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Lung cancer is a commonly diagnosed cancer. In this era of personalizedmedicine, genetic predictivemodels are
becoming increasingly important. However, many current predictive models fail verification tests due to small
sample sizes and institutional biases.We collected 17 gene expression datasets frompublic databases to generate
our largest training and testing cohorts. After successfully eliminating institutional variations and merging
multiple datasets, we generated a training cohort of 1073 and a testing cohort of 659. Using Siggenes, univariate
and multivariate analyses, we identified seven gene signatures, and combined them with the clinical parameter
age and stage to design the lung cancer prognostic index (LCPI). Using LCPI, we could differentiate lung cancer
patients into three risk groups and predict patient survival probabilities at 10 and 15 year post-surgical resection.
We extensively verified the predictive ability of LCPI for overall and recurrence free survival using 6 other
datasets from five different countries.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Lung cancer is a leading cause of death. In 2008, about 12.7 million
cases and 7.6 million deaths were reported worldwide (Jemal et al.,
2011). Non-small-cell lung cancer (NSCLC) accounts for 85% of all
cases of lung cancer, and includes adenocarcinoma (ADC), squamous
cell carcinoma (SCC) and large cell carcinoma (LC). Currently, surgical
resection is a common procedure for patients with stage I, stage II, and
certain subsets of stage IIIA NSCLC (Ramalingam et al., 2011). For pa-
tients with stage II, stage IIIA, and select stage IB, adjuvant cisplatin-
based chemotherapy (ACT) after surgical resection is the standard of
care (Patel and Wakelee, 2011a). However, the effectiveness of using
ACT to increase patient survival time remains debatable. In the era of
personalized medicine, predictive markers can play a crucial role in
helping clinicians to separate patients that may benefit from post-
surgical treatments and patients that can be spared the burden of
overtreatment.
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Gene expression profiles (GEP) are valuable sources of patient data.
Since thefirst publications of GEP for lung cancer in 2001 (Bhattacharjee
et al., 2001), many studies have proposed predictivemodels to estimate
patient survival time. These models ranged from a single gene to hun-
dreds of genes (Bild et al., 2006; Takeuchi et al., 2006; Gruber et al.,
2006; Raponi et al., 2006; Director's Challenge Consortium for the
Molecular Classification of Lung, A. et al., 2008; Lee et al., 2008; Kuner
et al., 2009; Lu et al., 2010; Zhu et al., 2010; Hou et al., 2010;
Sanchez-Palencia et al., 2011; Xie et al., 2011; Okayama et al., 2012;
Botling et al., 2013; Rousseaux et al., 2013; Sato et al., 2013; Tang
et al., 2013). Models based on the expression of hundreds of genes is
economically impractical in the clinic, and models based on fewer
genes have not been verified in different testing cohorts due to small
sample size and the variations inherent in data collected from a single
institution. Additionally, some authors have truncated data collected
over 10 or more years to only 5 years, introducing error in survival pre-
dictions and contributing to difficulty in verification. As such, we hy-
pothesize that NSCLC survival time is a quantitative and predictable
trait. We have generated a more reliable model by combining multiple
datasets obtained from different institutions and different countries to
increase the sample size and mitigate the error introduced by institu-
tional biases. We collected 17 publically available NSCLC datasets
(Table 1), standardized 11 of them by removing batch effects, and
then combined them to form a training cohort of 1073 and a testing co-
hort of 659 patients, which are the largest two GEP datasets of NSCLC in
theworld. In doing so, we demonstrated how large datasets can be gen-
erated, normalized, and analyzed by pooling resources from multiple
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Table 1
Summary of 17 GEP Datasets of NSCLC.

Ref
no.

GSE
ID

First author Number of genes used
in author's model

Stages Cell types Training/test Survival probability of low
risk group at 5 years

