normal
neuronal function (Santello et al., 2019). For example, the
astrocytic networks can coordinate the activities of local neuronal
networks by transporting glutamate or glutamine (Giaume et al.,
2010). In addition, the Cx30 and Cx43 mediated astrocytic
networks can nourish distant neurons by mediating the delivery
of glucose and lactic acid (Rouach et al., 2008; Clasadonte et al.,
2017; Giaume et al., 2021). Cx30 and Cx43 are also present
in the astrocyte endfeet which enwrap cerebral microvessels
in honeycomb-like large sized puncta that helps to represent
the end-feet boundaries. This structure provides a perivascular
route to mediate the exchange between neighboring end-feet
(Simard et al., 2003; Rouach et al., 2008; De Bock et al., 2017).
Additionally, researchers found proliferative parenchymal cells
in the hypothalamus in mice were decreased in conditional
Cx30 and Cx43 knock out (Recabal et al., 2018), suggesting
the potential of promoting neurogenesis by manipulating Cx30
and Cx43 function.

Normally, the permeability of Cx43 hemichannels is low
under resting conditions (Contreras et al., 2003). They still
act to modulate neuron synaptic function via the release of
gliotransmitter, such as D-serine (Meunier et al., 2017). However,
during reactive gliosis hemichannel permeability is dysregulated
in a series of stress-associated conditions, such as inflammation
(Orellana et al., 2009; De Bock et al., 2017), ischemia, oxidative
stress (Ramachandran et al., 2007), or increased intracellular
free Ca2+ concentration ([Ca2+]i) (De Vuyst et al., 2009).
A recent study further revealed that the permeability of Cx43
hemichannels in astrocytes is modulated by cytokines and
relies on the permeant species characters (Sáez et al., 2020).

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 May 2021 | Volume 14 | Article 657514

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-657514 May 23, 2021 Time: 14:40 # 3

Huang et al. Astroglial Connexins in Neurodegenerative Diseases

FIGURE 1 | Connexin formation of hemichannel. (A) Connexin hexamer constitutes hemichannel, while hemichannels in the adjacent cells interact to form the gap
junction channel. (B) Structure of Cx43 protein. Phosphorylation sites by MAPK, CK1, and PKC in the c-terminal tail are highlighted by white circles. Regions crucial
for hemichannel activation regulation was also highlighted. (C) Proposed conformation changes that lead to hemichannel activation. Interaction of either CT9 or
SH3-binding region with GAP19 region could achieve partial hemichannel activation, while interaction of both CT9 and SH3-binding region with GAP19 lead to fully
activation of hemichannel (Iyyathurai et al., 2018). MAPK phosphorylation at S255, S262, S279, and S282 sites was proposed to facilitate interaction of SH3-binding
region to the GAP19 region, enabling hemichannel activation (Freitas-Andrade et al., 2019). PKC phosphorylation at S386 could reduce the permeability of larger
molecules such as sucrose (Bao et al., 2007; Hawat and Baroudi, 2008), which might act to interfere with the interaction between CT9 and GAP19 region. CK1
phosphorylation at S325, S328, and S330 has been shown to modulate hemichannel activity (Ek-Vitorín et al., 2018), but the mechanism is yet to be determined.
ECM, extracellular matrix; MAPK, mitogen activated protein kinase; PKC, protein kinase C; CK1, casein kinase 1; SH3, SRC Homology 3; CT9, last 9 amino acids of
the Cx43 C terminus; P labels phosphorylated amino acid residue.

Furthermore, the interaction between Cx43 C-terminal tail and
its cytoplasmic loop is critical for the hemichannel activity,
which, in turn, can affect its GJC function (Iyyathurai et al.,
2013). The SH3 binding domain and the last 9 amino acids
of the C-terminal tail bind to the L2/GAP19 domain of
the cytoplasmic loop, allowing full activation of hemichannels
(Iyyathurai et al., 2018; Figure 1). This interaction might be
regulated by phosphorylation at serine-residues in the C-terminal
tail by kinases including mitogen-activated protein kinase
(MAPK), protein kinase C (PKC), and casein kinase 1 (CK1)
(Bao et al., 2007; Hawat and Baroudi, 2008; Ek-Vitorín et al.,
2018; Freitas-Andrade et al., 2019; Figure 1). The suppression
of Cx43 phosphorylation by CK1 delta can promote astrocyte
survival and vascular regeneration in proliferative retinopathy
(Slavi et al., 2018).

