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Platelets are the cornerstone of hemostasis. However, their exaggerated aggregation
induces deleterious consequences. In several diseases, such as infectious endocarditis
and sepsis, the interaction between platelets and bacteria leads to platelet aggregation.
Despite platelet involvement, no antiplatelet therapy is currently recommended in these
infectious diseases. We aimed here, to evaluate, in vitro, the effect of antiplatelet drugs on
platelet aggregation induced by two of the bacterial pathogens most involved in infectious
endocarditis, Staphylococcus aureus and Streptococcus sanguinis. Blood samples were
collected from healthy donors (n = 43). Treated platelet rich plasmas were incubated with
three bacterial strains of each species tested. Platelet aggregation was evaluated by Light
Transmission Aggregometry. CD62P surface exposure was evaluated by flow cytometry.
Aggregate organizations were analyzed by scanning electron microscopy. All the strains
tested induced a strong platelet aggregation. Antiplatelet drugs showed distinct effects
depending on the bacterial species involved with different magnitude between strains of
the same species. Ticagrelor exhibited the highest inhibitory effect on platelet activation
(p <0.001) and aggregation (p <0.01) induced by S. aureus. In the case of S. sanguinis,
platelet activation and aggregation were better inhibited using the combination of both
aspirin and ticagrelor (p <0.05 and p <0.001 respectively). Aggregates ultrastructure and
effect of antiplatelet drugs observed by scanning electron microscopy depended on the
species involved. Our results highlighted that the effect of antiplatelet drugs depended on
the bacterial species involved. We might recommend therefore to consider the germ
involved before introduction of an optimal antiplatelet therapy.
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INTRODUCTION

Platelet–bacteria interactions are a cornerstone of several
infectious vascular damages such as Disseminated Intra-vascular
Coagulation (DIC) following sepsis or embolic events following
infectious endocarditis (IE) (Hamzeh-Cognasse et al., 2015).

Staphylococci and streptococci represent the most
incriminated germs in IE (Park et al., 2016; Habib et al., 2019).
The presence of protein receptors at the surface of these bacteria
allows them to interact with platelets thereby promoting their
aggregation (Ford et al., 1993; Hamzeh-Cognasse et al., 2015;
Hannachi et al., 2019b). These platelet–bacteria interactions seem
to be diverted in favor of bacteria despite the recognized immune
role of platelets. Indeed, platelets would provide a platform for
bacterial nesting in the case of IE. In addition, the formation of
aggregates around the bacteria allows their protection against host
immunity as well as their dissemination through bloodstream
(Kahn et al., 2013; Paharik and Horswill, 2016).

While antiplatelet agents largely demonstrated their benefit in
the management of cardiovascular diseases, they are not proposed
in the management of hemostatic events particularly induced by
infectious bacteria (Chan et al., 2003; Eikelboom et al., 2012).
Indeed, the studies already carried out have not reached a
conclusive result yet (Ford et al., 1993; Arman et al., 2014; Veloso
et al., 2015; Chabert et al., 2017). Ford et al. reported that aspirin
decreased aggregation induced by S. sanguinis (Ford et al., 1993).
Arman et al. reported that cangrelor and indomethacin had
differential effect according to the bacterial species involved
(Arman et al., 2014). In contrast, Chabert et al. reported no
aggregation induced by S. aureus (Chabert et al., 2017).

We have reported in a recent study carried out on aspirin that
the latter showed distinct effects on platelet aggregation according
to the bacterial species involved (Hannachi et al., 2019a). In this
current study, we aimed to evaluate all types of oral antiplatelet
drugs used currently in clinical practice on platelet aggregation
induced by different strains of each bacterial species (S. aureus and
S. sanguinis), looking for possible inter species and inter-strain
variability. Our study was based on functional methods (Light
Transmission Aggregometry) and phenotypic analyzes (flow
cytometry and scanning electron microscopy).
MATERIAL AND METHODS

