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Abstract

Background: While clinical trials are considered the gold standard for detecting
adverse events, often these trials are not sufficiently powered to detect difficult to
observe adverse events. We developed a preliminary approach to predict 135
adverse events using post-market safety data from marketed drugs. Adverse event
information available from FDA product labels and scientific literature for drugs that
have the same activity at one or more of the same targets, structural and target
similarities, and the duration of post market experience were used as features for a
classifier algorithm. The proposed method was studied using 54 drugs and a
probabilistic approach of performance evaluation using bootstrapping with 10,000
iterations.

Results: Out of 135 adverse events, 53 had high probability of having high positive
predictive value. Cross validation showed that 32% of the model-predicted safety
label changes occurred within four to nine years of approval (median: six years).

Conclusions: This approach predicts 53 serious adverse events with high positive
predictive values where well-characterized target-event relationships exist. Adverse
events with well-defined target-event associations were better predicted compared
to adverse events that may be idiosyncratic or related to secondary target effects
that were poorly captured. Further enhancement of this model with additional
features, such as target prediction and drug binding data, may increase accuracy.
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Background
The Food and Drug Administration’s (FDA) proposed process modernization to sup-

port new drug development involves establishing a unified post-market safety surveil-

lance framework to monitor the benefits and risks of drugs across their lifecycles [1].

While clinical trials are considered the gold standard for detecting and labeling adverse

events, these trials are not sufficiently powered to detect less common adverse events.

Additionally, some adverse events emerge when a drug is used in clinical practice out-

side of the specified inclusion/exclusion criteria. Some adverse events may have high

prevalence in specific subpopulations who were not enrolled in the clinical trials or

subgroups who cannot be identified based on information collected from patients in
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the trials. For example, a substantially increased risk of Stevens-Johnson syndrome in

patients positive for the HLA-B*1502 allele taking carbamazepine was not identified

until decades after approval [2]. In addition, concomitant medications (drug-drug inter-

actions) and comorbidities may also contribute to adverse events, and these interactions

are not always adequately present or captured in clinical trials. Therefore, post-market

safety surveillance is crucial.

FDA uses the FDA Adverse Event Reporting System (FAERS) [3] and the Sentinel

Initiative [4] to obtain information about adverse events occurring after drug approval.

In 2017, over 1.8 million adverse event cases were reported to the FDA, including

nearly 907,000 serious reports and over 164,000 fatal cases [5]. While traditional phar-

macovigilance relies on data mining systems, these methods have reporting biases and

require manual review of cases to determine reporting accuracy. Recently, there has

been a strong interest in developing prediction algorithms to assist in post-market sur-

veillance to overcome such weaknesses and make post-market pharmacovigilance more

efficient.

Adverse event information from a variety of sources such as FAERS, literature, gen-

omic data, and social media has been used to both evaluate adverse events and make

predictions. For example, FAERS and similar post-market databases have demonstrated

utility in adverse event prediction; Xu and Wang showed FAERS, combined with litera-

ture, had great utility in detecting safety signals [6]. Others have used chemical struc-

ture as the basis for adverse event predictions. Vilar and colleagues used molecular

fingerprint similarity to drugs with a known association with rhabdomyolysis to further

support and prioritize rhabdomyolysis signals found in FAERS [7]. Another unique op-

tion has been to use social media reports to identify new adverse events for drugs be-

fore they are reported to regulatory agencies or in peer-reviewed literature; Yang and

colleagues used a partially supervised classification method to identify reports of ad-

verse events on the discussion forum for Medhelp [3]. Other sources of information for

adverse event prediction and detection include electronic health records, drug labels

and even bioassay data [8–10]. Additionally, a wide variety of algorithms have been

used to make adverse event predictions, including logistic regression models, support

vector machine, and ensemble methods [8, 11, 12]. Many of these models have experi-

enced varying degrees of success but overall demonstrate the great potential of develop-

ing an adverse event prediction model using a classifier.

However, many of these methodologies have focused on predicting a specific ad-

verse event (e.g. cardiovascular events) or drug class (e.g. oncology drugs) [12–14].

