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Abstract: Mode-localized sensing paradigms applied to accelerometers have recently become popular
research subjects. However, the output of mode-localized accelerometers is influenced by environment
temperature due to the difference in the thermal properties of the coupling resonators and the temperature
dependence of coupling stiffness. To improve the performance of mode-localized accelerometers
against temperature, we proposed an in situ self-temperature compensation method by utilizing
the resonant frequency besides of amplitude ratios, which can be implied online. Experimental
results showed that there were nearly 79-times and 87-times improvement in zeros bias and scale
factor, respectively.

Keywords: 2-DoF; mode-localized accelerometer; compensation

1. Introduction

MEMS (Microelectromechanical systems) accelerometers have the advantages of small
size, light weight, low power consumption and low cost [1]; thus, they are widely used
in the fields of inertial navigation, medical consumer electronics and automotives [2,3].
Among various kinds of MEMS accelerometers, silicon resonant accelerometers are promis-
ing for high sensitivity, large linear range, low bias instability and so on [4–7].

Over the past few years, the mode-localized sensing paradigm based on weakly
coupled resonators (WCRs) has been researched and applied to various kinds of sensors
including accelerometers for its ultra-high sensitivity [8–14] and the suppression of com-
mon mode noises [15–19] with the output metric of the amplitude ratio. In a sensor using
WCRs, weaker coupling strength means higher sensitivity. Some works have made efforts
to achieve lower coupling stiffness, among which the electrically stiffness coupling and
mechanical coupling structure are widely used. Compared with the scheme of electrical
stiffness coupling, coupling structures lack the noise from a coupling voltage. As there
is a difference in the properties of the coupled resonators, mode-localized accelerometers
still suffer from the influence of temperature since there would be thermal perturbation
as temperature fluctuates. Furthermore, as the Young’s modulus of the silicon material
is very sensitive to temperature, mechanical coupling stiffness is temperature-dependent,
making the temperature performance worse. To improve the temperature performance
of MEMS accelerometers, some methods were proposed including active temperature
control [20–23], temperature compensation [24–26] and less temperature sensitivity struc-
ture [27]. The active temperature control scheme requires complex temperature control
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systems and higher power consumption. The scheme of reducing the temperature sensi-
tivity by structure design can only achieve a limited improvement. Therefore, a passive
temperature compensation scheme is widely used for its simplicity. One of the passive
temperature compensation methods is to make a compensated result with the output of the
accelerometer and the temperature captured by an additional thermometer or temperature
sensitive element. Another way is to implement self-temperature compensation by the two
outputs from a differential structure of resonant accelerometer [28,29]. As there is no need
for additional temperature measurement in the second way, the problem of thermal lag
between the thermometer and the accelerometer is alleviated. However, this scheme of
self-temperature compensation proposed for differential structure is not in situ exactly, as
there is distance between the differential resonators. Furthermore, there have been less
studies on the temperature compensation for mode-localized accelerometers.

In this article, we proposed a self-temperature compensation method which is an in
situ compensation way for a two degree-of-freedom (2-DoF) mode-localized mechanically
coupled accelerometer. To the best of our knowledge, this is the first work proposing a in
situ self- temperature compensation method for 2-DoF mode-localized accelerometers by
using amplitude ratios and resonant frequency together. A neural network was trained
to study the relationship between the parameters with amplitude ratios and resonant fre-
quency under different temperature. With a real-time measurement on resonant frequency
besides of amplitude ratio, the proposed method for a 2-DoF mode-localized accelerometer
can be applied online.

2. Two-DoF WCRs Accelerometer

A simplified model of mode localized accelerometer based on a 2-DoF weakly coupled
resonator is shown in Figure 1. Ideally the mass and the stiffness of the two resonators are
initially symmetric: i.e., m1 = m2 = m, k1 = k, k2 = k + ∆k, where m1, m2 represent the
effective mass of each resonator and k1, k2 represent the effective stiffness of each resonator
while ∆k represents the stiffness perturbation, kc represents the coupling stiffness.
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Figure 1. Mass–spring–damper model of a 2-DoF WCRs with external perturbation.

