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Abstract

Genotyping-by-Sequencing (GBS) is an excellent tool for characterising genetic variation between plant genomes. To date,
its use has been reported only for genotyping of single individuals. However, there are many applications where resolving
allele frequencies within populations on a genome-wide scale would be very powerful, examples include the breeding of
outbreeding species, varietal protection in outbreeding species, monitoring changes in population allele frequencies. This
motivated us to test the potential to use GBS to evaluate allele frequencies within populations. Perennial ryegrass is an
outbreeding species, and breeding programs are based upon selection on populations. We tested two restriction enzymes
for their efficiency in complexity reduction of the perennial ryegrass genome. The resulting profiles have been termed
Genome Wide Allele Frequency Fingerprints (GWAFFs), and we have shown how these fingerprints can be used to
distinguish between plant populations. Even at current costs and throughput, using sequencing to directly evaluate
populations on a genome-wide scale is viable. GWAFFs should find many applications, from varietal development in
outbreeding species right through to playing a role in protecting plant breeders’ rights.
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Introduction

Recent advances in sequencing have improved the potential to

characterize genetic variation on a genome-wide scale. Further-

more, this can now be done in species that have little or no pre-

existing genomic resources. Current Illumina sequencing instru-

ments are capable of producing up to 3 billion paired-end

sequences on a single flow cell (http://www.illumina.com/

systems/hiseq_systems.ilmn). To put this into context, it would

provide enough data for greater than 100 times coverage of the

perennial ryegrass genome (estimated to be 2.69 Gb; [1]) with

100 bp reads. This would still make complete genome re-

sequencing costly on a large scale, and unnecessary for many

applications. Fortunately, strategies exist to reduce the complexity

of genomes to levels that can be sequenced more affordably in

studies involving large numbers. These include using probe

capture techniques [2], transcriptome re-sequencing [3], and

complexity reduction techniques using restriction enzymes [4].

After complexity reduction, samples can be individually tagged to

allow multiplexing on a single lane of a flow cell. Cheap barcoding

systems have already been developed that enable large-scale

multiplexing [5,6]. The level of multiplexing that can be achieved

is only limited by the complexity of the sample and the coverage

required, given a specific sequencing throughput.

The genotyping-by-sequencing strategy (GBS) developed by [5]

provides a very cheap and simple approach to reduce genome

complexity using restriction enzymes that preferentially cut in the

low-copy fraction of the genome. There is no random shearing or

size selection. This is combined with a simple bar-coding system

that adds a short stretch of DNA sequence to one of the

sequencing adaptors that is ligated to each DNA fragment. The

length of the barcode sequence is varied to ensure that the first

12 bp contains random sequence, which is a requirement for the

sequencing software. If barcode lengths were not modulated, all

sequences would contain an identical stretch of nucleotides at the

same position, corresponding to the restriction enzyme recognition

site. Control over complexity reduction is achieved by choosing

enzymes that cut at different frequencies in the genome. The

choice will ultimately depend on the application and the properties

of the genome being studied. A modification to the original GBS

protocol has been described recently that employs a two-enzyme

digestion, and was applied to linkage mapping in wheat and barley

[7].

To date, GBS has only been reported for studies aimed at

characterizing genetic variation in single genotypes. There are

many applications where characterizing genetic variation in

populations will be necessary, for example breeding of outbreeding

species. Some previous approaches to characterizing genetic

variation in populations have used multi-allelic marker systems,

such as Simple Sequence Repeats (SSR) that were typed on pooled

DNA [8,9]. Despite their usefulness, SSR’s are not appropriate for

genome-wide analysis requiring large numbers of markers. Large-

scale SNP arrays have recently been used to measure allele

frequencies in populations [10–12], in this case the signal is

proportional to the frequency of the allele. However, these SNP

arrays are hybridization based, and in outbreeding plant species

that have a high diversity there may be inefficiencies in
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hybridization due to high levels of polymorphism. This may lead

to inaccuracies in allele frequency calls. Using GBS would provide

a direct way to measure allele frequencies at bi-allelic SNPs

throughout the genome. This would enable the generation of

fingerprints for a population based on allele frequencies at

genome-wide positions. The purpose of this study was to apply

GBS for the study of allele frequencies in populations, and

determine if the resulting allele frequency fingerprints can be used

to distinguish between populations. We have used perennial

ryegrass varieties that are populations generated from poly-crosses

of multiple genotypes. We tested two restriction enzymes that

differ in orders of magnitude in the frequency of cutting sites

within the genome and determined the number of loci we would

expect to genotype with different sequencing budgets. The

experiment was designed for one of the restriction enzymes to

allow evaluation of the effect of barcode on the number of reads

recoverable for each sample. The reproducibility of the allele

frequency fingerprints was evaluated, and our ability to distinguish

between varieties based on these fingerprints was investigated.