Algorithms that can predict a wide variety of adverse events for multiple drug clas-

ses are important to enhance post-market safety surveillance. We have previously

developed a genetic algorithm to predict approximately 900 adverse events using

FDA product labels and FAERS data [15]. In this study, we build on this algorithm

to predict 135 adverse events of high priority to regulatory review using safety data

from marketed drugs with one or more shared molecular targets. We hypothesize

that drugs that have similar modes of action at the same targets will have a similar

adverse event profile because of shared structural features and likely target binding

characteristics. We additionally expect adverse events that are more closely associ-

ated with drug targets (such as serotonin syndrome) to be well-predicted via this

methodology. Some idiosyncratic reactions may also be captured well because the
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shared structural features likely play a role in these reactions where the targets and

actions have not yet been fully characterized.

Results
Inclusion and exclusion criteria resulted in 54 test drugs and 213 unique comparator

drugs, leading to 287 test-comparator drug combinations. The 54 test drugs used in

this study had one to 37 comparator drugs, with one and two comparators being most

frequent, as identified by DrugBank (Fig. 1a), and were on the market four to nine years

(Fig. 1b). Tanimoto similarity scores between test drugs and comparator drugs ranged

between 0.02 and 1, with 0.51 being the mean and 0.5 being the mode. Eighteen test

drug-comparator associations included a biologic, as defined by a − 1 Tanimoto score

(Fig. 1c). Target cosine similarity scores between test drugs and comparator drugs

ranged between 0 and 1, with 0.45 being the mean and 1 being the mode (Fig. 1d).

Seventy-nine comparator drugs were approved before 1982, while the most recently ap-

proved comparator drug had five years of time in market (Fig. 1e). The 54 test drugs

are known to bind to 126 targets based on DrugBank data (summarized in Supplemen-

tal Table 1).

The prevalence of the 135 adverse events considered in this study is summarized in

Fig. 2. The overall prevalence of adverse events was higher in the comparator drugs.

Prediction models were not made for 26 adverse events that were not observed or ob-

served only in one test drug label (accident, anaphylactoid reaction, aplastic anaemia,

apnoea, atrioventricular block, azotaemia, cardiomyopathy, cerebral infarction, coagu-

lopathy, colitis, colitis ulcerative, Crohn’s disease, dermatitis bullous, dermatitis

Fig. 1 Characteristics of test drugs, comparator drugs and test-comparator drug combinations. a)
Distribution of number of comparator drugs for test drug. b) Distribution of time on market for test drugs.
c) Tanimoto score distribution for test-comparator drug combinations. d) Target similarity score distribution
for test-comparator drug combinations. e) Distribution of time on market for comparator drugs
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exfoliative, gastric ulcer, granulocytopenia, hepatic necrosis, hypokinesia, injury, myop-

athy, oliguria, respiratory depression, road traffic accident, skin ulcer, thrombosis, and

ulcer).

Results at varying thresholds (the minimum percentage of comparator drugs which

are predicted positive for an adverse event to result in a positive prediction) for the

safety label change evaluation and the number of adverse events with left-skewed posi-

tive predictive value, which demonstrated a high probability for high positive predictive

value, are summarized in Table 1. Based on these results, we selected 70% as the

optimum threshold. This resulted in the highest number of adverse events with high

positive predictive values along with a high percentage of predicted safety label changes

that were also issued by FDA (32%). All performance histograms at 70% threshold for

each adverse event are provided in supplementary materials. Positive predictive value

histograms of two well-predicted (i.e. left-skewed histograms) adverse events (febrile

Fig. 2 Prevalence of adverse events within comparator drugs and test drugs

Table 1 Performance of the algorithm when the threshold to make a positive prediction was
varied

Threshold FDA-issued safety label changes
that were correctly predicted (%)

Predicted safety label changes
that were also FDA-issued (%)

Number of adverse events with
a high positive predictive value

0 43 13 11

10 39 14 19

30 32 18 28

50 18 28 42

60 17 29 49

70 13 32 53

90 11 34 48
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neutropenia and hypertension) and two poorly-predicted (i.e. right-skewed histograms)

adverse events (bacterial infection and haemorrhage) are shown in Fig. 3.