In addition, Panx1 expression has also been found in cultured
astrocytes (Huang et al., 2007; Bianco et al., 2009; Iwabuchi and
Kawahara, 2011), and the activation of the P2 × 7 receptor
by BzATP induced ATP release through Panx1 hemichannels
instead of Cx43 hemichannels (Iglesias et al., 2009). Nevertheless,
the activation of Cx43 hemichannels but not Panx1 channels
in vitro only occurs upon exposure to hypoxia-reoxygenation,
pro-inflammatory cytokines, or amyloid-beta (Aβ) treatments
(Froger et al., 2010; Orellana et al., 2010; Orellana et al., 2011b).
Both Cx43 hemichannels and Panx1 channels were activated in
fibroblast growth factor-treated astrocyte from the spinal cord
(Garre et al., 2010), and in acute brain slices from a mouse abscess
model (Karpuk et al., 2011). The astrocytic Panx1 channels were
also found to be activated in the APP/PS1 familial AD mouse
model (Yi et al., 2016).
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ASTROGLIAL CONNEXINS IN AD

AD is defined by progressive memory loss, behavioral deficits,
and significant personality changes (Soria Lopez et al., 2019).
Aβ plaques, neurofibrillary tangles, neuronal death, as well as
synapse loss are characteristic features in AD brains. Notably,
an invariant feature associated with Aβ plaques is reactive
gliosis that includes activated microglia and reactive astrocytes
(Nagele et al., 2004).

Twenty years ago, Nagy and colleagues have firstly
demonstrated that astrocyte Cx43 protein levels are increased
in the brain tissue of AD patients, especially around the Aβ

plaques (Nagy et al., 1995), which has been repeatedly confirmed
(Kajiwara et al., 2018), and is also found in the APP/PS1 mouse
model (Mei et al., 2010; Yi et al., 2016). However, a recent study
showed that the mRNA level of Cx43 is decreased in the cortex
and thalamus area of another mouse model of AD, 5xFAD
mice, albeit the increased protein levels (Angeli et al., 2020).
Treatment of Aβ25−35 on primary astrocytes also results in a
similar negative correlation between Cx43 mRNA and protein
levels (Maulik et al., 2020). These pieces of evidence imply a
possible unknown mechanism of Cx43 protein expression or
turnover in AD pathology. Additionally, results from primary
astrocyte culture suggested that Aβ25−35 does not alter de novo
synthesized Cx43 membrane forward trafficking, but increases
the internalization of Cx43, which may be responsible for the
decreased GJC coupling and the increased hemichannel activity
(Maulik et al., 2020).

The role of astrocytic Cxs functional alteration in AD has
only been identified recently, revealing that the increased Cx
HC opening in AD might contribute to neuronal dysfunction.
Aβ aggregates and dense core Aβ plaques can induce reactive
astrogliosis in AD patients and murine AD models (Nagele et al.,
2004; Verkhratsky et al., 2010). The treatment of Aβ peptide in
cultured astrocytes as well as in acute hippocampal slices has been
shown to induce hemichannel opening, which releases glutamate
and ATP, resulting in neuronal death (Orellana et al., 2011a).
Similarly, in APP/PS1 mice, there is not only increased Cx43 and
Cx30 expression in reactive astrocytes surrounding Aβ plaques,
but also increased Cx43 hemichannel activity as shown in acute
hippocampal slices; however, the GJC function was unaltered (Yi
et al., 2016). Furthermore, conditional knockout of astrocytic
Cx43 in APP/PS1 mice can block hemichannel activation and
lead to reduced neuronal damage in the hippocampus (Yi
et al., 2016). A more recent study has also shown that specific
deletion of Cx43 in astrocytes ameliorates cognitive dysfunction
in APP/PS1 mice (Ren et al., 2018). These studies confirmed a
critical role of astrocytic Cx43 in causing neuronal damage in the
AD model, suggesting that astrocytic Cx hemichannels function
could be a possible therapeutic target of AD (Figure 2).