Platelet Preparation
Blood was drawn by venipuncture into sodium citrate from healthy
subjects without any medication (n = 43). Platelet-Rich Plasma
(PRP) was prepared according to the ISTH recommendation
(Cattaneo et al., 2013). Briefly, after keeping the blood at rest for
15 min, sample was centrifuged at 200×g for 10 min at ambient
temperature without using a brake. Platelet count determination
was performed using a hematology analyzer. Platelet count was
adjusted using platelet poor plasma (PPP) to get 2.5 × 108 platelet/
ml. Then, PRP was treated by aspirin (Sanofi, Toulouse, France) at a
final concentration of 2mM (Laudy et al., 2016; Dotto et al., 2017), a
concentration relatively high compared to circulating peak reached
in vivo, in order to totally acetylate platelet cyclooxygenase, or by
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ticagrelor (AstraZeneca AB S-151 85 Södertälje, Sweden) at a final
concentration of 10 mM (Söderlund et al., 2015) or by the
combination of the two drugs, or by tirofiban (Agrastat, United
Kingdom) at a final concentration of 0.5 mM (Ciborowski et al.,
2008). A part of PRP remained untreated. For flow cytometry,
treated and untreated PRP were centrifuged at 1,100g for 10 min to
get platelet pellet that was resuspended in Tyrode’s buffer to obtain
2.5 × 108 p/ml. The protocol was approved by the ethic committee
of the IHU Méditerranée-infection (Reference 2016-002).

Bacterial Preparation
Strains from the CSUR (Collection des souches de l’unité des
Rickettsies, IHU Méditerranée infection, Marseille France) were
used. Bacterial strains were identified by Maldi Toff mass
spectrometry using the Bio Typer database (Bruker, Dresden,
Germany). In a second time, they were cultured on 5% sheep
blood-enriched Columbia agar (COS, BioMérieux, Marcy l’Etoile,
France). After 18 h of incubation at 37°C, colonies were removed and
suspended in NaCl at the required concentration. Three different
strains of each species were used, thus Methicillin sensitive S. aureus
(P6142, P2188 and P6141) and S. sanguinis (P8633, P760 and
P2754). All strains were isolated from positive blood cultures.

Light Transmission Aggregometry (LTA)
Platelet aggregation was analyzed by a turbidimetric method with a
lumi-Aggregometer (APACT-4004, Elitech, France) (Chia et al.,
2004). PPP was used to adjust 100% aggregation” and PRP was
used to adjust the baseline. PRP was prewarmed for 3 min prior to
the addition of bacteria, all the procedure was carried out at 37°C
with shaking at 900 rpm. 20 µl of bacterial suspension were added
to 180 µl of PRP. Bacteria concentrations have been previously
optimized. Indeed, S. aureus strains were added from initial
suspension of 109 CFU/ml (Arman et al., 2014; Hannachi et al.,
2019a) while S. sanguinis strains were added from initial
suspension of 3 · 109 CFU/ml to reach a final bacterial
concentration in PRP equivalent to 108 CFU/ml and 3 · 108

CFU/ml respectively. The reaction had proceeded for at least 20
min, and the degree of aggregation was expressed as a percentage of
aggregation (Light transmission before the addition of bacteria—
light transmission after the addition of bacteria) x 100. Untreated
PRP supplemented by 20 µL of NaCl or 10 µM of Thrombin
Receptor-Activating Peptide (TRAP) (STAGO®, France) were
used as negative and positive controls respectively.