Fifty-three adverse events showed 100% as the positive predictive value mode, with

the median between 50 and 100, 25% quantile between 0 and 100, and 75% quantile at

100%, which suggests left-skewed distributions. By having a left-skewed distribution for

positive predictive value, these adverse events were considered well-predicted, which

suggests high probability of having high positive predictive value (Table 2). Addition-

ally, these adverse events had a sensitivity mode between 0 and 100%, specificity mode

of 100%, and negative predictive value mode of 50–100%.

Fifty-six adverse events had positive predictive values mode between 0 and 33%,

which suggested right-skewed distribution and thus were considered poorly-predicted

(Table 3). While the positive predictive value was low, all these adverse events did have

high specificity (mode: 76–100%) and negative predictive value (mode: 55–91%). Two

adverse events, bacterial infection and fungal infection, additionally had high sensitivity

(mode: 100%) (Table 3).

Discussion
In this study we developed a preliminary approach to predict 135 adverse events of

high priority to regulatory review using post-market safety data from marketed drugs

that have the same activity at one or more of the same targets. We identified 53 adverse

events that were well-predicted with this approach and chose to use a threshold which

optimizes positive predictive value. These adverse events had varying sensitivity, but

high specificity and negative predictive value. A model with high positive predictive

value but low sensitivity will miss some true adverse events, but this was deemed

Fig. 3 Left-skewed positive predictive value histograms demonstrated well-predicted adverse events, as
shown in a) Febrile Neutropenia and b) Hypertension. Right-skewed positive predictive value histograms
demonstrated poorly-predicted adverse events, as shown in c) Bacterial Infection and d) Haemorrhage
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acceptable for this study. In discussions about optimizing either positive predictive

value or sensitivity in this study, it was deemed more important to identify adverse

events that are most likely to be true and save time and effort sifting through false posi-

tives. In practice, a balance between sensitivity and positive predictive value would

likely be optimal in conjunction with a manual review of predictions.

Adverse event predictions based on molecular targets have multiple applications. We

may be able to identify difficult to observe events that are not commonly seen in clin-

ical trials to statistical significance. Predicted adverse events may be able to augment

post-marketing surveillance activities by providing a list of adverse events to monitor. If

an adverse event is discovered during pre-market evaluation or post-market utilization,

examination of other drugs with similar pharmacologic mechanism and activity may

help evaluate causality of the event and determine if further studies are necessary based

on information from all comparators, not necessarily limited to those with the same in-

dication. Particularly, examination of secondary targets may be useful, as this may ex-

plain the emergence of an adverse event or why a particular drug is at lower risk for

adverse events traditionally labeled as a class adverse event. While the preliminary ap-

proach presented here is considered a tool for hypothesis generation, further evaluation

and refinement will determine if it is useful in regulatory safety review.

The method reported in this study matches safety data based on drug activity at one

or more of the same known targets. This may limit the predictive ability, as some ad-

verse events may be idiosyncratic or be associated with unknown secondary targets,

and thus the mechanisms responsible for the event have not yet been identified. Associ-

ations may still be identified, however, if overlapping structural features capture this

unknown shared idiosyncratic activity. This method can be expanded to match a drug

not only based on drug activity at one or more of the same targets, but also considering

other features which characterize the drug activity, such as Anatomical Therapeutic

Chemical (ATC) codes or binding strength (Ki). ATC codes, developed by the World

Health Organization, may provide insight into drugs that are related by mechanism or

therapeutic use [16]. Binding strength to targets of interest, which may be obtained

from literature or databases such as the Psychoactive Drug Screening Program [17] or

ChEMBL [18], may provide further classification of target similarity by identifying com-

parator drugs that bind to targets of interest at a similar order of magnitude. The

model also does not capture drug dose that may be needed to produce the required tar-

get activity.

