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Abstract: The aim of this study was to determine the pharmacokinetics and pharmacodynamics of
danofloxacin (DAN; 6 mg/kg) following subcutaneous administration alone or co-administration
with meloxicam (MLX; 1 mg/kg) in healthy lambs and lambs with respiratory infections. The study
was carried out using a total of four groups: HD (healthy; n = 6) and ID (infected; n = 7) groups
who were administered DAN only, and HDM (healthy; n = 6) and IDM (infected; n = 7) groups who
were administered DAN and MLX simultaneously. The plasma concentrations of DAN were deter-
mined using high-performance liquid chromatography–UV and analyzed by the non-compartmental
method. DAN exhibited a similar elimination half-life in all groups, including both the healthy and
infected lambs. The total clearance in the HDM, ID and IDM groups and volume of distribution
in the HDM and IDM groups were significantly reduced. MLX in the IDM group significantly
increased the area under the curve (AUC) and peak concentration (Cmax) of DAN compared to the
HD group. The Mannheimia haemolytica, Escherichia coli, and Streptococcus spp. strains were isolated
from bronchoalveolar lavage fluid samples of the infected lambs. When co-administration with
meloxicam, DAN at a 6 mg/kg dose can provide optimum values of ƒAUC0–24/MIC (>56 h) and
ƒCmax/MIC (>8) for susceptible M. haemolytica isolates with an MIC90 value of 0.25 µg/mL and
susceptible E. coli isolates with an MIC value of ≤0.125 µg/mL.

Keywords: danofloxacin; pharmacokinetics; pharmacodynamics; meloxicam; respiratory infection

1. Introduction

Respiratory diseases, which are common in all countries where lamb breeding is
carried out, are considered to be complex diseases that include interactions between mul-
tiple agents such as the host’s immune system and physiological state, viruses, bacteria,
Mycoplasma, and environmental factors. They cause serious financial losses due to low
body weight gain, treatment costs, and death [1–3]. Bacterial agents frequently isolated
from lambs with pneumonia are Mannheimia haemolytica and Pasteurella multocida [4,5]. An-
tibiotics are used to treat acute pneumonia, to reduce the effects of chronic nonprogressive
pneumonia, and to treat the remainder of the flock to prevent more deaths from acute pneu-
monia. The quick detection of infected lambs is very important for the success of antibiotic
treatment [3,6]. The antibiotic selection for the treatment of infection depends on many
factors, including the infective microorganism, the susceptibility of the microorganism
to antibiotics, the site of infection, local factors (pH, inoculum size, etc.), host factors, the
potential side effects of antibiotics, and antibiotic resistance. Following the selection of the
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ideal antibiotic, the pharmacokinetic and pharmacodynamic data of the drug should be
determined to establish the most appropriate dosage regimen [7,8].

Danofloxacin, a third-generation synthetic fluoroquinolone developed for use in vet-
erinary medicine, is approved for the treatment of respiratory infections in cattle, chickens,
and pigs [9,10]. Danofloxacin reaches a 4–5 times higher concentration in the lung tis-
sue than in the plasma and has activity against most Gram-negative bacteria, such as
P. multocida, M. haemolytica, Histophilus somni, and Enterobacterales (Escherichia coli, Kleb-
siella, and Salmonella), and some Gram-positive bacteria, such as Staphylococcus aureus and
Streptococcus pneumoniae [11–14]. Danofloxacin has a very wide distribution volume in
sheep and goats due to having high lipid solubility, low binding to plasma proteins, and
being a substrate for ATP-dependent efflux transporters [15,16]. The clinical efficacy of
danofloxacin has been established in sheep and cattle with respiratory infections [17,18].

Meloxicam, a non-steroidal anti-inflammatory drug (NSAID) of the oxicam class, is
used to alleviate the symptoms of acute respiratory infection with appropriate antibiotic
therapy in cattle [19]. In Canada, Australia, and New Zealand, it is approved for use
in the treatment of pain and inflammation in sheep [20]. It has been determined that
meloxicam has a stronger anti-inflammatory effect by reducing the synthesis of tumor
necrosis factor (TNF)-alpha, a cytokine with proinflammatory effects, as well as inhibiting
the cyclooxygenase (COX)-2 enzyme in respiratory infections [21,22].

In respiratory infections, the host’s excessive inflammatory response plays an im-
portant role in the pathogenesis of the disease [23]. Therefore, the use of NSAIDs is
recommended against the harmful effects of inflammation in the treatment of pneumo-
nia [24,25]. It has been reported that when NSAIDs are used in combination with antibiotics
compared to antibacterial therapy alone, clinical findings improve faster in respiratory
infection [25–27]. However, pathophysiological changes in respiratory infections and
antibiotics–NSAID interactions resulting from concurrent drug administration during
treatment may cause unpredictable changes in the pharmacokinetics of antibiotics. These
changes may lead to the development of resistance to antibiotics, the emergence of undesir-
able effects, and a suboptimal level of drug exposure, leading to failure in the treatment of
infection [28,29]. Although there are many studies investigating the effects of NSAIDs on
the pharmacokinetics of antibiotics in healthy animals [30–36], studies conducted in the
case of disease are limited [37–39]. We hypothesized that the effect of meloxicam on the
pharmacokinetics of danofloxacin will change with the systemic inflammatory response
caused by respiratory infection in lambs, and that the results obtained will contribute to
the rational use of danofloxacin.

Therefore, the current study was conducted to provide the following information:
(1) the subcutaneous (SC) pharmacokinetics of danofloxacin (6 mg/kg) administered alone
or simultaneously with meloxicam (1 mg/kg; SC) in healthy lambs and lambs with respira-
tory infections, (2) isolation of bacterial agents from bronchoalveolar lavage (BAL) fluid
samples of lambs with respiratory infections, (3) determination of the minimum inhibitory
concentration (MIC) of danofloxacin for isolated bacterial agents, and (4) estimation of the
surrogate markers (ƒCmax/MIC and ƒAUC/MIC) of antibacterial activity by integration of
the pharmacokinetic parameters obtained in vivo with in vitro MIC data.