Materials and Methods

Population Sampling
For each perennial ryegrass variety 0.5 g of seed was weighed

out and sprinkled onto wet soil packed in to an eight by eight cm

square pot. Seeds were covered with perlite and allowed to

germinate in growth cabinets. After eight days, the resulting lawn

was cut back to 3 cm using a cutting guide, and the cuttings

discarded. The bottom 3 cm was then sampled and placed in

envelopes, flash frozen and stored at 280uC. This was performed

in four replicates for each of the eight perennial ryegrass varieties

Sponsor, Stolon, Glenveagh, Mongita, Bronzyn, Beatrice, Char-

din, and Greenway. These will be referred to as ‘sampling

replicates’. DNA was isolated from ground tissue.

Library Preparation and Sequencing
Libraries for GBS were generated according to the protocol

developed for maize [5]. Libraries were generated using two

restriction enzymes, ApeKI (5 bp recognition site) and PSTI (6 bp

recognition site). Alternative enzymes were tested for their

suitability to generate GBS libraries and the results of this are

shown in Methods S1. In the case of ApeKI, eight libraries were

created, each consisting of 32 individually bar-coded samples

originating from the same variety. Each of the four ‘sampling

replicates’ was divided into eight ‘technical replicates’. This was

necessary because all fragments will possess the sequence of the

enzyme recognition site, and it is therefore important that libraries

have a mixture of bar-codes of various compositions and length to

ensure the assumption of randomness in the first 12 bp is not

violated. Designing the multiplexing with technical replicates

allowed us to investigate the impact of bar-code on data yield, as

the same set of 32 bar-codes were used to create each of the eight

libraries. Each library was sequenced on a single lane of an

Illumina GAII instrument to generate single end sequences of

101 bp. In the case of PstI we created one library consisting of 32

individually bar-coded samples. Each of the four ‘sample

replicates’ from each of the eight varieties were included in this

library. The library was sequenced on a single lane of an Illumina

Hi-Seq 2000 instrument to generate single end sequences of

101 bp.

Data Analyses
Samples were demultiplexed using sabre (https://github.com/

najoshi/sabre), allowing no mismatches within the barcode. All

reads were trimmed back to 64 bp in response to an observed

deterioration of quality towards the end of the reads in some

sequencing lanes. Command line tools from the FASTX-Toolkit

were used to trim adaptors and quality filter reads (to pass, 95% of

a read needed to have Q scores of at least 15). Any reads with less

than 64 bp after adaptor trimming were eliminated. We used the

program ustacks [13] to obtain a set of consensus sequences

representing the loci available for genotyping. We concatenated all

processed reads from each sample and ran through ustacks with

the deleveraging algorithm switched off, a minimum read depth

for stack formation of 3, the maximum distance allowed between

stacks was set to 2, and the maximum distance allowed to align

secondary reads to primary stacks was set to 4. Reads were

mapped back to consensus loci using bowtie [14] allowing two

mismatches across the entire read (-v 2) and only considering

uniquely mapped reads (-m 1). Samtools sort and view [15] were

used to generate sorted bam files and mpileup was used to

generate a pileup. VarScan [16] was used to call variants from the

pileup, which was processed and filtered using awk commands as

required for the various analysis performed. All statistical analysis

and graphics were generated in R [17].