Fifty-six adverse events were predicted with low positive predictive value. Therefore,

a positive prediction for these adverse events should be carefully reviewed by experts

before reaching a conclusion. In practice, expert review augments this by assessment of

FDA Adverse Event Reporting System (FAERS) reports, literature, and more recently

evaluations using insurance claims and electronic health data. Reviewers may examine

predictions made by this algorithm by reviewing literature and other databases to iden-

tify plausible mechanisms for the drug eliciting the reaction, or review cases in FAERS

and electronic health records. More detail about evaluation of safety signals at the FDA

can be found in Szarfman et al. [19]. Analysis of the poor-performing adverse events in

this study identified several clinical patterns: hemorrhage (including “haemorrhage”,

“haematoma”, and “rectal haemorrhage”), infection (including “cellulitis”, “fungal infec-

tion”, and “bacterial infection”), and psychiatric (including “paranoia”, “delirium”, and
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“hallucination”) adverse events were among the worst-performing events by positive

predictive value. Many of these adverse events may be idiosyncratic or related to un-

known secondary target effects, and therefore it is difficult to predict an adverse event

based on the known drug targets. This study may have been limited by the known tar-

gets that are available in DrugBank, as DrugBank may not contain all known secondary

targets for all drugs. To better capture adverse events that may be related to secondary

drug targets, target prediction for the test drugs and comparator drugs may be incorpo-

rated to better match comparator drugs to test drugs. DrugBank contains limited target

predictions, so another source would be used.

This study had several limitations. First, the current version of Embase only al-

lows users to extract manually curated adverse events by date for one drug at a

time, which makes this process time-intensive for a large set of test drugs and

their comparators and thus limited the number of drugs used in this study. We

tried to address this limitation by using a probabilistic approach of performance

evaluation using bootstrapping. Creating a tool to automate extraction of these ad-

verse events may alleviate the manual burden. Additionally, text-mining FDA labels

for adverse events is most accurate when used on a structured document, and thus

we elected to use test drugs that had labels available in SPL format. While an as-

sessment of the text-mining for 20 labels showed positive predictive value, sensitiv-

ity, and F-score at approximately 90% (unpublished data, Racz et al., 2018), we

anticipate larger text-mining errors. This assessment identified patterns in the text-

mining algorithm that may lead to errors, and the query is currently being updated

to improve performance. Finally, several adverse events were not observed or ob-

served with low prevalence in the test drug set. Further analysis of these adverse

events identified some events that may be associated with targets that were not

substantially analyzed. This includes events such as “respiratory depression”, which

is particularly associated with drugs such as benzodiazepines and opioids and their

related receptors [20], and “hypokinesia”, which may be associated with dopamine

receptors [21]. Other adverse events, such as “anaphylactoid reaction” and “apnea”,

may be reported interchangeably with other MedDRA Preferred Terms, such as

“anaphylactic reaction” and “sleep apnea”, respectively; therefore, these terms may

be reported in lower frequency. To better capture this, we may consider alternative

groupings or adding additional terms to complete a mechanistically-related

grouping.

Conclusions
This classifier algorithm predicts significant adverse events that are of high priority for

regulatory monitoring, some of which may be difficult to observe in clinical trials. The

prediction algorithm uses evidence of adverse events available through FDA product la-

bels and scientific literature for drugs that have the same activity at one or more of the

same targets along with structural and target similarities and the duration of post-

market experience. For this study, we prioritized achieving high positive predictive

value for the adverse event prediction. The model achieved high positive predictive

value on 53 out of 135 adverse events, including several adverse events with well-

characterized target relationships. We found that 32% of the model predicted safety

label changes were FDA-issued within four to nine years after approval.
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Methods
Selection of adverse events for evaluation

This methodology predicts 135 adverse events identified by FDA medical experts and

reviewers to be of high priority to regulatory review and the pharmacovigilance efforts

of the Office of Surveillance and Epidemiology. High priority was determined by FDA

pharmacovigilance experts as events that are serious, may be life-threatening or debili-

tating, or represent frequent events that result in the need for safety label changes.

These 135 adverse events were derived using 167 MedDRA Preferred Terms, grouped

by mechanistic similarity according to FDA medical experts. For example, “pancreatitis”

and “pancreatitis acute” are mechanistically similar and may be reported interchange-

ably, thus they were captured as one adverse event, “pancreatitis”. The 135 adverse

events and the 167 MedDRA Preferred Terms used to define them are listed in Table 4.