Analysis of Platelet Activation by
Flow Cytometry
About 180 µl of treated or untreated platelets (250 G/L), as
described above, were incubated with 20 µl of S. aureus P6142 or
S. sanguinis P8633 (109 CFU) (strains selected randomly). NaCl and
TRAP (10 µM) were used as controls. Then, 4 ml of Phycoerethrin/
Cy5 Anti CD62P antibody (IgG,ĸmonoclonal, BD Biosciences, San
Jose, CA, USA) was added to 50 ml of sample and vortexed. Samples
were incubated at room temperature in the dark for 30 min, then,
200 ml of Tyrode’ buffer was added before analysis by flow
cytometer (Beckman Coulter FC500, Fullerton, CA, USA). Mean
fluorescence intensity (MFI) of untreated, uninfected platelets was
expressed as 100%. MFI for the other conditions was calculated as
follow: MFI × 100/MFI of untreated, uninfected platelets.
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Scanning Electron Microscopy
Some 180 µl of treated and untreated PRP (250 G/L) as described
above were incubated with 20 µl of S. aureus P6142 or S. sanguinis
P8633 (109 CFU/ml) for 20min at 37°C under rotation to avoid the
static state and the development of aggregates related to gravity.
Cells were fixed using 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer for 1 h. Then, samples were rinsed three times
with 0.1 M sodium cacodylate (5 min each) to remove residual
fixative. Cells were dehydrated with graded ethanol concentrations:
25% for 5 min; 50% for 5 min; 70% for 5 min; 85% for 5 min; 95%
for 5 min (twice); 100% ethanol for 10 min (three times). After
ethanol dehydration, cells were incubated for 5 min in an ethanol/
HMDS (1:2) mixture, then two times in pure HMDS. Between all
steps, cells were gently stirred and centrifuged at 1,300g.min−1. A
drop of cells in pure HDMS was deposited on a glass slide and
allowed to air dry for 30 min before observation (Dukes et al.,
2011). Cells were visualized under a TM4000Plus® (Hitachi, Japan)
scanning electron microscope operated at 10 and 15 kV in BSE
mode at magnifications ranging from ×200 to ×3,000.
Frontiers in Pharmacology | www.frontiersin.org 3
Statistical Analysis
Statistical analysis was performed using GraphPad Prism for
Windows. Significant differences between two groups were
determined using the two-tailed, paired student’s t test. All other
group comparisons were analyzed using one-way ANOVA with
Bonferroni’s multiple comparison test. Statistical significance was
set at p <0.05.
RESULTS

Antiplatelet Drugs Showed Distinct
Efficacy on Inhibiting Bacterial-Induced
Platelet Aggregation
Ticagrelor Exhibited the Greatest Inhibitory Effect on
Platelet Aggregation Induced by S. aureus
As observed in Figures 1A and 2A, incubation of PRP with each of
the three strains of S. aureus induced platelet aggregation, with a
lag time that varied from 220 to 615 s according to the strain.
A

B

FIGURE 1 | Representative measurement of light transmission over time in response to platelet aggregation. Untreated and aspirin (2 mM), ticagrelor (10 µM),
association of both and tirofiban (25 ng/ml) treated PRP, infected by (A) S. aureus P2188 or (B) S. sanguinis P8633. NaCl and TRAP (10 µM) treated PRP were
used as controls.
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While pretreatment of PRP with aspirin decreased platelet
aggregation compared to untreated PRP, whatever the strain, the
greatest decrease has been observed when PRP was pretreated with
ticagrelor (Figures 1A and 2B). A significant difference between
Frontiers in Pharmacology | www.frontiersin.org 4
aspirin and ticagrelor was obtained with the strain P 2188.
Surprisingly, pretreatment of platelets with the combination,
aspirin-ticagrelor, did not showed any additional or synergistic
effect. As expected, tirofiban totally suppressed the aggregation.
A