Results

Sequencing of GBS Libraries
The sequencing of the eight ApeKI GBS libraries on the

Illumina GAII instrument yielded between 24 and 28 million

sequences per lane, prior to any processing. In a first analysis we

demultiplexed all libraries and counted the number of reads

assigned to each sample. The Coefficient of Variation (CV) for

reads per sample varied between 0.27 and 0.33 for the eight

libraries. The design of the ApeKI experiment, using the same 32

barcodes in each of the 8 lanes, allowed us to evaluate the effect of

barcode length on the number of reads recovered. There was

a significant effect of both barcode, F(31, 223) = 20.93, p,0.001,

and barcode length, F(4, 250) = 29.89, p,0.001 on read numbers.

This effect of barcode length limits our ability to cluster barcodes

into groups of equal efficiency, due to the need to modulate

barcode length. Results S1 contains detailed information on read

number per barcode and sample. After quality filtering, 104

million reads remained for analysis.

The sequencing of the library generated by PstI digestion on the

Illumina HiSeq 2000 instrument yielded over 130 million

sequences from the single lane. The CV for reads per sample

after demultiplexing was 0.62 (see Results S1). However, following

removal of three clear outliers, the CV dropped to 0.36. After

quality filtering, 67 million reads remained for analysis. All

sequence data from both ApeKI and PstI libraries have been

submitted to the European Bioinformatics Institute (EBI) Short

Read Archive (SRA) with the study accession number

ERP002166.

How Many Loci do we Expect to Genotype?
GBS produces reads that fall into discrete piles representing

unique loci. The number of loci generated will depend on the

frequency of the restriction enzyme recognition site within the

genome, and on methylation patterns (in the case of methylation

sensitive enzymes). The two enzymes tested in this study differ in

the frequency of their recognition site within the genome. We used

the sequenced genome of maize, which is a similar size to

perennial ryegrass, to perform in silico digestions. ApeKI generated

over 2.2 million fragments between 100 and 1000 bp, while PstI

generated over 136 thousand fragments between 100 and 1000 bp

(methods S1). Although this does not take methylation patterns

Genome-Wide Allele Frequency Fingerprinting
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into consideration, it does give an indication on the expected

efficiency of the genome complexity reduction.

In order to identify a non-redundant set of loci we used the

ustacks algorithm on the complete data set for both enzymes. The

number of loci generated was 1,955,745 for ApeKI, and 252,879

for PstI. Therefore, based on our data and ustacks settings, there is

nearly eight times as much loci available for genotyping when

using ApeKI compared to PstI. If the likelihood of sequencing

each locus was uniform, ApeKI libraries would require much

greater levels of sequencing to ensure genotyping of a common set

of loci across all samples with sufficient coverage, which will be

particularly important for accurate determination of allele

frequencies. However, all loci are not sequenced uniformly,

leading to some loci being sequenced far more frequently than

others. This is due to enrichment of shorter fragments during the

PCR amplification step, and the more efficient bridge amplifica-

tion of shorter fragments during sequencing on an Illumina flow

cell.

In order to establish the number of loci we can expect to

genotype given different sequencing budgets, we randomly

sampled reads (between 1 and 60 million) and mapped them

back to the set of consensus loci generated by ustacks. We then

determined the number of loci achieving a 5, 10, and 20 X

coverage with the different sequencing budgets. The results are

plotted in Figure 1a and 1b. As we increase our sequencing budget

for libraries generated with ApeKI, we get a rapid increase in the

number of loci genotyped at a 5, 10 and 20X coverage. At

relatively low sequencing budgets (e.g 1 million reads per sample)

we would expect to genotype more loci with PstI compared to

ApeKI. However, as we increase the sequencing budget, ApeKI

quickly outperforms PstI in terms of the number of loci genotyped.

At a sequencing budget of 2.5 million reads per sample we would

expect to genotype more loci to a 5X coverage with ApeKI.

Ensuring that a common set of loci is genotyped across samples

requires a strong correlation in the coverage levels of individual

loci. Pearson correlation analysis of coverage at loci containing the

selected SNP sites (identified with MAF of 5%, see below) for PstI

and ApeKI libraries was performed between samples and clearly

demonstrates a high correlation in the coverage at each locus

(Figure S1). This confirms that loci sequenced a relatively large

number of times in one sample will be the same loci that are

sequenced a relatively large number of times in all other samples.