MedDRA is the Medical Dictionary for Regulatory Activities and is the international

medical terminology developed under the auspices of the International Council for

Harmonization of Technical Requirements for Pharmaceuticals for Human Use [22].

MedDRA Preferred Terms are medical concepts for symptoms, signs, diagnoses, indica-

tions, investigations, procedures, and medical, social, or family history. The FDA Ad-

verse Event Reporting System (FAERS) currently codes reported adverse events as

MedDRA Preferred Terms, and all terms from other sources were converted to Med-

DRA Preferred Terms as described below.

Dataset

Drug set selection

Selection of test drugs Fifty-four drugs approved by FDA between 2008 and 2013

were chosen for this analysis. Analyses were based on available Structured Product La-

beling for products and required both an original label and a subsequent version of the

label for this assessment. As Structured Product Labeling began in 2006, 2008 was se-

lected to allow time for the requirement to be adequately implemented. The year 2013

was selected as the upper bound to allow at least four years of post-market experience

to 2017, which is the median time for a regulatory action on a safety event (e.g. updat-

ing a drug label) [23]. Of the drugs approved between 2008 and 2013, drugs were in-

cluded as long as there was at least one other U.S. marketed drug with the same

pharmacological activity at one or more of the same known targets. Additional inclu-

sion criteria were systemic exposure (e.g. not ophthalmic only) and multiple doses (i.e.

drugs with single dose administration were excluded) due to an increased likelihood of

multiple and significant adverse events.

Selection of comparator drugs Comparator drugs, defined as drugs that have the

same activity (i.e. agonist or antagonist) at one or more of the same targets as the test

drug, were chosen using DrugBank [24]. Test and comparator drug targets were identi-

fied if the drug had “pharmacological action” at the target (i.e. the column “pharmaco-

logical action” in DrugBank must read “yes” as opposed to “no” or “unknown”) and

must have a defined action column in DrugBank (i.e. “antagonist” or “agonist”) at the
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Table 4 Adverse events defined using MedDRA Preferred Terms. The bolded MedDRA Preferred
Term is used to name the adverse event, while all MedDRA Preferred Terms grouped together
were used to define that adverse event