Efforts have been made to screen or design compounds
targeting astrocytic Cx proteins, in particular their hemichannel
function, to ameliorate AD progression. It was reported that
an alkaloid from the boldo tree called boldine could block the
activation of hemichannels in astrocytes and microglia without
affecting GJC both in cell culture and in acute hippocampal slices
(Yi et al., 2017). In the AD murine model (APP/PS1), long-term

oral administration of boldine could inhibit hemichannel
activation in astrocytes, accompanied by reduced intracellular
Ca2+ in astrocytes, decreased gliotransmitter release, and
alleviated neuronal damage in the hippocampus (Yi et al., 2017).
It was also found that endogenous and synthetic cannabinoid
administration can reduce astrocyte Cx43 hemichannels activity
and thereafter alleviate the neuronal damage in hippocampal
slices exposed to Aβ (Gajardo-Gomez et al., 2017). However,
more studies are required to confirm if pharmacological Cx
hemichannel blockers could rescue cognitive function in AD, in
order to pave the way for clinical applications.

ASTROGLIAL CONNEXINS IN PD

PD, as the second most common neurodegenerative disease,
is characterized by progressive dopaminergic neuronal loss
in the striatum and substantia nigra (Beitz, 2014). The
most characteristic hallmark of PD is Lewy bodies, which
are cytoplasmic protein-based aggregations of α-synuclein.
The clinical manifestations of PD include several motor
dysfunction such as postural and movement disability, and non-
motor symptoms including depression, psychosis, and dementia
(Fernandez, 2012). Notably, astrogliosis in the substantia nigra
plays a crucial role in PD pathogenesis (Cabezas et al., 2014).

The commonly used animal model of PD is 1-methyl-4-
phenyl-1,2,3,6-tet- rahydropyridine (MPTP)-lesioned striatum
which leads to neurodegeneration of dopaminergic neurons. In
this PD model, the expression of Cx43 and Cx30 in the striatum
is increased (Rufer et al., 1996; Fujita et al., 2018). A recent
study showed that astrocytic Cx43 hemichannel permeability
was also increased in the MPTP model, accompanied by
elevated intracellular Ca2+ levels in the astrocytes of acute
midbrain slices (Maatouk et al., 2019). The administration of
a hemichannel inhibitor TAT-Gap19 peptide (Abudara et al.,
2014), is able to rescue dopaminergic neuronal loss and inhibit
microglial activation (Maatouk et al., 2019). These data suggest
that astrocytic Cx hemichannel opening is detrimental to the
neurons in the MPTP model. However, it appears that other
aspects of astrocytic Cx function might be required for neuronal
survival, as Cx30 KO enhanced the loss of dopaminergic
neurons in MPTP treatment (Fujita et al., 2018). In Cx30
knockout mice receiving MPTP, reactive gliosis was suppressed
and the expression of neuroprotective astrocytic genes was
reduced, which may contribute to the exaggerated neuronal
damage (Fujita et al., 2018). However, the exact function of
Cx30 in the development of PD remained unknown. Rotenone,
a mitochondrial complex I inhibitor, is another neurotoxic
substance commonly used to generate rodent models of PD.
Rotenone administration in vivo or in vitro can increase Cx43
protein level and its phosphorylation, and GJC function in
astrocytes (Kawasaki et al., 2009).