2. Materials and Methods
2.1. Animals

This study was carried out on lambs with healthy and respiratory infections, who had
not received any medication in the month prior to administration. During the study, lambs
were fed with commercial feed (CP-5621, Ankara) twice a day, and alfalfa hay, grass hay,
and water were given ad libitum. All procedures on animals were approved by the local
ethics committee (Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey).
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2.2. Clinical Examination and Creating Groups

Before the study, lamb farms were screened for the presence of respiratory infections.
Lambs (Kivircik breed, 3–4 months old, n = 174) on a farm (TR4223131, Kadınhanı/Konya)
in whom respiratory infections were detected were examined for appetite, coughing, nasal
and eye discharge, increased respiratory rate, rectal temperature, and lung sounds. The
clinical scoring parameters (scores of 0–3) reported by Christodoulopoulos et al. were used
to determine the disease and its severity [40]. Lambs (n = 76) determined to be healthy
upon clinical examination were taken into clean pens and were observed clinically for
7 days. To determine the pharmacokinetics of danofloxacin, 12 lambs were randomly
selected from the healthy lambs following clinical examination and placed into two pens of
20 m2 with 6 lambs each, who were then numbered using oil paint.

The lambs (n = 98) with respiratory infections were placed into different pens accord-
ing to their clinical scores (scores of 1–3) and numbered using oil paint. Bronchoalveolar
lavage (BAL) fluid samples from these lambs were taken for the isolation and identification
of bacterial agents caused respiratory infections. In infected lambs, an increased respiratory
rate (46% with >48 breaths/min); abnormal findings, including abnormal sounds (audible,
predominantly antero-ventrally, and throughout the entire lung field) under lung auscul-
tation (92%); coughing (48%); nasal discharge (42%), including scanty serous, abundant
serous, and mucopurulent discharge; eye discharge (27%), including scanty serous, abun-
dant serous, and purulent discharge; and increased rectal temperature (46% with >40 ◦C)
were revealed with a detailed clinical examination. To determine the pharmacokinetics
of danofloxacin, 14 lambs were randomly selected from the infected lambs (n = 23) with
a score of 3, coughing, an increased respiratory rate (>55 breaths/min), and an increased
rectal temperature (>40.5 ◦C) and were placed into two pens of 20 m2 with 7 lambs each.

2.3. Pharmacokinetic Study

The age, body weight, rectal temperature, and respiration rate of the healthy lambs
and those with respiratory infections selected to determine the pharmacokinetics of
danofloxacin are presented in Table 1. The pharmacokinetic study was carried out using a
total of 4 groups: HD (healthy; n = 6) and ID (infected; n = 7) groups, who were adminis-
tered danofloxacin only, and HDM (healthy; n = 6) and IDM (infected; n = 7) groups, who
were administered danofloxacin and meloxicam simultaneously. Danofloxacin (6 mg/kg,
Advocin 180, 180 mg/mL, injection solution, Zoetis, France) and meloxicam (1 mg/kg,
Maxicam X4, 20 mg/mL, injection solution, Sanovel, Turkey) were administered subcu-
taneously to the right and left axillary regions of the lambs, respectively. Blood samples
(2 mL) were collected in lithium heparin-containing anticoagulant tubes via a catheter from
the right jugular vein before (0 min) drug administration and at 0.25, 0.3, 0.45, 1, 2, 4, 6, 8,
10, 12, 18, 24, and 48 h after drug administration. All blood samples were centrifuged at
3000× g for 10 min, and the harvested plasma were stored at −70 ◦C until analysis.

Table 1. The mean (±SD) age, body weight, rectal temperature, and respiratory rate of the healthy
lambs (n = 6) and those with respiratory infections (n = 7) selected for the pharmacokinetic study. HD,
healthy group who received danofloxacin alone; HDM, healthy group who received danofloxacin
and meloxicam; ID, infected group who received danofloxacin alone; IDM, infected group who
received danofloxacin and meloxicam.

Parameters HD HDM ID IDM

Age (month) 3.20 ± 0.23 3.25 ± 0.36 3.50 ± 0.30 3.54 ± 0.51
Body weight (kg) 27.50 ± 3.03 28.17 ± 3.27 28.86 ± 3.08 27.86 ± 3.44
Rectal temperature (◦C) 39.77 ± 0.15 39.93 ± 0.12 41.01 ± 0.22 41.04 ± 0.22
Respiratory rate (breath/min) 42.17 ± 3.63 42.83 ± 2.79 61.00 ± 3.27 62.43 ± 3.46
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2.3.1. Danofloxacin Analysis

The plasma concentration of danofloxacin was analyzed using the high-performance
liquid chromatography (HPLC)–UV system (Shimadzu, Tokyo, Japan) as per a previously
reported method [41–44]. First, 200 µL of acetonitrile was added to 200 µL of the plasma
sample. The mixture was vortexed for 30 s and centrifuged at 9167× g for 10 min at 15 ◦C.
Then, 20 µL of supernatant was injected into the HPLC–UV system, comprising a pump
(LC-20AT controlled CBM-20A), degasser (DGU-14A), autosampler (SIL-20A), column oven
(CTO-10A), and ultraviolet detector (SPD-10A), which was set to 278 nm. Chromatographic
separation was performed using a Gemini ™ C18 column (250 × 4.6 mm; internal diameter,
5 µm; Phenomenex, Torrance, CA, USA). The column oven and autosampler temperatures
were kept at 30 and 22 ◦C, respectively. The mobile phase comprised orthophosphoric acid
of 0.4% in water, including 0.4% triethylamine and acetonitrile (87:13, v/v), pumped at a
flow rate of 1 mL/min. HPLC system control and data analysis were performed with LC
solution software (Shimadzu, Japan). To prepare the calibration standards (0.04–10 µg/mL)
and the quality control samples (0.05, 0.5, and 5 µg/mL), control plasma from animals
that had received no treatment was spiked with working standards of danofloxacin (98%,
analytical purity; Sigma-Aldrich, St. Louis, MO, USA) prepared in water. The calibration
standards and quality control samples were run with each assay. The linearity of the
standard curve created with the calibration standards was r2 > 0.999. The lower limit
of quantitation (LLOQ) was 0.04 µg/mL with a coefficient of variation of less than 20%
and a bias of ±15%. To determine the recovery, precision, and accuracy of the assay, five
replicates for quality control samples were tested for five consecutive days. The recovery
from the plasma was >91%. The percent coefficient of variation for the intra- and interday
precision was <7.9%, while the percent bias for the intra- and interday accuracy of the assay
was ±5.3%.