Adverse Event

ACCIDENT CONFUSIONAL STATE HALLUCINATION PULMONARY OEDEMA

ACUTE KIDNEY INJURY CONJUNCTIVITIS HEPATIC FAILURE RECTAL
HAEMORRHAGE

AGGRESSION CROHN’S DISEASE HEPATIC NECROSIS RENAL FAILURE

AGRANULOCYTOSIS DEAFNESS HEPATITIS RENAL IMPAIRMENT

AMNESIA DEEP VEIN THROMBOSIS HOSTILITY RESPIRATORY
DEPRESSION

ANAEMIA DELIRIUM HYPERSENSITIVITY RHABDOMYOLYSIS

ANAPHYLACTOID REACTION DELUSION HYPERTENSION ROAD TRAFFIC
ACCIDENT

ANGINA PECTORIS DERMATITIS BULLOUS HYPOGLYCAEMIA SEROTONIN
SYNDROME

ANGIOEDEMA DERMATITIS EXFOLIATIVE ABASIA SKIN ULCER

APLASTIC ANAEMIA DIABETES MELLITUS IMPAIRED HEALING SLEEP DISORDER

APNOEA DIPLOPIA INFECTION STOMATITIS

ARRHYTHMIA DISORIENTATION INJURY SUDDEN DEATH

ATRIOVENTRICULAR BLOCK DYSGEUSIA INSOMNIA TACHYCARDIA

AZOTAEMIA EMBOLISM INTERSTITIAL LUNG
DISEASE

THROMBOCYTOPENIA

BACTERIAL INFECTION EOSINOPHILIA LARYNGEAL OEDEMA THROMBOPHLEBITIS

BLINDNESS ERYTHEMA MULTIFORME LEUKOPENIA THROMBOSIS

BONE MARROW FAILURE COLITIS ULCERATIVE MEMORY IMPAIRMENT TINNITUS

BRADYCARDIA FALL MYOPATHY TOXIC EPIDERMAL
NECROLYSIS

BRONCHITIS FEBRILE NEUTROPENIA MYOSITIS ULCER

CANDIDA INFECTION FRACTURE NEUTROPENIA VISION BLURRED

CARDIAC ARREST FUNGAL INFECTION OLIGURIA URINARY TRACT
INFECTION

CARDIOMYOPATHY GLAUCOMA PANCYTOPENIA URTICARIA

CATARACT GRANULOCYTOPENIA PARALYSIS VAGINAL
HAEMORRHAGE

CELLULITIS HAEMATOMA PARANOIA VASCULITIS

GASTROINTESTINAL
HAEMORRHAGE

NEUROLEPTIC
MALIGNANT SYNDROME

PHOTOSENSITIVITY
REACTION

UPPER RESPIRATORY
TRACT INFECTION

CHOLESTASIS HAEMOLYTIC ANAEMIA PNEUMONIA WEIGHT INCREASED

COAGULOPATHY HAEMORRHAGE PROTEINURIA SEIZURE, EPILEPSY

COLITIS CEREBRAL INFARCTION PULMONARY EMBOLISM SEPSIS, SEPTIC SHOCK

STEVENS-JOHNSON
SYNDROME

EXTRAPYRAMIDAL
DISORDER

JAUNDICE, JAUNDICE
CHOLESTATIC

RESPIRATORY ARREST,
RESPIRATORY
FAILURE

ANAPHYLACTIC REACTION,
ANAPHYLACTIC SHOCK

NEUROPATHY
PERIPHERAL,
PARAESTHESIA

HYPERGLYCAEMIA,
BLOOD GLUCOSE
INCREASED

OEDEMA PERIPHERAL,
OEDEMA

CARDIAC FAILURE
CONGESTIVE, CARDIAC
FAILURE

TORSADE DE POINTES,
ELECTROCARDIOGRAM
QT PROLONGED

MYOCARDIAL
INFARCTION, ACUTE
MYOCARDIAL INFARCTION

ATRIAL FIBRILLATION,
SUPRAVENTRICULAR
TACHYCARDIA

CEREBRAL HAEMORRHAGE,
HAEMORRHAGE
INTRACRANIAL, CEREBELLAR

SUICIDAL BEHAVIOUR,
COMPLETED SUICIDE,
SUICIDE ATTEMPT,

VENTRICULAR
FIBRILLATION,
VENTRICULAR ARRH

HYPERKINESIA,
TARDIVE DYSKINESIA,
DYSKINESIA,
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target. Additionally, the comparator drugs must have been approved in the United

States and thus have an FDA product label available.

Features for classifier algorithm

Adverse Events from FDA drug labels

Adverse events were obtained from two versions of the test drug label: the originally-

approved FDA product label (between 2008 and 2013) and the drug label as of 2017.

The adverse events from the 2017 FDA product label were text-mined using Lingua-

matics I2E (OnDemand Release, Linguamatics Limited, Cambridge, United Kingdom).

Adverse events were extracted as MedDRA Preferred Terms from the Boxed Warnings,

Warnings and Precautions, and Adverse Reactions sections. The adverse events from

the original product label were manually extracted and translated to MedDRA Pre-

ferred Terms by a medical expert from the Boxed Warnings, Warnings and Precau-

tions, and Adverse Reactions sections. Manual curation was employed as Linguamatics

OnDemand text-mines the current product label only.

Comparator drug adverse events were text-mined using Linguamatics I2E (Enterprise

Release, Linguamatics Limited, Cambridge, United Kingdom). Adverse events were ex-

tracted as MedDRA Preferred Terms from Boxed Warnings, Warnings and Precau-

tions, and Adverse Reactions sections. For each comparator drug, the FDA product

label in use at the time of the respective test drug approval was used as the source for

text-mining (e.g.: if a test drug was approved on November 1, 2010, the comparator

drug labels that were in use on November 1, 2010 were mined).