B

C

FIGURE 2 | Effect of antiplatelet drugs on bacterial induced platelet aggregation. (A) Lag time for the onset of aggregation and percentage of maximum
aggregation as measured by LTA of PRP activated by TRAP (10 µM) or infected with six bacterial strains belonging to two species, S. aureus and S. sanguinis.
Results are expressed as mean ± SD. (B) Final aggregation as measured by LTA of untreated PRP and PRP treated with aspirin (Asp, 2 mM), ticagrelor (Tcg,
10 µM), association of both (Asp + Tcg) and tirofiban (Tfb, 0.5 µM) and then infected by three different strains of S. aureus. Results are expressed as mean ±
SD. n = 5–6; one-way ANOVA, Bonferroni’s multiple comparison test. *: p < 0.05; **: p < 0.01; ***: p < 0.001. (C) Final aggregation as measured by LTA of
untreated PRP and PRP treated with aspirin (Asp, 2 mM), ticagrelor (Tcg, 10 µM), association of both (Asp + Tcg) and tirofiban (Tfb, 0.5 µM) and then infected
by three different strains of S. sanguinis. Results are expressed as mean ± SD. n = 6; one-way ANOVA, Bonferroni’s multiple comparison test. *: p < 0.05; **:
p < 0.01; ***: p <0.001.
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Aspirin and Ticagrelor Combined Provided the
Greatest Inhibitory Effect on Platelet Aggregation
Induced by S. sanguinis
Incubation of PRP with S. sanguinis, whatever the strain tested,
resulted in a strong platelet aggregation, with a lag time varying
from 150 to 420 s according to the strain (Figures 1B and 2A).
Although aspirin and ticagrelor used separately slightly
decreased platelet aggregation compared to untreated and
infected PRP (Figures 1B and 2C), the highest decrease was
obtained when PRP was pretreated with the association of the
two drugs. Significant differences were obtained between
ticagrelor and the association with strains P8633 and P2754.
As observed with S. aureus, Tirofiban showed complete
inhibition of platelet aggregation induced by S. sanguinis.
Antiplatelet Drugs Showed Distinct Effect
on Platelet Activation Induced by Bacteria
Evaluation of platelet activation using flow cytometry showed that
platelet exposure to S. aureus P6142 induced a significant increase
in CD62P (P-selectin) surface exposure compared to uninfected
platelets (n = 6, p = 0.0178) (Figure 3A). The pretreatment of
platelets with anti-platelet drugs before exposure to S. aureus
significantly reduced the mean intensity of CD62P surface
exposure compared to untreated platelets, incubated with the
same strain. Although not significant compared to the other
treatments, ticagrelor was accompanied by the minimal surface
exposure of CD62P on platelets (Figure 3B).

Regarding S. sanguinis, incubation of platelets with S. sanguinis
P8633 induced also platelet activation as observed through the
significant increase in CD62P surface exposure compared to
uninfected platelets (n = 6, p = 0.0281) (Figure 3A). Using drug
treated PRP, only the combination, aspirin and ticagrelor, showed a
significant decrease compared to untreated platelets incubated with
the same strain. Surprisingly, Tirofiban did not decrease platelet
activation induced by S. sanguinis (Figure 3C).

Without bacteria, treatment of platelets resulted on a non-
significant decrease of platelet CD62P surface exposure
compared to untreated platelets (Supplementary Figure 1).

The Ultrastructure of Platelet–Bacteria
Aggregates Presented Major Differences
According to the Inductive Bacterial
Species
To better understand the cell organization in the aggregates
formed with platelets alone or mixed with infectious bacteria, as
well as the effect of antiplatelet drugs, scanning electron
microscopy (SEM) was used (Figures 4 and 5).

First, we observed control aggregates formed only by platelets
derived from healthy subject (Figures 4A, B). Platelets in this
condition were mostly well distinguishable one from another
with some cells presenting protrusions typical of activated
platelets. For the same aggregate, the density of platelets varied
from one region to another, ranging from packed to single and
dispersed platelets, mainly at the periphery.
Frontiers in Pharmacology | www.frontiersin.org 5
A