Survival probability of low
risk group at 15 years

Data truncated
at 5 years

5 3141 Bild AH NA NA ADC, SCC Training 68%± NA NA
6 11969 Takeuchi T I–III ADC TE 78%± NA No
7 1643 Gruber MP Healthy NA NA Training NA NA NA
8 4573 Raponi M 100 I SCC, ADC Test NA NA Yes
9 NA Shedden K 100 I–III ADC Test 62%± NA Yes
10 8894 Lee ES 6 I–III ADC, SCC Test 60%± NA No
11 10245 Kuner R 17 I–III ADC; SCC Training NA NA No
12 19804 Lu TP 1 I–IV ADC Training 22%±; 45% ± _60%± NA Yes
13 14814 Zhu CQ 15 I–II ADC, SCC Test 90%± NA No (9 years)
14 19188 Hou J 17 I–IV ALL Training 58% ± _68%± NA No (N10 years)
15 18842 Sanchez-Palencia A 92 I–IV ADC, SCC Training NA NA No
16 29013 Xie Y 59 I ADC, SCC Training 46% ± _51%± NA Yes (7 years)
17 31210 Okayama H 9 I–II ADC Training 84%± NA Yes (98–2008)
18 37745 Botling J 14(1) NA ADC, SCC, LCC Training 61%± 20%± No (95–2005)
19 30219 Rousseaux S 26 I–IV ALL Test 66%± NA Yes (Max: 240 M)
20 41271 Sato M 171 I–III ADC, SCC Test 70%± NA No
21 42127 Tang H 18(12) I–III ADC Test 78%± NA No (96–2007)
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investigators and provided a formula for converting gene expression
datasets from two-channel to single-channel data.

Additionally, multiple studies indicated that gene expression data
combined with clinical parameters can improve the predictive capacity
of lung cancer survival models (Director's Challenge Consortium for the
Molecular Classification of Lung, A. et al., 2008; Lee et al., 2008). When
we analyzed the training cohort, we not only identified seven gene sig-
natures as independent predictive markers, but also found age and
stage to be supplementary independent predictors. We designed the
lung cancer prognostic index (LCPI) as a predictive score that accounts
for the seven biomarkers aswell as age and stage,with lower LCPI scores
corresponding to higher survival probabilities. Here, we show that we
were able to separate the patient populations in the training and testing
cohort into three distinct risk groups using the LCPI model. We used 6
other publically available NSCLC datasets as additional testing cohorts
for extensive verification and showed that the LCPI model was able to
predict patient survival regardless of lung cancer stage, type or country
of origin.

2. Methods

2.1. GEP Data Collection and Grouping

We collected 17 publically available GEP datasets (n = 2738) with
clinical parameters from theGene ExpressionOmnibus and theNational
Cancer Institute (GSE26939 (Wilkerson et al., 2012) added breast can-
cer cells as reference was excluded from our studies). As we needed
both the GEP data as well as the corresponding clinical parameters,
any dataset that did not release or contain either type of data was
excluded from our study. The gene expression data was obtained from
tumor tissue after surgical resection, and thus we limited our analysis
to patients for whom surgical resection is a viable option. Although
the analysis is not shown in this paper, we did explore the effect of
prior grouping variables. Most of the data in the 17 studies have similar
age range, similar gender distribution, and similar death ratios. As a
result of the parameters of the original studies, none of the patients
receive preoperative chemotherapy. There were a total of 230 control
samples. According to the power calculations, to attain 90% power
with a significance level of 0.05 and effect size of 0.25, we needed a
NSCLC patient sample size of 630. We set nine datasets performed
by platform GPL570 (including 54,675 probes) as training cohort
(n= 843). Since GSE30219 (Rousseaux et al., 2013)was the largest sin-
gle study including all cancer stages and all cancer cell types, we used it
as a testing cohort in combination with GSE8894 (Lee et al., 2008),
which only contained recurrence-free survival (RFS) data. Six other
datasets collected on different platforms were also used for verification
(Takeuchi et al., 2006; Raponi et al., 2006; Director's Challenge
Consortium for the Molecular Classification of Lung, A. et al., 2008;
Zhu et al., 2010; Sato et al., 2013; Tang et al., 2013). We downloaded
all available original CEL files and normalized them with Robust
Multichip Average from Affymetrix Expression Console.

2.2. Combining Nine Datasets in Training Cohort and Three Datasets in
Testing Cohort

The optimal way of grouping the patient data was to combine all
2738 available samples together and randomize them into two groups:
the training cohort and the testing cohort. However, due to the fact that
the available datasets were performed on different platforms and
contained batch effects, we were compelled to adopt another approach.
Although the platform was the same for some datasets, it was impossi-
ble to combine them directly due to large batch effects among different
datasets (Fig. 1a, c, e). To remove these batch effects, we decided to use
COMBAT because it outperformed other available methods (Chen et al.,
2011). Using the COMBATmethodology described previously in Chen, C.
et al., we standardized the nine datasets we combined for the training
cohort (Chen et al., 2011). Similarly we combined three GPL96
(22,283 probes) datasets for the largest testing cohort. GSE42127
(Tang et al., 2013) and GSE41271 (Sato et al., 2013) were obtained
with platform GPL6884 (48,803 probes), and to avoid loss of any
gene information, we did not perform data merging among different
platforms.