For each drug label and adverse event, the presence or absence of a MedDRA Pre-

ferred Term was indicated by “1” or “0”, respectively. The classifiers were trained on

and performance was analyzed using test drug label data from 2017. To assess the algo-

rithm’s ability to predict future safety label changes at the approval date (described in

detail in “Classifier” below), the difference between drug label data from 2017 and the

label at approval (2008–2013) was used.

Adverse events from scientific literature

Adverse events from scientific literature were mined using Embase Biomedical Database

(Elsevier B. V, Amsterdam, The Netherlands), a biomedical database covering journals

Table 4 Adverse events defined using MedDRA Preferred Terms. The bolded MedDRA Preferred
Term is used to name the adverse event, while all MedDRA Preferred Terms grouped together
were used to define that adverse event (Continued)

Adverse Event

HAEMORRHAGE SUICIDAL IDEATION YTHMIA, VENTRICULAR
EXTRASYSTOLES,
VENTRICULAR TACHYCAR
DIA

AKATHISIA, DYSTONIA,
HYPERTONIA

HYPERCHOLESTEROLAEMIA,
HYPERLIPIDAEMIA

HEPATOTOXICITY, LIVER
INJURY

PANCREATITIS,
PANCREATITIS ACUTE

GASTRIC ULCER,
PEPTIC ULCER

CEREBROVASCULAR
ACCIDENT, TRANSIENT
ISCHAEMIC ATTACK

VISUAL ACUITY
REDUCED, VISUAL
IMPAIRMENT, VISUAL
FIELD DEFECT

DRUG REACTION WITH
EOSINOPHILIA AND
SYSTEMIC SYMPTOMS
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and conference abstracts [25]. A team of Embase indexers manually curate all adverse

events from all full-text articles and associate each adverse event with the related drug.

These drugs and adverse events are documented in Emtree terms, Elsevier’s controlled

terminology. Therefore, each drug in Embase has hundreds to thousands of adverse

events associated with it, and each adverse event-drug association has a curated reference.

Adverse events reported for all comparator drugs before their respective test drug’s ap-

proval date were searched for in Embase. The list of adverse events documented by

Elsevier as Emtree terms for each comparator drug was exported and manually matched

to MedDRA Preferred Terms.

Comparator drug duration in market

Comparator time in market was included as a feature. The longer a drug has been mar-

keted, the more adverse events, particularly difficult to observe adverse events, are iden-

tified and evaluated for labeling. The duration in market for comparator drugs was

determined from the Orange Book [26]. Drugs that were approved before 1982 have an

approval date listed as “Approved Prior to Jan 1, 1982”; the duration in market for these

drugs was imputed to be 36 years (1982 to 2017).

Structural similarity

Structural similarity was included as a feature as it was hypothesized that the more structur-

ally similar a comparator drug was to a test drug, the more likely they were to share pharma-

cology, including unknown secondary pharmacology that was not included in this analysis

and may contribute to similar idiosyncratic reactions. Structural similarities of each test drug

to its respective comparator drugs were determined using Tanimoto scores. Simplified Mo-

lecular Input Line Entry System (SMILES) structures for all test and comparator drugs were

imported into the Tanimoto Matrix workflow in the KNIME Analytics Platform (version

3.3.2) [27]. Structures were then converted to MACCS 166-bit fingerprints, and structural

similarity between the test drug and the respective comparator drug was determined. For bi-

ologics where similarity score was not available, − 1 was imputed as Tanimoto score.