2.3.2. Pharmacokinetic Analysis

WinNonlin 6.1.0.173 software (Pharsight Corporation, Scientific Consulting Inc., Sun-
nyvale, CA, USA) was used to plot the plasma concentration–time curve of danofloxacin
for each lamb and to calculate the pharmacokinetic parameters by the non-compartmental
method using the formulae described by Gibaldi and Perrier [45]. After SC administration,
the elimination rate constant (
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2.3.3. In Vitro Protein Binding Assay of Danofloxacin

In plasma samples obtained from healthy lambs and lambs with respiratory infections,
the plasma protein binding ratio of danofloxacin alone or in combination with meloxicam
was evaluated using ultrafiltration [46]. Studies were carried out at physiologic temperature
and pH (7.4). Pooled plasma was separately collected from healthy lambs (n = 12, HD and
HDM groups) and lambs (n = 14, ID and IDM groups) with respiratory infections that had
received no drug treatment. Then, the obtained plasma samples were divided into 4 groups:
PBHD and PBID groups who were spiked with danofloxacin only, and PBHDM and
PBIDM groups who were spiked with danofloxacin and meloxicam simultaneously. Plasma
samples were spiked with danofloxacin and meloxicam to make a 0.05, 0.5, and 5 µg/mL
concentration. Three replicates of each concentration of danofloxacin were made. To
achieve equilibrium between drugs and plasma proteins, the spiked plasma samples were
incubated at 37 ◦C for 30 min prior to ultrafiltration. Samples of 1 mL were transferred to an
Amicon Ultra Centrifugal Filter (Ultracel 10 kD; Millipore Corporation, Bedford, MA, USA)
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and centrifuged at 4000× g for 15 min. The ultrafiltrate was analyzed directly by HPLC for
determination of free danofloxacin concentrations. The protein binding of danofloxacin was
determined the following formula: Protein binding (%) = [(Total drug−Free drug)/Total
drug] × 100. In addition, a preliminary study was performed to identify danofloxacin
nonspecific binding to the ultrafiltration device.

2.3.4. Statistical Analysis

All values for the pharmacokinetic parameters and pharmacokinetic/pharmacody-
namic (PK/PD) data are expressed as the geometric mean (min–max). Other values are
presented as the mean ± SD. The normality of the data distribution was assessed with
the Shapiro–Wilk test and the homogeneity of variance with the Levene’s test. A two-way
between groups ANOVA was used to evaluate the interaction of health/infection condition
and meloxicam administration for the pharmacokinetic parameters. The interaction of
health/infection condition, meloxicam and concentrations of danofloxacin for the protein
binding of danofloxacin was evaluated by a three-way ANOVA. The intergroup differ-
ences of the pharmacokinetic parameters and protein binding were analyzed using the
post hoc Tukey’s test following the ANOVA (SPSS 22.0, SPSS for Windows, SPSS Inc.,
Chicago, IL, USA). A p-value of <0.05 was considered statistically significant.

2.4. Microbiological Analysis
2.4.1. Collection of Bronchoalveolar Lavage Fluid Samples

BAL fluid samples were taken from 98 lambs whose clinical scoring results were
1, 2 or 3 in order to isolate and identify the bacterial agents caused infection in lambs
with respiratory infections. The trans-nasal method was used for the collection of BAL
fluid. Before the collection of BAL fluid, the nostrils of the lambs were cleaned with an
alcohol swab. Following extension of the head and neck of the lamb, a sterile nasogastric
probe (3.33 × 1210 mm; Bıcakcilar, Istanbul, Turkey) was advanced trans-nasally until a
weak resistance was encountered in the trachea. With the recurrent cough reflex, it was
understood that the hull area was reached. Then, the catheter was withdrawn 1–2 cm, and
10 mL of sterile saline (0.9% NaCl) was injected into the trachea with the help of an injector
placed at the tip of the catheter, followed by immediate aspiration. The BAL fluid (1–2 mL)
was kept at 4 ◦C until microbiological analysis. The microbiological isolation process was
started within 12 h following the sampling.

2.4.2. Bacterial Isolation and Identification

Direct streaking was performed on 5% sheep blood agar and MacConkey agar (Merck,
Darmstadt, Germany) plates from the BAL fluid samples. The plates were incubated
aerobically at 37 ◦C for 24–48 h. For the Mycoplasma culture, the samples were inoculated on
Mycoplasma-selective agar (Mycoplasma agar base, Oxoid, CM0401 + Mycoplasma-selective
supplement G, Oxoid, SR0059C). The Mycoplasma agar plates were incubated at 37 ◦C
for 2–7 days in an environment with 5% CO2. The Mycoplasma-selective agar plates
were examined daily under a microscope after 48 h incubation and were evaluated for
growth. Isolated bacteria were identified by colony morphology, growth characteristics,
and biochemical tests [47]. The isolated strains were stored at −80 ◦C for antimicrobial
susceptibility tests.