Researchers also examined how α-synuclein affects astrocytic
hemichannel function. It has been shown that α-synuclein
also enhances the opening of Cx43 and Panx1 hemichannels
in mouse cortical astrocytes, which results in the alterations
in the intracellular Ca2+ dynamics, nitric oxide production,
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FIGURE 2 | Schematic illustration of the role of astroglial hemichannels in neurodegeneration in an AD mouse model (APP/PS1). In the hippocampus, Cx43 HCs are
activated in astrocytes contacting Aβ plaques which are triggered by high [Ca2+]i ¬, while Panx1 hemichannels are only activated as a minor contributor triggered by
proinflammatory cytokines  (Yi et al., 2016). HC opening results in the influx of Ca2+ from extracellular to cytoplasm, allowing the high [Ca2+]i maintenance ® (Yi
et al., 2016). HCs activation in astrocytes can lead to gliotransmitter release including glutamate and ATP ¯, which then stimulate the intracellular neurotoxic
cascades and resulting in neurodegeneration ° (Yi et al., 2016). The astroglial connexin hemichannel blockers [such as Boldine (Yi et al., 2017) and TAT-Gap19
(Abudara et al., 2014)] may become new pharmaceutical tools that can alleviate the neuronal damage in AD ±. AD, Alzheimer’s disease; HC, hemichannel; ECM,
extracellular matrix.

gliotransmitter release, mitochondrial morphology, and astrocyte
survival (Díaz et al., 2019). This suggests that Cx43 and Panx 1
hemichannels may be involved in the pathogenesis of PD.

ASTROGLIAL CONNEXINS IN HD AND
ALS

HD is characterized as a progressively autosomal-dominant
neurodegenerative disorder, The features of HD include chorea,
dystonia, cognition deficits, as well as behavioral impairments
(Walker, 2007). In both healthy and diseased human brains, the
distribution of Cx43 in the globus pallidus is homogeneously
in the neuropil. However, in the caudate nucleus, the density
of Cx43 is increased, which is formed in patches in HD. The
immunoreactivity of the staining for glial fibrillary acidic protein
(GFAP) in the astrocytes is also significantly higher in the caudate
nucleus in HD brains compared to in healthy brains, and there is
also increased reactive astrogliosis with elevated Cx43 expression
associated with degenerating neurons (Vis et al., 1998). However,
the contributions of Cx hemichannels in HD have been rarely
reported in recent years and thus remain to be elucidated.

ALS is characterized by progressively weakened voluntary
skeletal muscles, as well as those controlling swallowing, speech,

and respiration (Oskarsson et al., 2018). It is a progressive
and fatal neurodegenerative disease that occurs in the younger
population compared with AD and PD. Cx43 expression was
found to be upregulated in the motor cortex and spinal cord of
patients with ALS and in a murine model of ALS (SOD1G93A)
(Díaz-Amarilla et al., 2011; Almad et al., 2016). This upregulated
Cx43 expression was accompanied by an increased hemichannel
activity and gap junction coupling, and subsequently elevated
concentration of intracellular Ca2+, which led to motor neuron
damage. In addition, the administration of pan Cx43 blocker
and Cx43 hemichannel inhibitors in the ALS mouse model can
alleviate the neuronal toxicity (Takeuchi et al., 2011; Almad et al.,
2016), suggesting that targeting Cx43 hemichannel function is
a potential ALS treatment strategy. The upregulation of Panx1
expression is also found in the spinal cord of SOD1G93A mice
when the symptoms become apparent (Cunha et al., 2018).
However, the role of Panx1 in ALS development has not been
comprehensively studied, therefore its role is still unknown.

PERSPECTIVES

The astrocytic GJCs and hemichannels formed by Cx proteins
play important roles in neuroglial interactions. GJCs maintain
neuronal homeostasis via astroglial and panglial networks
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for the trafficking of metabolic substances and elimination
of potassium and glutamate. Under pathological conditions,
the maintenance of GJC function may be beneficial as it is
required for astrocytes to resist oxidative stress (Le et al., 2014).
In contrast, while proper astroglial hemichannels opening is
required for neuronal function under physiological conditions,
hemichannel overactivation plays a detrimental role in several
neurodegenerative disorders, such as AD, PD, and ALS.