Target similarity

Target similarity, or how closely the target profile of each comparator aligned with that of

the test drug, was included as a feature as it was hypothesized that the more targets a

comparator shares with a test drug, the more likely it is that a comparator and test drug

share adverse events. The set of known pharmacological targets for each test drug and

corresponding comparator drugs was extracted from DrugBank [24]. Target similarities of

each test drug with its comparator drugs were determined using target-based cosine simi-

larity scores. A trivalent drug-by-target matrix was then constructed such that for each

drug-target pair an entry of “1” indicates drug-target activation, an entry of “-1” indicates

drug-target inhibition, and an entry of “0” indicates no pharmacological activity. Cosine

similarities the test drug has with its comparator drugs were then computed as follows:

cosine Test Drug½ �; Comparator Drug½ �ð Þ ¼ Test Drug½ �∙ Comparator Drug½ �
Test Drug½ �k k Comparator Drug½ �k k
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Classifier

Five features were defined for each comparator-test drug -adverse event association: 1)

presence or absence of an adverse event in FDA drug label for the comparator drug; 2)

presence or absence of an adverse event in scientific literature for comparator drug; 3)

structural similarity between comparator drug and test drug; 4) target similarity be-

tween comparator drug and test drug; and 5) duration the comparator drug was on the

market (Fig. 4), all of which are independent of each other. These features were used to

train a Naïve Bayes classifier, using presence or absence of an adverse event in the 2017

FDA drug label for the test drug as the training label (see section Adverse Events from

FDA Drug Labels for details). Given the wide range of prevalence of presence of an ad-

verse event, we anticipated the contribution of prevelance of presence of an adverse

event to model prediction would be high. Therefore a Naïve Bayes classifier was chosen

in order to take into account both prior probability (i.e. prevelance of presence of an

adverse event) and likelihood for presence of an adverse event. All statistical calcula-

tions were conducted in R version 3.2.2 (R Foundation for Statistical Computing,

Vienna, Austria) and the Naïve Bayes classifier from package e1071 was used [28] (see

supplemental materials for code).

Due to the limited number of drugs available for testing and the high dimension-

ality of prediction (135 adverse events), 10,000 bootstrapping steps were conducted

by selecting a random set of 44 drugs to train the Naïve Bayes classifier, while

leaving 10 drugs for testing at each iteration (i.e. 10,000/ C54
44 ). A prediction was

made by each comparator drug-test drug association for an adverse event of inter-

est. Therefore, since a single test drug can have multiple comparator drugs, there

may be multiple predictions for one test drug for each adverse event of interest.

To remediate this, if the percentage of comparator drug-test drug combinations

that predicted the adverse event of interest was above a predefined threshold, the

adverse event was considered a positive prediction for the test drug. Performance

was calculated while varying the threshold (0, 10, 30, 50, 60, 70, 90%) above which

the percentage of comparator drug-test drug combinations predicted the adverse

event of interest to identify the optimum threshold.

Fig. 4 Flow diagram of experimental methods

Daluwatte et al. BMC Bioinformatics          (2020) 21:163 Page 18 of 21



As 10,000 bootstrapping steps were performed, the most frequent value (mode), me-

dian, 25th and 75th quantiles for each of the performance metrics (sensitivity, specifi-

city, positive predictive value and negative predictive value) were calculated to assess

the predictive ability for each adverse event. Performance metric histograms for each

adverse event are provided in the supplemental materials. We chose to optimize posi-

tive predictive value, as false positives may be more costly in terms of additional studies

and regulatory review compared to false negatives. Adverse events with a distribution

for positive predictive value that was left-skewed (defined as a mode positive predictive

value > 75%) were considered well-predicted.

Leave-one-out cross validation was performed to evaluate safety label changes. Pre-

dictions were evaluated as follows:

%of FDA−issued safety label changes that were predicted

¼ #of drug−AE combos that changed from negative to positive between approval and 2017 that were predicted positive
#of drug−AE combos that changed from negative to positive between approval and 2017

%of predicted safety label changes that were also FDA−issued

¼ #of drug−AE combos that changed from negative to positive between approval and 2017 that were predicted positive
#of drug−AE combos that were negative at approval that were predicted positive

Evaluation of false positive predictions

Positive predictions that were made by the Naïve Bayes classifier that were not on the

respective 2017 drug label were classified as “false positives”. To further evaluate if

these predictions may be early signals not yet on the label, the case count and Propor-

tional Reporting Ratio (PRR) were identified for each drug-adverse event pair from the

FDA Adverse Event Reporting System using OpenFDA [29, 30]. Data from June 30,

1989 to January 1, 2018 was used in this analysis.
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