2.4.3. Minimum Inhibitory Concentration

In this study, the broth microdilution method described by the Clinical and Laboratory
Standards Institute [48] was used to determine the MIC values of danofloxacin on the bac-
teria isolated from lambs with respiratory infections. E. coli ATCC 25922 and Staphylococcus
aureus ATCC 29213 were used as quality control isolates. Danofloxacin was tested in a
range from 0.016 to 16 µg/mL in doubling dilutions. The final test concentration of bacteria
was 5 × 105 colony forming units/mL in Mueller–Hinton broth (Merck, Germany). The
MICs were read after 24 h incubation at 37 ◦C. The lowest concentration of drug that visibly
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inhibited bacterial growth was accepted as the MIC. The concentrations that inhibited 50%
(MIC50) and 90% (MIC90) of the isolates were calculated for danofloxacin. The MIC50 and
MIC90 were calculated using “n × 0.5” and “n × 0.9”, respectively, in which n was the
number of test strains. Then, if the resulting number was not an integer, the next integer
following the respective value was taken as the MIC50 or MIC90 value [49].

2.4.4. Pharmacokinetic/Pharmacodynamic Integration

The PK/PD surrogate indices used to determine the inhibitory activity or effect
of danofloxacin against susceptible pathogens were AUC0–24/MIC and Cmax/MIC ra-
tios [50–53]. In this study, the ƒAUC0–24/MIC and ƒCmax/MIC ratios were calculated using
the ƒAUC and ƒCmax obtained from the free concentrations of danofloxacin in the plasma of
the ID and IDM groups after danofloxacin administration and the MIC values determined
for the bacterial strains isolated from the lambs with respiratory infections.

3. Results
3.1. Pharmacokinetics

Semi-logarithmic plasma concentration–time curves of danoflaxacin alone or co-
administered with meloxicam in healthy lambs and lambs with respiratory infections
are presented in Figure 1. In the HD, HDM, ID and IDM groups, the plasma concentra-
tion of danofloxacin following administration of a 6 mg/kg dose of SC was 1.72 ± 0.64,
1.90 ± 0.77, 2.01 ± 0.84, and 2.56 ± 0.85 µg/mL, respectively, at the first observational
point (15 min). Then, it dropped to 0.057 ± 0.015, 0.086 ± 0.026, 0.075 ± 0.027, and
0.108 ± 0.026 µg/mL, respectively, at 24 h.
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Figure 1. Semi-logarithmic plasma concentration–time curves after subcutaneous administration
of danofloxacin alone or co-administered with meloxicam in healthy lambs (n = 6) and lambs with
respiratory infections (n = 7). HD, healthy group who received danofloxacin alone; HDM, healthy
group who received danofloxacin and meloxicam; ID, infected group who received danofloxacin
alone; IDM, infected group who received danofloxacin and meloxicam. Data are presented as
mean ± SD.

The pharmacokinetic parameters of danofloxacin alone or co-administered with
meloxicam in healthy lambs and lambs with respiratory infections are presented in Table 2.
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A two-way ANOVA revealed no significant interaction between the healthy/infected con-
ditions and meloxicam administration of any of the pharmacokinetic parameters (p > 0.05),
but significant main effects were found for the healthy/infected conditions (p < 0.05)
on ClT/F and AUC and for meloxicam administration (p < 0.05) on the ClT/F, Vdarea/F,
Vdss/F, Cmax, and AUC, indicating that these factors acted independently. Danofloxacin
exhibited similar t

1/2
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and MRT in all groups (p > 0.05). However, the ClT/F and Vdarea/F

of danofloxacin showed significant differences between the groups (p < 0.05). The ClT/F
decreased significantly (p < 0.05) upon meloxicam administration (HDM and IDM groups)
and the effect of infection (ID and IDM groups). The administration of meloxicam to
healthy (HDM) and infected lambs (IDM) significantly increased the Vdarea/F and Vdss/F
of danofloxacin compared to the HD group (p < 0.05). In the HD, HDM, ID, and IDM
groups, danofloxacin reached different Cmax values of 3.36, 3.73, 3.61, and 4.59 µg/mL
(p < 0.05), respectively, with Tmax values of 1.0 h (p > 0.05). In particular, the administration
of meloxicam (IDM) to infected lambs significantly increased the Cmax of danofloxacin
compared to the HD group (p < 0.05). The AUC increased significantly in the HDM and
IDM groups compared to the HD and ID groups (p < 0.05). In the ID and IDM groups, the
ƒAUC was 10.36 (7.43–14.99) h·µg/mL and 14.80 (11.25–20.33) h·µg/mL, respectively, and
ƒCmax was 2.42 (2.00–3.00) µg/mL and 3.60 (2.58–5.05) µg/mL, respectively.

Table 2. The pharmacokinetic parameters of danofloxacin (6 mg/kg; SC) alone or co-administered with meloxicam
(1 mg/kg; SC) in healthy lambs (n = 6) and lambs with respiratory infections (n = 7). t
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, terminal half-life; ClT/F, total

clearance; Vdarea/F, volume of distribution; Vdss/F, volume of distribution in a steady state; Tmax, time to reach the peak
concentration; Cmax, peak plasma concentration; AUC, area under the concentration–time curve; MRT, mean residence time;
HD, healthy group who received danofloxacin alone; HDM, healthy group who received danofloxacin and meloxicam; ID,
infected group who received danofloxacin alone; IDM, infected group who received danofloxacin and meloxicam.