SNP Harvest
Each perennial ryegrass variety is generated from a polycross

of multiple parents, and the resulting populations will possess

numerous haplotypes (in excess of 20 in many cases). In order

to get an idea of the potential SNP harvest across the eight

varieties for each restriction enzyme, we pooled together an

equal number of reads from each variety. In the case of the

ApeKI libraries, 12 million quality filtered reads were pooled

from each variety, and in the case of the PstI libraries, 4 million

quality filtered reads were pooled for each variety. Ensuring an

equal contribution from each variety was done to obtain more

accurate estimates of allele frequencies across the eight varieties.

The pool of reads was mapped against the consensus loci, and

the Minor Allele Frequency (MAF) was estimated from the read

coverage. MAF thresholds of either 1 or 5%, and a minimum

of 5 reads supporting each allele was required to call a bi-allelic

SNP. Distribution of SNPs within reads showed that there was

no bias towards SNP identification in the 39 end of reads for

PstI libraries, and only a slight increase in the number of SNPs

found in the last 10–15 bp for ApeKI libraries (Figure S2).

Using a MAF of 5% we identified in excess of 40,000 SNPs

using PstI, and in excess of 640,000 using ApeKI (Table 1).

Many individual loci contained multiple SNPs (Figure S3).

These positions became our reference SNP panel for calling

allele frequencies in individual samples. To do this we mapped

quality filtered reads from each of the 32 samples of both GBS

libraries onto their corresponding consensus loci and filtered for

positions matching the reference SNP panel. The number of

reads per sample after quality filtering ranged between 2.7 and

4.5 million per sample for ApeKI libraries, and between 1.2

and 7.2 million per sample for PstI libraries (after removal of

three poorly represented samples). We then determined the

number of SNPs that we could genotype at different levels of

coverage between 5 and 50X, in at least 75% of our samples

(Table 2). Not surprisingly, as we increase the minimum

coverage threshold required to make a genotype call, the

number of SNPs we are able to genotype in at least 75% of the

samples drops accordingly.

Accuracy of Allele Frequency Calls
Accurate determination of allele frequencies in a population

will be important for many applications and will depend on

both good sampling procedures and sequence coverage. We

performed four ‘sampling replicates’ for each variety to allow

testing of the reproducibility of our sampling protocol. This also

enabled us to compare allele frequency calls between replicates

using various coverage thresholds. If we can determine allele

frequencies accurately, we should see a high level of re-

producibility in our allele frequency calls between the ‘sampling

replicates’. To investigate this we used data from the ApeKI

libraries and calculated the frequency of the variant allele in all

samples at the SNP positions identified with a MAF threshold

of 5% (Table 2). We looked at all the pairwise combinations of

‘sampling replicates’ for each variety. To investigate the effect of

coverage on reproducibility, we placed SNPs into three groups

depending on the coverage at this position falling into one of

three ranges (5#X,10, 10#X,20, X$20) for each of the four

‘sample replicates’. We randomly sampled 1000 SNP positions

from each range to ensure an equal number of data points

between comparisons. Scatter plots of all the possible pairwise

comparisons for the variety Beatrice are shown in Figure 2.

Scatter plots for the remaining varieties showed identical trends

and are shown in Results S2. It is clear from the scatter plots

that as we increase coverage we improve the reproducibility of

our allele frequency calls. The average pearson correlation

values of all pairwise comparisons was 0.67 (stdev: 0.01) with

coverage levels between 5 and 10, 0.76 (stedv: 0.02) with

coverage levels between 10 and 20, and 0.91 (stdev: 0.01) with

coverage levels greater than 20.

Distinguishing Populations Based on Genome Wide
Allele Frequency Fingerprints (GWAFFs)
Principle Component Analysis (PCA) was performed to test our

ability to distinguish populations, in this case perennial ryegrass

varieties, on the basis of GWAFFs. Allele frequencies of the variant

allele were determined at reference SNP sites identified with

a minimum MAF threshold of 5 percent. For PCA, we only

included SNP positions where we were able to call allele

frequencies in all samples (32 samples in the case of ApeKI, and

29 in the case of PstI). At a minimum coverage threshold of 5,

allele frequencies were determined at 21,942 and 10,958 SNP

positions for ApeKI and PstI libraries, respectively. It is important

to note that although we applied a minimum coverage threshold of

5, the actual coverage at many SNP positions will be much higher,

particularly for PstI which is sampling a much smaller portion of

Genome-Wide Allele Frequency Fingerprinting
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the genome. In both cases the ‘sample replicates’ clustered

together, and populations can be distinguished from each other

(Figure 3(A) and (B)). In PstI we get a clearer separation of

populations, despite only half the number of SNP positions. Again,

this can be explained by the mean coverage at each SNP position

being much higher in PstI due to greater genome complexity

reduction.