B

C

FIGURE 3 | Measurement of CD62P surface exposure by flow cytometry.
(A) Surface exposure of CD62P on native platelets, platelets activated by
TRAP (10 µM) and platelets infected with S. aureus P6142 or S. sanguinis
P8633. The MFI of untreated platelets was used as 100%. The MFI of each
experiment was calculated as follow: MFI × 100/MFI of untreated and
uninfected platelets. Results are expressed as mean ± SD. n = 6; Paired t
test. *: p < 0.05. (B) Surface exposure of CD62P on untreated platelets and
platelets treated with aspirin (Asp, 2 mM), ticagrelor (Tcg, 10 µM), association
of both (Asp + Tcg) and tirofiban (Tfb, 0.5 µM). Untreated or treated platelets
were then infected with S. aureus P 6142. The MFI of untreated platelets was
used as 100%. The MFI of each experiment was calculated as follow: MFI ×
100/MFI of untreated and uninfected platelets. Results are expressed as
mean ± SD. n = 6; one-way ANOVA, Bonferroni’s multiple comparison test.
**: p < 0.01; ***: p < 0.001. (C) Surface exposure of CD62P on untreated
platelets and platelets treated with aspirin (Asp, 2 mM), ticagrelor (Tcg, 10
µM), association of both (Asp + Tcg) and tirofiban (Tfb, 0.5 µM). Untreated or
treated platelets were then infected with S. sanguinis P 8633. The MFI of
untreated platelets was used as 100%. The MFI of each experiment was
calculated as follow: MFI × 100/MFI of untreated and uninfected platelets.
Results are expressed as mean ± SD. n = 6; one-way ANOVA, Bonferroni’s
multiple comparison test. *: p < 0.05.
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Secondly, we observed aggregates of platelets mixed with
bacteria. Bacteria cocci appeared isolated or arranged in
clusters located on the surface of the aggregates or deeper
between platelets. Platelets were more packed in the aggregates
compared to the control, with a loss of cellular integrity. With S.
aureus P6142, cells were condensed compared to control, with
the presence of an intense network with fibrillar aspect. Also,
several well-defined bags of bacteria were observed (Figures 4C,
D). With S. sanguinis P8633, the increase of aggregate density
was more pronounced, with aggregates mainly organized as a
compact amorphous cell cluster (Figures 4E, F).

Finally, we observed aggregates of platelet pretreated with
antiplatelet drugs and mixed with bacteria (Figure 5). Compared
to untreated platelets, mixed with the same strains, the different
antiplatelet agents exhibited no major differences in aggregates
ultrastructures. However, antiplatelet drugs induced generally a
Frontiers in Pharmacology | www.frontiersin.org 6
decrease in the density of aggregates. We noticed a decrease in
the fibrillar network and an absence of the bacterial bag
organization in the case of S. aureus (Figures 5A, C, E, G).
For S. sanguinis, platelets were well distinguishable in the
aggregates, with preserved contour compared to untreated PRP
(Figures 5B, D, F, H).
DISCUSSION

All bacterial strains used in this study belong to two species most
involved in IE and known to induce platelet activation and
aggregation (Cox et al., 2011). To the best of our knowledge,
we reported, for the first time, the differential efficacy of each of
the antiplatelet drugs according to the bacterial species involved.
Ticagrelor exhibited the greatest inhibitory effect on platelet
FIGURE 4 | Scanning electron microscopy of uninfected platelets and platelets–bacteria aggregates. The whole deposited glass slide was analyzed for each

condition with a TM4000Plus™ (Hitachi, Tokyo, Japan) scanning electron microscope operated at 10 and 15 kV in BSE mode at magnifications ranging from ×200
to ×3,000. Compared to uninfected control PRP (A, B), the addition of S. aureus P6142 induced a change in the ultrastructure with a denser organization and the
presence of an intense network with fibrillar organization. Also, several well-defined bags of bacteria were observed (C, D). Clots obtained from PRP infected with S.
sanguinis P8633 was organized in a form of a compact pack of amorphous clusters until an absence of cellular integrity (E, F).
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aggregation in response to S. aureus while the association of
aspirin and ticagrelor exhibited the greatest inhibitory effect in
the case of S. sanguinis, regardless of the involved strain of each
species. Our results are summarized in Figure 6, illustrating the
Frontiers in Pharmacology | www.frontiersin.org 7
overall aggregation and scanning electron microscopy results for
each tested condition.