Without considering damping terms and driving force the motion of the system can
be formulated as[

m 0
0 m

][ ..
x1..
x2

]
+

[
k + kc −kc
−kc k + kc + ∆k

][
x1
x2

]
=

[
0
0

]
(1)

where x1 and x2 are the displacements of the two masses. With using the resonant frequency
of first mode without structural perturbation ω0 =

√
k/m, the resonant radian frequencies

ωi (i = 1, 2) and amplitude ratios ui (i = 1, 2) of the two modes can be derived as:

ωi =

(√
1 +

1
k

(
kc +

∆k
2
∓ 1

2

√
∆k2 + 4k2

c

))
ω0 (2)

ui−12 =
xi1
xi2

=
∆k±

√
∆k2 + 4k2

c
2kc

(3)

ui−21 =
xi2
xi1

= −∆k∓
√

∆k2 + 4k2
c

2kc
(4)
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As the perturbation varies, the amplitude ratio ui−12 in the first vibrational mode
(i = 1) goes from good linearity to strong nonlinearity, while he amplitude ratio ui−12 in
the second vibrational mode (i = 2) is to the opposite. This trend of amplitude ratios ui−21
(i = 1, 2) is opposite to the amplitude ratio ui−12 (i = 1, 2). Work [30] proposed a method to
enhance the linearity of WCRs by using output metric based on the subtraction of reciprocal
amplitude ratios. This method can be implemented by simple calculation of the amplitude
ratios from one WCRs. The method can be formulated as (i = 1, 2):

uoi = ui−12 − ui−21 =
xi1
xi2
− xi2

xi1
=

∆k
kc

(5)

where uoi (i = 1, 2) is the linearity-enhanced output metric. By using linearity-enhanced
output metric, a larger linear range can be achieved.

The schematic of our mode localized accelerometer is shown in Figure 2. The two
clamped-clamped (CC) resonators are coupled with each other by a micro-lever coupler.
The two resonators are driven and sensed by parallel-plate capacitors at two sides of
the resonators. The proof mass is suspended and connected to one of the CC resonators
through a pair of micro-lever force amplifiers. When an acceleration is applied along
the sensitivity axis direction, a corresponding perturbation is made through the micro-
lever force amplifiers by the proof mass. The amplitude ratios of WCRs will change with
the perturbation.
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Figure 2. The schematic of the mode localized accelerometer.

The geometrical dimensions of the DETF-CC WCRs mode localized accelerometer are
summarized in Table 1.

Table 1. Parameters of the accelerometer.

Parameter Value

Device thickness 40 µm
Length of CC resonant beam 400 µm
Width of CC resonant beam 7 µm
Gap of resonant beam 2 µm
Quality of proof mass 1.50 mg
Quality factor 15,600
Glass thickness 50 µm

We made verification of the linearity-enhanced output metric on our mode-localized
accelerometer by taking a Finite Element Multiphysics (FEM) simulation. In the accelerome-
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ter, out-of-phase mode and in-phase mode were worked as the first mode (i = 1) and second
mode (i = 2) as shown in Figure 3a,b, respectively. The amplitude ratios of the two modes
and their linearity-enhanced output metric are shown in Figure 3a,b, respectively as well.
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3. Temperature Dependence Analysis of 2-DoF Accelerometer
3.1. The Dependence of Linearity-Enhanced Output Metric on Temperature

As the temperature changes, the difference in the thermal expansion coefficient be-
tween the materials and the residual stress generated in the fabrication process will cause
an extra thermal perturbation on the WCRs besides the acceleration applied, inducing a
bias drift with temperature on the output of mode-localized accelerometers. Furthermore,
the coupling stiffness is also temperature dependent, especially in a mechanical coupling
structure since the Young’s modulus of the silicon material will change with temperature.
This effect will induce the sensitivity fluctuated with the temperature. Thus, the linearity-
enhanced output metric (i = 1, 2) of a 2-DoF mode-localized accelerometer can be expressed
as Equation (6) with considering of the impact caused by the temperature.

uoi(T) =
∆ka

kc(T)
+

∆kT(T)
kc(T)

(6)

where ∆ka is the perturbation caused by acceleration and ∆kT(T) is the perturbation
induced by internal thermal stress at the temperature T, while kc(T) is the coupling stiffness
at temperature T.