Parameters HD HDM ID IDM

t
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z
(h) 6.98 (5.75–8.15) 6.46 (4.82–8.24) 6.07 (5.01–7.48) 6.73 (5.14–8.12)

ClT/F (L/h·kg) 0.45 (0.39–0.51) a 0.32 (0.28–0.36) b,c 0.38 (0.31–0.42) b 0.28 (0.21–0.31) c

Vdarea/F (L/kg) 4.55 (3.52–5.40) a 3.02 (2.01–4.18) b 3.35 (2.98–4.20) a,b 2.73 (1.94–3.44) b

Vdss/F (L/kg) 2.46 (1.94–3.23) a 1.88 (1.39–2.24) b 2.12 (1.61–2.51) a,b 1.70 (1.23–2.21) b

Tmax (h) 1.01 (0.75–2.00) 1.25 (1.00–2.00) 1.34 (1.00–2.00) 1.23 (0.75–2.00)
Cmax (µg/mL) 3.36 (2.46–4.46) b 3.73 (2.89–4.30) a,b 3.61 (2.97–4.46) a,b 4.59 (3.29–6.44) a

AUC0–24 (h.µg/mL) 12.68 (11.04–14.61) c 17.69 (15.94–20.32) a,b 14.99 (13.59–17.97) b,c 20.23 (18.37–25.93) a

AUC0–∞ (h·µg/mL) 13.26 (11.63–15.26) c 18.52 (16.56–20.73) a,b 15.65 (13.96–19.06) b,c 21.30 (19.19–27.29) a

Cmax/AUC 0.25 (0.20–30) 0.20 (0.15–0.25) 0.23 (0.17–0.29) 0.22 (0.17–27)
MRT (h) 5.43 (4.54–6.27) 5.81 (4.79–6.95) 5.54 (3.86–6.78) 6.02 (4.72–7.51)

Data are presented as the geometric mean (min–max) and were analyzed by two-way ANOVA with Tukey’s test. a,b,c Different letters in the
same row are statistically different (p < 0.05).

3.2. In Vitro Protein Binding of Danofloxacin

The protein binding ratio of danofloxacin alone or in combination with meloxicam
in plasma samples of healthy lambs and lambs with respiratory infections is presented
in Table 3. The protein binding ratio (mean ± SD) of danofloxacin for PBHD, PBHDM,
PBID and PBIDM groups were 32.0 ± 4.8%, 22.7 ± 3.1%, 32.8 ± 3.9% and 21.6 ± 4.0%,
respectively. No interaction of the health/infection condition, meloxicam and concen-
tration of danofloxacin for the protein binding of danofloxacin was determined by the
three-way ANOVA, but the meloxicam and concentration of danofloxacin acted indepen-
dently. No significant effects on the plasma protein binding of danofloxacin were found
for the healthy/infected conditions (p > 0.05). When danofloxacin was in combination
with meloxicam (PBHDM and PBIDM groups), the plasma protein binding of danofloxacin
decreased significantly (p < 0.05). In PBHD group, the protein binding ratio at the con-
centration of 5 µg/mL is statistically lower than that at the concentration of 0.05 µg/mL
(p < 0.05). Preliminary studies found negligible binding (<1%) of danofloxacin to the
ultrafiltration device.
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Table 3. Protein binding ratio (%) of danofloxacin alone or in combination with meloxicam in plasma
samples of healthy lambs and lambs with respiratory infections. PBHD, healthy group who was
spiked with danofloxacin alone; PBHDM, healthy group who was spiked with danofloxacin and
meloxicam; PBID, infected group who was spiked danofloxacin alone; PBIDM, infected group who
was spiked danofloxacin and meloxicam.

Danofloxacin Concentration
(µg/mL) PBHD PBHDM PBID PBIDM

0.05 36.3 ± 2.1 a 24.3 ± 2.1 b 36.0 ± 3.6 a 22.0 ± 3.0 b

0.5 32.0 ± 4.6 a 21.0 ± 3.0 b 33.0 ± 1.0 a 24.3 ± 3.8 a,b

5.0 27.7 ± 3.1 a,* 22.6 ± 4.0 a,b 29.3 ± 3.5 a 18.3 ± 3.5 b

Mean ± SD 32.0 ± 4.8 a 22.7 ± 3.1 b 32.8 ± 3.9 a 21.6 ± 4.0 b

Data are presented as the mean ± SD and were analyzed by three-way ANOVA with Tukey’s test. * In PBHD
group, the protein binding ratio at the concentration of 5 µg/mL is statistically lower than that at the concentration
of 0.05 µg/mL (p < 0.05). a,b Different letters in the same row are statistically different (p < 0.05).

3.3. Pharmacodynamics

In the BAL fluid samples taken from the infected lambs, the E. coli (n = 6), Streptococcus
spp. (n = 3), and M. haemolytica (n = 83) strains were isolated and identified. No growth was
detected on the Mycoplasma cultures. The MIC values of danofloxacin were determined
as 0.063–0.125 µg/mL for the E. coli strain and >16 µg/mL for the Streptococcus spp.
strain. The breakpoints of danofloxacin for E. coli and Streptococcus spp. have not been
defined. However, all isolates of E. coli isolated from the lambs could be susceptible to
danofloxacin according to the susceptibility breakpoint (8 µg/mL) of danofloxacin reported
for E. coli isolated from pigs [54]. The MIC90 value could not be determined for the E. coli
or Streptococcus spp. strains due to the insufficient number of isolates.

In this study, the MIC values of danofloxacin for the 83 M. haemolytica isolates iso-
lated from the lambs ranged from 0.016 to >16 µg/mL. The percent MIC distribution of
danofloxacin for the 83 isolates of M. haemolytica is presented in Figure 2. The percent MIC
distribution for the concentrations of 0.016, 0.031, 0.063, 0.125, 0.25, 0.5, 1, 4, and 16 µg/mL
was 9.6%, 20.5%, 27.7%, 25.3%, 8.4%, 2.4%, 1.2%, 2.4%, and 2.4%, respectively. There are no
CLSI-approved breakpoint MIC values of danofloxacin for M. haemolytica isolated from
sheep. The susceptible (0.25 µg/mL), intermediate (0.5 µg/mL), and resistant (1 µg/mL)
MIC breakpoint values for M. haemolytica isolated from cattle have been determined [55,56].
For M. haemolytica isolated from the lambs, the MIC50 value was 0.063 µg/mL and the
MIC90 value was 0.25 µg/mL, in which 91.6% of the population was below the susceptible
breakpoint of 0.25 µg/mL.
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3.4. Pharmacokinetic/Pharmacodynamic Integration