The eight varieties used in the study are split equally between

forage and turf type. Forage population types are bred primarily

for good vegetative growth and high digestibility, whereas turf

population types are bred primarily for a fine leaf and dense

sward. In Figure 3(C), and 3(D) the samples have been labeled

according to type and we can see a split left and right of 0 on

the first Principle Component (PC). PC1 explains 20 and 14

percent of the variation in the data for PstI and ApeKI

respectively, based on SNP positions with a minimum coverage

threshold of 5.

To determine the effect of the number of SNP positions on our

ability to distinguish populations based on GWAFFs, we randomly

selected between 500 and 10,000 SNP positions from the PstI

libraries. These SNP positions were drawn from the 10,958 that

had at least a coverage of 5 in all samples. PCA was performed

Figure 1. Genotyping potential using different restriction enzymes. Estimating the number of loci we can potentially genotype after
genome complexity reduction with (a) ApeKI, and (b) PstI., Plots zoomed in on low sequencing budgets are shown in (c) ApeKI and (d) PstI. Reads
were randomly sampled to represent different sequencing budgets, and mapped back to the consensus loci that were generated by merging reads
into matching stacks with ustacks. The number of loci achieving a 5, 10, 20, and 50X coverage are shown. Note: the scale of y-axis differs between
plots.
doi:10.1371/journal.pone.0057438.g001
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with each sample size and the results are plotted in Figure 4. At

only 500 SNP positions, it becomes difficult to clearly distinguish

all populations, chiefly for the three most similar populations based

on GWAFFs, Mongita, Sponsor, and Glenveagh (Figure 4(A)). As

the number of SNP positions on which the GWAFFs are based

increases, our ability to distinguish populations improves

(Figure 4(A)–(H)).

Discussion

The genotyping-by-sequencing (GBS) method described by [5]

is a simple and robust genotyping approach for genome-wide

analysis. We investigated the utility of using this approach for the

determination of allele frequencies in populations. These Genome

Wide Allele Frequency Fingerprints (GWAFFs) have numerous

applications in both basic and applied research.

Choosing a Genome Complexity Reduction Strategy
Controlling the extent of genome complexity reduction is

achieved by choosing different restriction enzymes. We tested two

restriction enzymes that differ in the length of their recognition

sites. ApeKI and PstI have a 5 bp and 6 bp recognition site,

respectively. Furthermore, the ApeKI recognition site includes

a 1 bp wobble. The utility of ApeKI for genome complexity

reduction has already been reported for maize, where it was found

to preferentially cut in the low-copy fraction of the genome [5]. It

samples a large portion of the genome, as can be seen by the

identification of 1,955,745 non redundant tags (loci) in this study,

which is in stark contrast to the 252,879 loci identified using PstI.

This ability to control the extent of genome complexity reduction

is very useful, given that different applications will have different

requirements when it comes to marker density. Each locus

represents a potential marker, and the number that can be

successfully converted to markers will be dependent on the

population size, diversity and the Minor Allele Frequency (MAF)