3.2. The Dependence of Frequency on Temperature

The resonant frequencies of the two vibrational modes of a WCRs is also influenced by
the temperature. Besides of the internal thermal stress and coupling stiffness, the changes
in stiffness of the coupling resonators also make the resonant radian frequencies (i = 1, 2)

temperature dependent as shown in Equation (7), where ω0(T) =
√

k(T)
m .

ωi(T) =

(√
1 +

1
k(T)

(kc(T) +
∆ka + ∆kT

2
∓ 1

2

√
(∆ka + ∆kT)

2 + 4k2
c(T)

)
ω0(T) (7)

4. The Method of Temperature Compensation

We took the linearity-enhanced output metric to measure the acceleration. The rela-
tionship on the linearity-enhanced output metrics and acceleration is expressed as (i = 1, 2):

uoi = SFia + Biasi (8)
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Since the sensitivity and bias against external stiffness perturbation of uoi i = 1, 2) are
temperature dependent, the scale factor SFi and bias Biasi against acceleration are also
temperature dependent in a mode-localized accelerometer (i = 1, 2). Therefore, the main
goal is to make compensation for SFi and Biasi (i = 1, 2).

According to Equations (2)–(4), the relationship between resonant frequencies and
amplitude ratios (i = 1, 2) can be derived as:

ωi =

[√
1 +

kc(T)
k(T)

(1 +
]

ui−12
)

]
ω0(T) =

[√
1 +

kc(T)
k(T)

(1− ui−21)

]
ω0(T) (9)

According to Equation (9), it is known that the relationship between resonant radian
frequencies and amplitude ratios (i = 1, 2) is decided by the parameters of the coupling
resonators which are dependent on the temperature. As the perturbation is consisted in the
amplitude ratios and there is no term consisting of the perturbation made by acceleration
applied, the relationship is independent on the applied acceleration. An FEM simulation
was taken to prove the issues. As shown in Figure 4, by applying different acceleration over
the range from −1 g to 1 g with a step of 0.1 g at 300 K and 310 K, respectively, simulation
points were gotten and drawn in Figure 4. The fitting curves between resonant frequencies
and amplitude ratios (i = 1) at 300 K and 310 K have the same format with Equation (9),
with a coefficient of determination of R2 = 1. Though the amplitude ratios changes with
the acceleration applied, the relationship is fixed under a certain temperature.
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Figure 4. FEM simulation for the relationship between amplitude and resonant frequency under
different temperature.

By measuring resonant frequency fi, amplitude ratios ui−12 and ui−21 (i = 1, 2) at
real-time, the temperature T of the coupling resonators may be inferred with ωi and ui−12
or ui−21 and then the scale factor SFi and bias Biasi (i = 1, 2) by taking the linearity-enhanced
output metric uoi (i = 1, 2) at T can be inferred, which can be formulated as (i = 1, 2)

Biasi(T) = G1( fi, ui−12) = G2( fi, ui−21) = G( fi, ui−12, ui−21) (10)

SFi(T) = H1( fi, ui−12) = H2( fi, ui−21) = H( fi, ui−12, ui−21) (11)
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By taking the linearity-enhanced output metric according to Equation (5) with Equa-
tion (8), the temperature compensated result of the accelerometer can be achieved as
(i = 1, 2)

a =
uoi − Biasi(T)

SFi(T)
(12)

In this work, we use a five-layer feed-forward fitting neural network to explore G and
H. The process of implementing proposed temperature compensation method consists
of three steps. First, certain calibration points are measured. In this step, the amplitude
ratio and resonant frequency of mode localized accelerometer with applied acceleration
in full acceleration scales (a1, a2, . . . , an) under different temperature (T1, T2, . . . , Tm) over
the full temperature range were recorded. In the second step, the scale factor SFi and
bias Biasi (i = 1, 2) under different temperature calculated from linearity-enhanced output
metric are used to train the neural network together with the amplitude ratio and resonant
frequency of corresponding temperature. In this network training process, the frequency,
the amplitude ratio and its reciprocal at calibration temperature T work as network inputs
and the scale factor, bias at temperature T work as desired output. Third, the trained neural
network is used as the temperature model of the accelerometer and got the compensated
result with Equation (12). A detailed data flow of the proposed method is shown in Figure 5.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 10 
 

 

 

Figure 5. Data flow of the compensation process. 