The PK/PD surrogate indices determined using the pharmacokinetic parameters
obtained from the free concentrations of danofloxacin and the MIC values determined
for the bacterial strains isolated from the lambs with respiratory infections are presented
in Table 4. In the ID and IDM groups, the AUC0–24/MIC90 estimated using the in vitro
MIC90 data (0.25 µg/mL) for M. haemolytica and the in vivo pharmacokinetic parameters of
danofloxacin was 41.44 h and 59.21 h, while the ƒCmax/MIC90 was 9.69 and 14.40, respec-
tively. In the ID and IDM groups, the ƒAUC0–24/MIC for the E. coli isolates ≤0.125 µg/mL
was 82.89 h and 118.43 h, while the ƒCmax/MIC was 19.39 and 28.80, respectively. The
PK/PD surrogate markers for the Streptococcus spp. isolates with an MIC value >16 µg/mL
were not determined.

Table 4. The PK/PD surrogate indices determined using the pharmacokinetic parameters obtained from the free concen-
trations of danofloxacin and the MIC values determined for the bacterial strains isolated from the lambs with respiratory
infections. MIC, minimum inhibitor concentration; AUC, area under the concentration–time curve; Cmax, peak plasma
concentration; GM, geometric mean; ID, infected group who received danofloxacin alone; IDM, infected group who received
danofloxacin and meloxicam.

Animal No
ƒAUC0–24/MIC ƒCmax/MIC

ID IDM ID IDM

Mannheimia haemolytica, MIC90 of 0.25 µg/mL

1 38.42 57.62 7.99 10.32
2 37.83 44.98 10.89 13.35
3 36.50 81.31 9.34 20.21
4 29.70 59.95 11.99 11.26
5 50.42 56.37 10.43 19.17
6 59.97 58.85 8.66 14.76
7 44.08 60.90 9.15 14.45

GM (min–max) 41.44 (29.70–59.97) 59.21 (44.98–81.31) 9.69 (7.99–11.99) 14.40 (10.32–20.21)

Escherichia coli, MIC of 0.125 µg/mL

1 76.84 115.23 15.98 20.65
2 75.66 89.96 21.78 26.69
3 73.01 162.63 18.69 40.42
4 59.40 119.89 23.98 22.53
5 100.83 112.74 20.86 38.33
6 119.94 117.71 17.31 29.53
7 88.16 121.80 18.30 28.90

GM (min–max) 82.89 (59.40–119.94) 118.43 (89.96–162.63) 19.39 (15.98–23.98) 28.80 (20.65–40.42)

4. Discussion
4.1. Pharmacokinetics of Danofloxacin

Danofloxacin has been recommended for use at a dose of 6 mg/kg against M. haemolyt-
ica isolates with an MIC value of 0.25 µg/mL by PK/PD modeling in sheep [51,57]. In
addition, the clinical efficacy of a 6 mg/kg dose of danofloxacin has been demonstrated in
an experimental infection caused by M. haemolytica in lambs [17]. In this study, the injection
route (SC) and dose (6 mg/kg) of danofloxacin administered to lambs were determined
based on previous studies [17,50,56]. Meloxicam was administered at the approved dose
(1 mg/kg) in sheep [20].

In this study, danofloxacin exhibited a similar t
1/2
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is a hybrid parameter affected by changes in the

Vd and Cl of the drug [58]. In this study, the Vdarea/F and ClT/F values of danofloxacin
significantly decreased with the administration (HDM and IDM groups) of meloxicam and
the effect (ID and IDM groups) of infection. However, the decrease in both the Vdarea/F
and ClT/F values caused by the infection and the administration of meloxicam may be the
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parameters in all groups. These results are also consistent with the

results of studies in which the ClT and Vd of enrofloxacin decreased, but its t1/2 did not
change [30,59].

In this study, the ClT/F of danofloxacin significantly decreased with the administra-
tion (HDM and IDM groups) of meloxicam and the effect (ID and IDM groups) of infection.
The lower ClT/F of danofloxacin in the HDM (0.32 L/h·kg) and IDM (0.28 L/h·kg) groups
compared to the HD (0.45 L/h·kg) and ID (0.38 L/h·kg) groups indicates that danofloxacin
interacts with meloxicam. The elimination of danofloxacin and meloxicam has not been
observed in sheep. The excretion of danofloxacin occurs approximately equally in urine
and feces; while approximately 80% of the drug is removed unchanged, 20% of the drug
is removed as a β-glucuronide conjugate of danofloxacin, desmethyldanofloxacin and
danofloxacin-N-oxide, which are formed as a result of phase I and extensive phase II
reactions [60]. Meloxicam is metabolized extensively in the liver through phase I reac-
tions (conjugate derivative has not been determined) and less than <10% as unchanged
meloxicam is excreted in the urine [61,62]. These data may indicate that danofloxacin and
meloxicam interact primarily at the kidney level due to differences in their metabolism
pathways. It is known that NSAIDs reduce the renal blood flow and glomerular filtration
rate by inhibiting the synthesis of vasodilator prostaglandin (PG)E2 and PGI2, which play
a role in maintaining normal kidney function [63,64]. PGs are synthesized in the kidneys
by both COX-1 and COX-2 enzymes. Selective COX-2 inhibitors have been shown to
have similar effects on renal hemodynamics as non-selective NSAIDs [65,66]. The effect of
meloxicam, a selective COX-2 inhibitor, on the ClT/F of danofloxacin may be related to its
decrease in renal blood flow and glomerular filtration rate.

Meloxicam is a substrate of BCRP, a member of the ATP-dependent efflux trans-
porters [67,68]. Danofloxacin is the substrate of P-gp and MRP2, in addition to BCRP [16,43].
In sheep, ivermectin reduces the passage of danofloxacin entering the milk by a BCRP-
mediated interaction (40%) [43]. Ciprofloxacin, a substrate of BCRP but not of P-gp or
MRP2, reduces the secretion and absorption of danofloxacin in a Caco-2 cell model [16]. In
this study, the decrease in the ClT/F of danofloxacin in the IDM and HDM groups may
have resulted from the limitation of the excretion of danofloxacin due to a BCRP-mediated
danofloxacin–meloxicam interaction in the excretion routes, such as the intestines, bile
duct, or proximal tubule cells.