2.3. Significance Analysis of Differentially Expressed Genes

Siggenes was used to identify the differentially expressed genes as
previously described (Chen et al., 2012). Sincemultiple two-group com-
parisons may introduce some errors, we further compared the three
groups simultaneously, and then found the gene expression differences
that were common to all comparisons (Fig. 3).

2.4. Univariate & Multivariate Analyses (Accelerated Failure Time Model,
AFT)

While some studies published overall survival (OS) data that
exceeded 5 years of follow-up (Botling et al., 2013; Arriagada et al.,
2010), others truncated the data at 5 years (Raponi et al., 2006;
Director's Challenge Consortium for the Molecular Classification of
Lung, A. et al., 2008; Lu et al., 2010; Okayama et al., 2012; Rousseaux
et al., 2013). To generate a more reliable model, we analyzed all
available data. The drawback of OS data is that as time passes it can be
influenced by many other factors than the cancer itself. To account for



Fig. 1. Comparison of batch effects among multiple datasets of NSCLC before and after COMBAT. a. The expression levels of ACTB showed large batch effects among eight datasets
(1: GSE3141, n = 111; 2: GSE19188, n = 91; 3: GSE37745, n = 196; 4: GSE31210, n = 226; 5: GSE29013, n = 55; 7: GSE19804, n = 60; 8: GSE18842, n = 46; 9: GSE10245, n = 58)
of NSCLC in training cohort before COMBAT. b. The batch effects among eight datasets of NSCLC in training cohort have been completely removed by COMBAT. c. There were large
batch effects among five healthy lung control or tumor surrounding normal tissue datasets (2: GSE19188, n = 65; 4: GSE31210, n = 20; 6: GSE1643, n = 40; 7: GSE19804, n = 60;
8: GSE18842, n = 45). d. The batch effects among five healthy lung control or tumor surrounding normal tissue datasets in training cohort have been eliminated by COMBAT. e. There
were some batch effects among five datasets (DFCI, HLM, MI, MSKCC and GSE4573, n = 659) of NSCLC in testing cohort before COMBAT. f. The batch effects among five datasets of
NSCLC in testing cohort were completely eliminated by COMBAT. Bottom, middle, and top lines of each box corresponded to the 25th percentile, the 50th percentile (median), and the
75th percentile, respectively. The caps showed minimum and maximum values excluding outliers.
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the effect of time on OS, we used the AFT model for univariate & multi-
variate analyses.

2.5. Kaplan–Meier Analysis

Kaplan–Meier curve takes into account right-censoring, and all of
the NSCLC datasets were right-censored data. We performed Kaplan–
Meier analyses and chi-square (χ2) tests were used to determine signif-
icant differences in R.

2.6. Converting Data from Two Channels to Single Channel

There was only one dataset (GSE11969 (Takeuchi et al., 2006)) in
testing cohort which was performed with Agilent's two-channel array
GPL7015. Two-channel array introduced a reference RNA (labeled
with Cyanine-3: Cy3) to compare the samples (labeled with Cyanine-
5: Cy5) and exported the ratios of Cy5/Cy3 as follows:

Etwo ¼ log10
Cy5
Cy3

� �
¼ log10

GeneXNSCLC

GeneXreference

� �

¼ log10 GeneXNSCLCð Þ− log10 GeneXreferenceð Þ: ð1Þ
All single channel data are transformed into log2 values:

Esingle ¼ log2 GeneXNSCLCð Þ ¼ log10 GeneXNSCLCð Þ= log102: ð2Þ

Combine functions (1) and (2):

Esingle ¼ Etwo þ log10 GeneXreferenceð Þð Þ = log102 ð3Þ

where Etwo was normalized log10 ratio of Cy5/Cy3 representing sample/
reference. Esinglewas normalized log2 values of intensity only representing
sample. GeneXNSCLC was intensity value of sample. GeneXreference was
intensity value of reference RNA.

In GSE11969, total RNA from20 lung cell lines representing all major
histological types of NSCLC was reference. We were able to use the
mean expression value of any gene from one-channel of NSCLC cell
lines to estimate the log10(GeneXreference). Using function (3), it was
easy to transform all log10 ratios of two-channel data into one-channel
data.