5. Experiment 

We took experimental verification on our 2-DoF WCRs mode-localized accelerometer 

device. The accelerometer was fabricated by the silicon-on-glass (SOG) process. The pho-

tograph under optical microscope of the mode-localized accelerometer is shown in Figure 

6. 

 

Figure 6. Photograph of mode-localized accelerometer. 

In our experiment, the mode-localized accelerometer worked in in-phase or the first 

mode. The linearity-enhanced output metric by Equation (5) where 𝑖 = 1 was taken to 

measure the acceleration. Applied with different accelerations, the output metrics under 

different temperature were shown in Figure 7. As shown in Figure 7, with the temperature 

varied, the zero bias and scale factor changed from 0 g, 1.08 AR/g at 300 K to −0.42 g and 

1.77 AR/g at 360 K, respectively. The zero bias and scale factor were proved to be temper-

ature dependent which is corresponding with our analysis before. 

Figure 5. Data flow of the compensation process.

5. Experiment

We took experimental verification on our 2-DoF WCRs mode-localized accelerometer
device. The accelerometer was fabricated by the silicon-on-glass (SOG) process. The
photograph under optical microscope of the mode-localized accelerometer is shown in
Figure 6.
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In our experiment, the mode-localized accelerometer worked in in-phase or the first
mode. The linearity-enhanced output metric by Equation (5) where i = 1 was taken to
measure the acceleration. Applied with different accelerations, the output metrics under
different temperature were shown in Figure 7. As shown in Figure 7, with the temperature
varied, the zero bias and scale factor changed from 0 g, 1.08 AR/g at 300 K to −0.42 g
and 1.77 AR/g at 360 K, respectively. The zero bias and scale factor were proved to be
temperature dependent which is corresponding with our analysis before.
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Figure 7. Data flow of the compensation process.

In the step of temperature compensation, we recorded the amplitude ratio u1−12,
resonant frequency with applied acceleration from −0.8 g to 0.8 g of 0.05 g step within the
temperature range from 300 K to 360 K with a step of 5 K and made them as the dataset
together with corresponding scale factor and bias for neural network. Then, the trained
network was used to implement the compensation by the proposed method. The compara-
tion before and after compensation was shown in Figure 8, where the bias acceleration and
scale factor at 300 K were taken as the reference.
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Figure 8. (a) Comparation on bias drifts of acceleration before and after compensation. (b) Compara-
tion on errors of scale factor before and after compensation.

As shown in Figure 8a, the bias drift was decreased from 420 mg to less than 5.3 mg
after compensation over the temperature range from 300 K to 360 K, which is about 79 times
better than before compensation. And the scale factor error became less than 0.45% from
38.98% in the temperature range as shown in Figure 8b, achieving nearly 87 times of
improvement in performance. We also made a comparison of our method with work [27]
in Table 2, where work [27] decreased the influence of temperature by a good design on
the structure. As shown in Table 2, both the performance in bias and scale factor against
temperature were better in our work.

Table 2. Comparison with work [27].

This Work [27]

Temperature range 300 K–360 K 303 K–333 K
Bias drift 0.088 mg/K 0.22 mg/K

Scale factor over the
temperature range 0.45% 0.94%

6. Conclusions

This article proposed a new method to compensate the affection of temperature fluc-
tuation on 2-DoF mode-localized accelerometers. In the proposed method, the resonant
frequency is applied to sensing temperature with the amplitude ratios of the coupled res-
onators itself, which may avoid the thermal lag. The method was proved to be effective and
can be realized as a real-time temperature compensation for mode-localized accelerometers.
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