Our results regarding the effect of aspirin on platelet aggregation
induced by S. aureus are consistent with those of a previous study,
FIGURE 5 | Scanning electron microscopy of aggregates formed from treated platelets and infected with S. aureus P6142 or S. sanguinis P8633. Aspirin treated
PRP and infected with (A) S. aureus or (B) S. sanguinis. Ticagrelor treated PRP and infected with (C) S. aureus or (D) S. sanguinis. Aspirin-ticagrelor combination
treated PRP and infected with (E) S. aureus or (F) S. sanguinis. Tirofiban treated PRP and infected with (G) S. aureus or (H) S. sanguinis. The whole deposited glass

slide was analyzed for each condition with a TM4000Plus™ (Hitachi, Tokyo, Japan) scanning electron microscope operated at 10 and 15 kV in BSE mode at
magnifications ranging from ×200 to ×3,000. The use of different antiplatelet molecules was accompanied by a slight decrease in the filamentous networks as well as
in the organization of bagged bacteria in the case of S. aureus. For S. sanguinis, the use of antiplatelet agents was accompanied by a decrease in clot density and
the possibility of detecting cellular elements within it.
June 2020 | Volume 11 | Article 863

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Hannachi et al. Bacterial-Induced Platelet Aggregation
in which, the authors used indomethacin, another cyclo-oxygenase
inhibitor and which showed a significant decrease in platelet
aggregation (Arman et al., 2014). This benefit has also been
confirmed in our recent study (Hannachi et al., 2019a), and in an
animal model of IE (Veloso et al., 2015). In our experiments here,
we focused on evaluating the effect of aspirin on platelet
cyclooxygenase inhibition. However, aspirin metabolite, salicylic
acid (SAL), has also been shown to influence platelet–S. aureus
interactions by acting on gene regulation of bacterial virulence
factors (Kupferwasser et al., 2003). Indeed, SAL has been shown to
decrease, inter alia, the gene expression of several staphylococcal
adherent motifs as well as staphylococcal alpha toxin (Kupferwasser
et al., 2003; Herrmann, 2003; Hannachi et al., 2019a), both involved
in platelet aggregation (Surewaard et al., 2018).

Despite a significant inhibition obtained with aspirin in the
case of S. aureus, the strongest effect was obtained using ticagrelor.
Similar results were reported by Arman et al. (2014) using
cangrelor, an intravenous inhibitor of P2Y12 with short half-life.
To the best of our knowledge, our study is the first to demonstrate
the benefit of an oral anti P2Y12 receptor in platelet aggregation
induced by bacteria. This result might highlight the key role of
ADP pathway in mediating platelet aggregation induced by S.
aureus. In parallel, and far from platelet aggregation, Lancellotti
Frontiers in Pharmacology | www.frontiersin.org 8
et al. have recently reported a bactericidal activity of ticagrelor
against S. aureus (Lancellotti et al., 2019).

Regarding the use of antiplatelets with S. sanguinis, conflicting
results have been reported. It has been shown that platelet activation
induced by S. sanguinis involves both cyclooxygenase and ADP
pathways (MacFarlane et al., 1994; Cox et al., 2011). Ford et al.
reported an abolishment of platelet aggregation by aspirin (Ford
et al., 1993). By opposite, we and others have previously shown no
significant effect using only cyclooxygenase pathway inhibitor
(Arman et al., 2014; Hannachi et al., 2019a). In this current study,
by testing different strains, we reported a variable inhibition of
platelet aggregation using aspirin according to each strain. This
result could explain the discrepancy between the studies mentioned
above. Despite this inhibitory effect of aspirin, it was always below to
that achieved by blocking both cyclooxygenase and ADP pathways
simultaneously. Contrary to expectations, we underlined here that
the expression of this synergistic effect depended on the bacterial
species involved, as was the case in presence of S. sanguinis, but not
with S. aureus (Arman et al., 2014; Veloso et al., 2015).