thresholds used for calling variants. However, with large enough

population sizes and abundant diversity, we could envisage the

vast majority of loci to contain a polymorphism. This was certainly

the case in maize where they sequenced approximately 93 Mbp of

the genome in a panel of 27 highly diverse inbred lines and found

that 1 in every 44 bp harbored a polymorphism [4]. The choice

between frequent and less frequent cutting enzymes is straight

forward in many cases, e.g. population based studies in species

with low linkage disequilibrium (LD) will require very high marker

densities, whereas little benefit will be gained from such marker

densities when working on within-family populations. When very

little is known about the LD structure within a population, e.g. for

specific breeding material, the choice can be more difficult. The

availability of a reference genome will make the imputation of

missing data possible when sequence coverage is low [18],

however, this will not be possible in the many species without

a reference genome. If each locus had an equal probability of

being sequenced, then calculation of the sequencing depth

necessary would be straight forward. However, each locus will

be sequenced to varying degrees of coverage, and we have seen

that this is highly correlated between samples (see figure S1). In

order to predict the number of loci we could expect to genotype at

different coverage levels, we randomly sampled reads to simulate

different sequencing budgets and aligned them back to the set of

consensus loci. At lower sequencing budgets we can expect to

genotype more loci using PstI. However, as we begin to increase

the sequencing budget, ApeKI quickly becomes a better alterna-

tive in terms of the numbers of loci we can genotype. However, if

Table 1. Number of SNPs identified using a pool of equal
numbers of quality filtered reads from each of eight varieties,
totaling 96 million for ApeKI libraries, and 32 million for PstI
libraries.

Enzyme
Minimum
MAF No. SNPs

Non redundant loci
with SNPs

PstI 1% 52,020 27,593

5% 40,621 24,583

ApeKI 1% 780,204 368,915

5% 643,498 354,988

SNPs were identified using a Minor Allele Frequency (MAF) of 1 or 5 percent.
doi:10.1371/journal.pone.0057438.t001

Table 2. The number of SNP positions from the reference panel that was identified in the pooled data set, which could be
genotyped in at least 75 percent of individual samples with increasing minimum coverage thresholds.

Enzyme No. SNPs predicted at MAF 5%a Coverage SNPs genotyped in 75% of samplesb

5X 18,100

10X 14,527

PstI 40,621 15X 12,424

20X 10,870

25X 9,593

50X 5,939

5X 80,902

10X 27,067

ApeKI 643,798 15X 12,380

20X 7,328

25X 5,168

50X 1,975

aReference SNP panel identified with a MAF of 5 percent in data pooled from equal numbers of reads of all eight varieties.
b32 samples for ApeKI libraries, and 29 for PstI libraries (three samples were removed due to very low sequencing coverage).
doi:10.1371/journal.pone.0057438.t002
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we require a greater sequencing depth at a relatively smaller

number of loci, then it will be achieved at lower sequencing

budgets using PstI. Certain applications may benefit from the

rapid increase in the number of loci genotyped as we increase the

sequencing budget. An example would be when developing

genomic selection strategies in material with an unknown LD

structure. After an initial round of genotyping it may become

apparent that LD rapidly decays between markers and further

genotyping is necessary. Further sequencing of ApeKI libraries will

yield these additional markers, e.g. in our analysis with simulated

sequencing budgets, going from 10 million to 20 million reads

results in a 43% increase in the number of loci with a minimum

sequencing depth of 5. The additional sequencing will have the

added benefit of increasing the coverage of those loci already

genotyped, which will be particularly beneficial for improving the

accuracy of allele frequency calls. In the case of PstI the potential

addition of markers will be limited by the much lower number of

‘sequence ready fragments’ generated through PstI library

construction. Here, additional marker generation would require

Figure 2. Correlation between allele frequency estimates. Scatter plot matrices between ‘sample replicates’ from the variety Beatrice of the
frequency of the variant allele at 1000 randomly selected SNP positions from each of three groupings (a) SNPs with coverage between 5 and 10X in all
samples, (b) SNPs with coverage between 10 and 20X in all samples, and (c) SNPs with coverage greater than 20X in all samples. The x and y axis show
the frequency of the variant allele. Least squares regression line is shown by solid green line, and Loess smooth is shown by broken red line.
doi:10.1371/journal.pone.0057438.g002
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the creation of additional libraries with different restriction

enzymes.

Genome Wide Allele Frequency Fingerprints (GWAFFs)
GBS offers an excellent tool to generate Genome Wide Allele

Frequency Fingerprints (GWAFFs) for a given population. We

have demonstrated this by generating GWAFFs for perennial

ryegrass varieties, which are synthetic populations derived from

a poly-cross of multiple genotypes. We generated GWAFFs in four

replicates of each of eight populations to evaluate reproducibility.