In this study, the lower ClT/F of danofloxacin in the ID (0.38 L/h·kg) and IDM
(0.28 L/h·kg) groups than that in the HD (0.45 L/h·kg) and HDM (0.32 L/h·kg) groups
indicates the effect of infection. These findings are consistent with other studies that
reported a reduced ClT/F of danofloxacin, marbofloxacin, and tilmicosin in respiratory
infections [69–72]. However, the ClT/F of marbofloxacin increased in lambs naturally
infected with M. haemolytica [73]. The ClT of drugs is influenced by a variety of factors,
particularly the blood flow to the excretion organs, the binding ratio of the drug to plasma
proteins, and the activity of drug-metabolizing enzymes. These factors can be affected by
sepsis and septic shock and may alter drug excretion and metabolism, leading to a reduced
ClT [74,75]. It is reported that inflammation and infection could lead to downregulation of
drug-metabolizing enzymes and transporters (primarily of the ABC superfamily), resulting
in higher plasma concentrations and altering some distribution processes. Many inflam-
matory mediators (interleukines, cytokines, transforming growth factor, tumor necrosis
factor or interferons) reduced the gene expression of cytochrome P450 complex in liver. On
the other hand, inflammation and infection also downregulate drug efflux transporters
ATP-binding cassette (ABC) superfamily. These transporters are ubiquitous in the or-
ganism and play a major role in drug transport of antimicrobials, among other drugs.
A specific ABC transporter, the BCRP, and ABCG2 family transporter, is present in the
human mammary gland and is responsible to excrete fluoroquinolones to milk. BCRP was
present in mammary glands of animals including sheep and goats, and it is reported that
danofloxacin is a substrate of BCRP, and inflammation and infection could lead to a down-
regulation of this transporter, affecting the disposition of the drug in the organism [76–80].
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In lambs infected with M. haemolytica, the release of pro-inflammatory cytokines such
as interleukin-1β, interleukin-8, and tumor necrosis factor-alpha has been shown to in-
crease [81]. Pro-inflammatory cytokines reduce the activities of various cytochrome P450
and phase II enzymes, as well as the expression and function of transporter proteins
such as P-gp, BCRP, and MRP2, which play an important role in the pharmacokinetics
of drugs [82–85]. These effects have been reported as the cause for the decreased ClT of
danofloxacin in infected animals [16,86]. In this study, the decreased ClT/F of danofloxacin
in the ID group may be related to changes in blood flow into the excretion organs caused
by infection and the decrease in the functions of phase II enzymes and the P-gp, BCRP, and
MRP2 transporters. The partial decrease in the ClT/F of danofloxacin in the IDM group
compared to the HDM group may be due to the therapeutic effect of meloxicam on the
inflammation and fever caused by infection in the infected lambs.

In this study, the Vdarea/F and Vdss/F of danofloxacin were significantly decreased
in the HDM and IDM groups compared to the HD group. These data show that the
Vdarea/F and Vdss/F decreased with the administration of meloxicam (HDM and IDM).
Similarly, the Vd of enrofloxacin and moxifloxacin has been shown to decrease with upon
administration of some NSAIDs in healthy animals [30,31]. The protein binding ratio of
danofloxacin in HD, HDM, ID and IDM groups were 32.0 ± 4.8%, 22.7 ± 3.1%, 32.8 ± 3.9%
and 21.6 ± 4.0%, respectively. The binding ratio of meloxicam to plasma proteins is high
(96% in dogs and 98% in calves) [60]. In this study, meloxicam decreased significantly
the plasma protein binding of danofloxacin in HDM and IDM groups. A decrease in the
binding ratio of danofloxacin to plasma proteins can be expected to cause an increased
Vd. However, an increased concentration of danofloxacin in the plasma due to its reduced
elimination by meloxicam can lead to a low calculation of Vd/F. Another reason for the
decreased Vd/F in the HDM and IDM groups may be the limitation of the body disposition
of danofloxacin, which is a substrate of P-gp, MRP2, and BCRP, by meloxicam [16,43,87].
Danofloxacin reaches 4 times higher concentrations in the lungs, bronchial mucosa, and
bronchial secretions and 10 times higher in the milk than that in the plasma [12,57,88].
ABC transporters such as P-gp, MRP2, and especially BCRP are responsible for the high
concentrations of danofloxacin in the lung tissues and milk [16,43]. The limitation of the
excretion and passage of danofloxacin to highly accumulated tissues such as the lungs
due to a BCRP-mediated danofloxacin–meloxicam interaction may be the reason for the
decreased Vd/F in the HDM and IDM groups. In particular, given that the interest lies
with the influence of meloxicam in the pharmacokinetics of danofloxacin, a more robust
approach would be to also analyze the concentration–time profile of meloxicam to examine
whether there is a potential concentration-dependent effect.

The rate of drug absorption from the site of administration is affected by conditions
such as septicemia and septic shock, which affect the regional blood flow [74,89]. A systemic
inflammatory response has been reported in pneumonia caused by M. haemolytica [81]. In
this study, an increase (>40.5 ◦C) in body temperature, indicating the systemic effects of the
infection, was determined in infected lambs. Therefore, the absorption rate of danofloxacin
can be expected to change following SC administration in infected lambs. However, in this
study, the Cmax/AUC and Tmax parameters used to evaluate the rate of drug absorption
from the site of administration [90] were similar between the groups.