Regarding the effect of tirofiban, we reported an inhibition of
both platelet activation and aggregation induced by S. aureus.
Similar results have been previously reported (Herrmann, 2003).
The GP IIb IIIa is considered the main glycoprotein implied in
FIGURE 6 | Interpretative scheme. Summarized results show here the effects of bacteria with or without antiplatelet drugs on platelets aggregation. Results of LTA
and scanning electron microscopy are illustrated by three parameters: number of aggregates, their size and their ultrastructure. Antiplatelet agents significantly
reduced aggregation induced by the two bacterial species. Among the antiplatelet agents taken orally and for long term, ticagrelor and the combination (aspirin–
ticagrelor) showed the greatest decrease with S. aureus and S. sanguinis respectively (framed aggregates). The ultrastructure was different according to the two
species tested.
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the interaction of platelets with S. aureus via the Iron-regulate
surface determinant B (Isd B) and clumping factor (Clf) A and B
expressed on the surface of the latter (Miajlovic et al., 2010). In
the case of S. sanguinis, tirofiban resulted in an inhibition of
platelet aggregation without effect on CD62P surface exposure. A
similar result was previously observed by Kerrigan et al., where
GP IIb IIIa receptor antagonism resulted in the inhibition of
platelet aggregation by S. sanguinis without effect on the
adhesion of the bacteria to the platelets (Kerrigan et al., 2002).
This suggest that in case of S. sanguinis infection, GP IIbIIIa
inhibition prevents platelet aggregation without action on their
individual activation induced by the bacteria.

Scanning electron microscopy allowed us to analyze
qualitatively the ultrastructure of the platelet-bacteria
aggregates. Platelet arrangement was different according to the
incriminated bacterial species, with a dense organization of the
aggregate as an amorphous cluster and a loss of cellular integrity
in case of S. sanguinis, and a presence of bacterial bags and a large
network of filaments in the case of S. aureus. These filaments
might be a fibrin network (Gersh et al., 2009) explained by the
ability of S. aureus to trigger the coagulation step via its two
coagulases: staphylo-coagulase (Coa) and von Willebrand factor
binding protein (VWbp) (Bjerketorp et al., 2004; Thomer et al.,
2013). In our previous study, we made similar observations with
untreated washed platelets incubated with the same species
(Hannachi et al., 2019a). The treatment of PRP with
antiplatelet drugs induced a decrease in the aggregate density
in the case of S. sanguinis and an absence of bacterial bags and a
decrease in the fibrin network in the case of S. aureus. However,
for the last observation, despite this decrease linked to platelet
inhibition, it was not total. This persistence of the filamentous
network may be linked to the capacity of S. aureus coagulases to
bypass the primary hemostasis step and therefore keeping the
possibility of fibrin formation despite platelet inhibition.

Our study may explain the discrepancy between previous
clinical studies interested in the benefit of antiplatelet drugs on
infectious diseases with thrombotic events (Chan et al., 2003;
Anavekar et al., 2007; Pepin et al., 2009), where statistical
analyzes were performed independently on the bacterial
species. Moreover, we demonstrated an inter strain discrepancy
was noted in this study. Also, we might recommend considering
the involved bacterial strain for optimal antiplatelet therapy in
clinical practice. Aggregometry technique could serve as an easy
and quick routine test to screen for the best antiplatelet agent
using the patient’s platelets as well as the isolated bacterial strain.

In our study, we used an in vitro model focusing on the effect
of antiplatelet agents on the platelet aggregation induced by
bacteria. However, we are aware that evaluating the effect of these
drugs considering other types of human cells, such as neutrophils
and endothelial cells, in addition to platelets, may provide more
information and better relate to in vivo conditions (Lubkin and
Torres, 2016; Hannachi et al., 2019b). Further experimental and
clinical studies are required to elucidate the distinct effects of
antiplatelet drugs in the management of diseases related to
bacterial-induced platelet aggregation, allowing targeted-
Frontiers in Pharmacology | www.frontiersin.org 9
antiplatelet treatment to be provided to selected patients and
specific bacterial strains.
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