PCA showed that the ‘sample replicates’ of each variety were

indistinguishable based on GWAFFs, which highlights that our

sampling protocol is reproducible. Sampling will be an important

consideration for generating accurate GWAFFs of a population. In

our case it involved germinating a large quantity of seed from each

variety and taking consideration to pool approximately equal

amounts of tissue from each germinated seedling. However,

different applications and biological systems will require their own

suitable sampling approach. The ‘sample replicates’ also allowed

us to evaluate the reproducibility of our allele frequency calls. We

performed pearson correlation analysis between the frequency of

the variant allele in each sample. Not surprisingly, reproducibility

improves as we increase coverage. At coverage levels greater than

20, we see very strong correlations (average r = 0.91, stdev: 0.01,

correlations using n= 1000), but even at relatively low coverage

levels of between 5 and 10, we also see evidence of strong

correlations (average r = 0.67, stdev: 0.01, correlations using

n= 1000).

Using a minimum coverage threshold of 5 we were able to

distinguish varieties from one another with GWAFFs based on

allele frequency calls at 20,942 and 10,958 SNP positions for

ApeKI and PstI libraries, respectively. We evaluated our power to

distinguish varieties with different SNP numbers, and it was clear

that as the number of SNP positions for which we have allele

frequency calls increases, our ability to distinguish between

varieties improves correspondingly (Figure 4). GWAFFs based

on allele frequencies at a very low number of SNP positions (e.g.

Figure 3. Distinguishing populations based on GWAFFs. Principle Component Analysis (PCA) of GWAFFs based on SNP positions having
a minimum coverage of 5 in all samples. (A) and (C) GWAFFs based on allele frequencies of the variant allele at 21,942 SNP positions in ApeKI, (B) and
(D) GWAFFs based on allele frequencies of the variant allele at 10,958 SNP positions in PstI. Colours in A and B correspond to the varieties; Beatrice
(black), Chardin (Green), Stolon (grey), Greenway (sky blue), Glenveagh (dark blue), Sponsor (yellow), Mongita (purple), and Bronzyn (red). Colours in C
and D correspond to type; forage (black), turf (red).
doi:10.1371/journal.pone.0057438.g003
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Figure 4. Ability to distinguish between populations using varying numbers of SNPs. Principle Component Analysis (PCA) of GWAFFs
based on SNP positions having a minimum coverage of 5 in all samples of PstI library. PCA was performed using a series of randomly selected SNP
positions to evaluate the effect of the number of SNP positions on ability to distinguish between populations; (A) 500, (B) 1000, (C) 1500, (D) 2000, (E)
4000, (F) 6000, (G) 8000, and (H) 10000. Colours correspond to the varieties; Beatrice (black), Chardin (Green), Stolon (grey), Greenway (sky blue),
Glenveagh (dark blue), Sponsor (yellow), Monigta (purple), and Bronzyn (red).
doi:10.1371/journal.pone.0057438.g004
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500), does not enable all varieties to be distinguished from one

another.

In addition to distinguishing between varieties, GWAFFs also

enable the partitioning of varieties into forages and turf types on

the first principle component. This demonstrates the utility of

using GWAFFs for analyzing variation on a population level. The

usefulness of GWAFFs lies in their ability to measure the

frequency of alleles in a population on a genome-wide scale,

without the need to genotype a representative number of

individuals from a population. Furthermore, like using GBS on

single individuals, it incorporates discovery and characterization of

genetic variation in a single step. This avoids any problems with

SNP ascertainment bias. In this study we performed multiplexing

of 32 barcoded samples in all our libraries, however, it is possible

to increase the level of multiplexing. The degree of multiplexing

that can be achieved will depend on (1) the level of throughput of

the sequencing instrument, (2) the degree of genome complexity

reduction, and (3) the level of coverage required to accurately call

allele frequencies at the required number of SNP positions, given

the complexity of the population. Current throughput on the

Illumina HiSeq 2000 instrument is up to 1.5 billion single end

reads per flow cell or up to 200 million reads per flow cell lane.