In this study, the Cmax of danofloxacin in the HD, HDM, ID, and IDM groups was
3.42, 3.76, 3.64, and 4.72 µg/mL, respectively. The administration of meloxicam (IDM) to
infected lambs significantly increased the Cmax of danofloxacin compared to the HD group.
The AUC of danofloxacin increased significantly in the HDM and IDM groups compared
to in the HD and ID groups. The absorption extent, Cl, and Vd of a drug contribute to
the formation of Cmax and AUC [91,92]. Danofloxacin, following SC administration, in
sheep has been shown to achieve a high bioavailability of 94% [51,93]. In this study, the
decreased Vdarea/F and ClT/F in the HDM and IDM groups may lead to the formation
of a high Cmax and AUC. A high Cmax and AUC has been reported for enrofloxacin co-
administered with flunixin meglumine and for danofloxacin in calves with respiratory tract
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infections [35,70]. Danofloxacin has been shown to demonstrate linear pharmacokinetics at
doses of 1.25–10 mg/kg following SC administration and no toxic symptoms at doses of 10
and 20 mg/kg for six days or doses of 18 and 24 mg/kg for three days in calves [94]. In this
study, a 6 mg/kg dose of danofloxacin in the IDM group created a high Cmax within the
therapeutic range. This may have resulted in an increased therapeutic effect of danofloxacin
in the IDM group.

4.2. Pharmacokinetic/Pharmacodynamic Integration

The PK/PD surrogate parameters showing the efficacy of fluoroquinolones are the
ƒAUC0–24/MIC and ƒCmax/MIC ratios [95,96]. In the treatment of infections caused by
Gram-negative bacteria, an ƒAUC0–24/MIC ratio should be 100–125 and a ƒCmax/MIC
ratio should be 8–10 in order to achieve an ideal bactericidal effect and reduce the risk of
resistance [97,98]. In in vitro studies, it has been shown that while fluoroquinolone dosages
with a ƒCmax/MIC ratio of >3 cause a 99% reduction in the number of bacteria, dosages with
a ƒCmax/MIC ratio of ≥8 are sufficient to prevent the emergence of resistant bacteria [99].
In the present study, the ƒAUC0–24/MIC and ƒCmax/MIC ratios were calculated only for the
ID and IDM groups. In the ID and IDM groups, the ƒAUC0–24/MIC ratio of danofloxacin
for susceptible E. coli isolates with an MIC value of 0.125 µg/mL was 82.89 h and 118.43 h,
respectively, while the ƒCmax/MIC ratio was 19.39 and 28.80, respectively. Danofloxacin in
the ID and IDM groups provided the ideal ƒCmax/MIC ratios following SC administration
at a dose of 6 mg/kg. However, the ideal ƒAUC0–24/MIC ratio was obtained for the IDM
group only.

A susceptible MIC breakpoint of ≤0.25 µg/mL for danofloxacin against M. haemolytica
has been reported [56,100]. In this study, the MIC90 value of danofloxacin for M. haemolytica
isolates isolated from lambs with respiratory infections was 0.25 µg/mL. In the ID and
IDM groups, the ƒAUC0–24/MIC90 ratio was 41.44 h and 59.21 h, respectively, while the
ƒCmax/MIC90 ratio was 9.69 and 14.40. Danofloxacin at a dose of 6 mg/kg achieved the
ideal ƒCmax/MIC90 value of 8–10 but did not reach the ƒAUC0–24/MIC90 ratio of ≥125 h
previously reported for fluoroquinolones [95,96]. However, studies have reported that the
optimal ƒAUC0–24/MIC90 value is not an absolute value, and the AUC0–24/MIC90 value of
danofloxacin, which can provide bacterial elimination of M haemolytica, is 2–4 times lower
than 125 h [50–52,101]. The ideal ex vivo and in vivo AUC0–24/MIC values of danofloxacin
for the elimination of M. haemolytica isolates from sheep have been reported to be 28.7 and
55.9 h, respectively [51]. When evaluated on the basis of these data, danofloxacin provided
the ideal in vivo ƒAUC0–24/MIC90 ratio (55.9 h) for M. haemolytica isolates with MIC values
of ≤0.25 µg/mL in the ID and IDM groups, but not in the ID group. Furthermore, previous
studies have shown that danofloxacin in the lung tissues and bronchial mucosa reaches
approximately 5- and 3-times higher concentrations, respectively, than those obtained
in the plasma [11]. Therefore, in the present study, the concentration of danofloxacin
obtained in the lung tissues and bronchial mucosa of the lambs in the ID group may have
significantly exceeded the MIC values required for the elimination of M. haemolytica, which
is an extracellular localization [70,102].

5. Conclusions

The administration of meloxicam and the presence of infection in lambs reduced the
Vd/F and ClT/F of danofloxacin but did not affect the t1/2λz. Meloxicam increased the
plasma concentration of danofloxacin in both healthy lambs and lambs with respiratory
infections. In lambs with respiratory infections, an increased plasma concentration of
danofloxacin within the therapeutic range may result in a better therapeutic effect. How-
ever, the clear definition of an increase in the therapeutic effect requires the determination
of the concentration of danofloxacin in the target tissues and the effects of the resulting
concentration on bacterial eradication. In addition, repeated doses of danofloxacin are
required for the treatment of infection. A danofloxacin–meloxicam interaction may not be
predicted following administration at repeated doses. Therefore, it is necessary to deter-
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mine the pharmacokinetics of danofloxacin and meloxicam following the administration of
repeated doses before simultaneous use in lambs with respiratory infections.

When co-administration with meloxicam, danofloxacin following SC administration at
a dose of 6 mg/kg in lambs with respiratory infections provided optimum AUC0–24/MIC
(>56 h) and Cmax/MIC (>8) values for susceptible M. haemolytica isolates with an MIC90
value of 0.25 µg/mL and for susceptible E. coli isolates with an MIC value of ≤0.125 µg/mL.
However, due to bacterial isolation in a small number of samples in this study, the deter-
mination of pharmacodynamic data on bacterial agents isolated from more lambs with
respiratory infections will be more valuable for the rational use of danofloxacin.
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