Although it has been shown that Cx proteins could
directly cause neuronal damage via hemichannel function in
neurodegenerative diseases, they might also implicate in the
disease pathogenesis by alternative mechanisms. Cx43 and Cx30
protein expression is enriched at the astrocyte endfeet at the
gliovascular interface, and the absence of these astrocytic Cx
proteins weakens the blood-brain barrier function (Ezan et al.,
2012; Boulay et al., 2015), indicating a critical role of Cx proteins
in the maintenance of the blood-brain barrier. Blood-brain
barrier disruption has been found in neurodegenerative diseases
including AD, PD, HD, and ALS (Sweeney et al., 2018; Huang
et al., 2020). However, whether astrocytic Cx proteins contribute
to these disease processes remains to be studied. In addition,
astrocytic Cx proteins might also regulate the glymphatic
pathway, which is constituted by the perivascular space wrapped
by astrocytic endfeet and involved in protein waste clearance
from the CNS (Rasmussen et al., 2018). Disruption of the
glymphatic system has been identified in AD, which might hinder
the export of Aβ protein (Nedergaard and Goldman, 2020).
Considering the enrichment of Cx proteins at the astrocytic
endfeet, they might also regulate glymphatic system function in
neurodegenerative diseases.

Given their role in several neurodegenerative diseases,
Cx and Panx hemichannels can be considered as promising
alternative therapeutic targets. Hemichannels appear to be
more associated with neurotoxicity compared to GJCs (Froger
et al., 2010; Orellana et al., 2011a; Yi et al., 2016) and
their cellular localizations enable pharmacological interventions.
Indeed, several strategies using genetic or pharmacological tools
to block hemichannel activity have been developed in recent years
(Huang et al., 2012; O’Carroll et al., 2013; Bravo et al., 2014;
Chen et al., 2014). Most of them inhibit the expression and/or
function of Cx43, which is regarded as the major hemichannel
component in astrocytes (Nagy et al., 2004). However, they
also seem to impact astroglial GJC function, which results in
an inaccurate interpretation of the findings. Therefore, a tool
that can specifically block hemichannel function in glial cells
may delineate the future direction that reduces potential off-
target effects.

In neurodegenerative diseases, the development of a potential
treatment must consider the needs of long-term treatment
and also the use of molecules with the ability to cross the
blood-brain-barrier. As such, boldine, an alkaloid compound as
mentioned in earlier session, can block Cx43 hemichannels in
astrocytes and microglia without affecting GJCs in vitro and
in acute hippocampal slices from APP/PS1 mice at the age of
9 months (Yi et al., 2017). Three-month oral administration of
boldine in APP/PS1 mice blocked the activation of astroglial
hemichannels and ameliorated hippocampal neuritic dystrophies

around the Aβ plaques (Yi et al., 2017). These results suggest
that boldine seems to be a promising small molecule drug,
which opens the revenue to design novel protective molecules
that can alleviate neuronal toxicity under neurodegenerative
conditions, especially the amyloid pathology. However, it needs
to be noted that boldine has other functions, such as antioxidant
and anti-inflammatory effects (Schulz et al., 2015), which can
also participate in the protection of neurodegeneration in AD.
Furthermore, several TAT-conjugated Cx43 peptidomimetics
have been shown to block Cx43 hemichannel activity (Evans
et al., 2012). For example, TAT-Gap19, a nonapeptide targeting
on Cx43 extracellular loop, has been reported to exclusively
block astroglial Cx43 hemichannel in a dose-dependent manner,
without affecting GJCs (Abudara et al., 2014). Furthermore,
in a mouse model of PD, TAT-Gap19 can protect against
dopaminergic neuron degeneration and microglial activation
(Maatouk et al., 2019). However, TAT peptides are susceptible to
proteolytic cleavage in the blood (with a half-life less than 10 min,
as determined by MALDI-TOF MS Analysis) (Grunwald et al.,
2009), which limits its application in chronic diseases. Structural
modification is needed to increase their half-life or slow down
their release in the blood. More research is also needed to identify
other inhibitors with high specificity to hemichannels and long
half-life to enable later clinical translation.

CONCLUSION

There is still a need for more in-depth investigations of
astroglial Cx proteins, especially Cx43, in the pathology
of neurodegenerative diseases not only in AD and PD but
also in HD and ALS. Targeting astroglial Cx has become
a potential strategy for the intervention or treatment of
neurodegenerative diseases. Recent advances in the hemichannel
opening mechanism have identified several regulatory
regions in Cx43, which could facilitate the drug development
targeting Cx hemichannel.
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