However, throughput has been continually rising over the years so

there is potential that this will increase further in the future. The

two enzymes we tested in the current study differed greatly in the

number of loci they generated for sequencing, and particularly in

the case of PstI, there will be an opportunity to increase the

number of populations that can be multiplexed. The variation in

coverage across loci means that a percentage will have a relatively

high coverage and can be used to generate a high quality GWAFF

of the population. As more sequencing is done, more positions will

be added to this high quality set. A useful approach for library

creation may be to generate a library containing all populations to

be multiplexed and sequencing this library on multiple lanes

progressively. Using this strategy, the number of reads per sample

can be monitored and additional ‘top-up’ libraries can be prepared

to boost populations with low output. This will help to keep the

variation in coverage between samples low, resulting in less

missing values.

Applications of GWAFFs
GAWFFs have numerous potential applications, including in

the breeding of outbreeding species reliant on population-based

breeding strategies. These species include forage legumes, forage

grasses, oil palm and sugar beet. Many perennial ryegrass breeding

programs use full-sib progeny selection in cultivar development,

and accurate evaluation of many traits, including yield, must be

done in swards [19]. It may be possible to use GWAFFs in

combination with phenotypic data from the populations to

develop genomic selection models. This is currently the focus of

a project involving DLF-Trifolium and Aarhus University (http://

www.forageselect.com/?lang = en). GWAFFs may also have

application in breeding and genetic studies of allotetraploid

species, where allele dosage is an important consideration.

Approaches to determine allele dosage from array based SNP

assays, which rely on signal intensity being proportional to allele

dosage have already been evaluated [20]. Using a GBS strategy to

develop GWAFFs would enable SNP discovery and accurate

genotyping in a single step, thus ensuring the SNP panel is

appropriate for the material under evaluation.

Another very interesting application of GWAFFs is in the

monitoring of population structure over time. A good example of

this is in the case of grasslands, which can undergo re-seeding

infrequently. Over the years, it is likely that changes will occur in

population allele frequencies, to a point where the population

becomes significantly different from the original variety sown.

These shifts in allele frequency may be the result of selection

pressures not necessarily associated with improved productivity,

and therefore the agricultural fitness of the grassland may decrease

over time. Breeding varieties that can persist and produce stable

grasslands for longer periods would be of significant benefit.

GWAFFs could serve as an excellent tool to evaluate varietal

persistence and relate changes in GWAFFs to changes in

productivity. Other areas where monitoring shifts in genome-wide

population allele frequencies may have a role include; monitoring

plant pathogen populations over time or in response to different

hosts, landscape genomics, and monitoring changes in genebank

populations after multiplication. It may also be of assistance in

reducing redundancy in under resourced genebanks, where

duplicate accessions could be merged or one of the duplicates

‘‘archived’’ to reduce maintenance costs [21]. GWAFFs may be an

economical way of evaluating diversity between accessions without

the need for single plant genotyping.

GWAFFs may also have a function in varietal protection of

outbreeding populations and allotetraploid species. Variety

registration is based on the DUS system, which specifies that

a variety must be distinct, stable, and uniform [22]. In the case of

perennial ryegrass varieties, this involves the evaluation of

numerous characteristics on 60 individual genotypes selected to

represent the population. This is a huge amount of work because

all new candidate varieties need to be evaluated against the

complete back catalogue of registered varieties. Furthermore, as

these characteristics are environmentally dependent, evaluation

needs to be performed over multiple years. In this study we were

able to distinguish varieties based on GWAFFs, and could see that

our ability to distinguish between them improved as allele

frequencies were obtained at greater numbers of SNP positions.

GWAFFs may have a role to play in both determining distinctness,

and evaluating stability of the variety through different submis-

sions.

Summary
This study highlights the ease at which current genotyping-by-

sequencing strategies can be utilized to evaluate allele frequencies

in population’s at large numbers of SNP positions across the

genome. The resulting profiles have been termed Genome Wide

Allele Frequency Fingerprints (GWAFFs), and we have shown that

these fingerprints are reproducible and can be used to distinguish

between plant populations. Even at current costs and throughput,

using sequencing to directly evaluate populations on a genome

wide scale is viable. GWAFFs should find many applications, from

varietal development in outbreeding species right through to

protection of plant breeders’ rights.
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identified with a MAF threshold of 5% on the right.
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Figure S3 Barcharts showing the number of SNPs per
loci for ApeKI (top) and PstI (bottom) libraries.
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Methods S1 Evaluation of alternative restriction en-
zymes tested for their potential to generate suitable GBS
libraries for perennial ryegrass.
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