Fig. 3. Strategies for gene screening. We have performed Siggenes analysis for multiple
two-group comparisons (H vs Ca; N vs Ca and poor (OST b 16m) vs good clinical outcome
(OST N 60m)) and two three-group comparisons (H-vs-N-vs-Ca and poor (OST b 16m) vs
good clinical outcome (OST N 60m) vs intermediate subgroup (16 m b OST b 60m)). The
FDR are less than 0.01 or b0.05. From a total of 54,675 probes, we have identified 11,571
probes differentially expressed between the two groups (H vs Ca), 10,285 probes differen-
tially expressed between N and Ca samples and 1951 probes differentially expressed be-
tween poor clinical outcome group and good clinical outcome group. Intersecting the
three sets of differentially expressed probes, we have identified 214 common probes
(Fig. 3 right). Among H, N and Ca three groups, we have identified 5779 probes and
4545 differentially expressed probes among different clinical outcome groups.
Intersecting the two sets of differentially expressed probes, we have also identified 338
common probes (Fig. 3 left). Intersecting the two sets of differentially expressed probes
from two different strategies, we have identified 129 common probes. There are only 95
of common genes differentially expressed excluding 34 probes that shared the same
gene names among the 129 common probes. We have performed univariate analysis
(AFT model) for all of those 95 genes. For the genes with p value less than 0.01 we have
further performed multivariate analysis and Kaplan–Meier analyses. Using 0.05 as p
cutting off values, we have finally identified seven genes (included 5 up-regulated and 2
down-regulated genes).
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3. Results

3.1. Removal of Large Batch Effects

The housekeeping gene Beta-actin (ACTB) expression showed that
there were large batch effects due to institutional variations among
the training datasets (Fig. 1a, c). The biggest variation was observed
between the datasets of study 1 (GSE3141 (Bild et al., 2006)) and
study 5 (GSE29013 (Xie et al., 2011)), which showed more than a 32
fold-difference in expression levels. We observed similar batch effects
in our testing cohort (Fig. 1e). After application of COMBAT, the batch
effects were eliminated (Fig. 1b, d, f).

3.2. Analysis of NSCLC Survival Distributions Suggests Multiple Genes
Govern Survival

The overall survival (OS) of the 306 NSCLC patients that died before
the studies concluded exhibited a three-peakdistribution.Wewere able
to fit data to three normal distributions and sort patients into three
different groups: good outcome (N60 months), intermediate outcome
(16–60 months), and poor outcome (b16 months; Fig. 2). The distribu-
tions suggested that OS was influenced by multiple genes, and conse-
quently, we predicted that there might be at least six or more genes
that could be used to model OS.

3.3. Differential Gene Expression Analysis Yields Seven-gene Score

To generate a multi-gene model for OS, we sought relevant genes
using the Siggenes in R, and compared the samples in our training co-
hort (n = 1073; Fig. 3). Most of the studies from which we obtained
our datasets used the tissues surrounding the lung tumors from the
NSCLC patients (N) as a control as opposed to the more difficult to ob-
tain normal lung tissues from the healthy lung (H).Whenwe compared
H and N, we found that there were 2555 of genes differentially
expressed between H and N. This indicated that the tissue surrounding
lung tumors was very different molecularly from actual healthy tissue.
For comparison to cancerous lung tissue (Ca), the best control should
be H and not N. However, we were restricted by the available data as
many samples (170) in our datasets were surrounding tissue (N), and
only 60 samples were healthy tissue samples (H). Thus, we employed
an alternative approach andwe used both H and N as separate controls.
If a biomarker for NSCLC survival is reliable, it should be consistently dif-
ferent in the comparisonsH vs Ca andN vs Ca. Sincemultiple two-group
Fig. 2. The distributions of overall survival time (OST, months) of NSCLC. The histograms showe
with three normal distributions. The arrows show the best cutting off values (16 m and 60 m)
comparisons may introduce errors, we further compared the three
groups simultaneously, and then found the gene expression differences
that were common to all comparisons. This comparison revealed the
genes that were differentially expressed for lung cancer tumors, but
d the frequencies of OST for 306 of deaths in training cohort. The color curves are the fit
for three survival groups.
s
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image of Fig.�3


160 T. Chen, L. Chen / EBioMedicine 1 (2014) 156–166
this did not necessarily mean that they were all related to survival. We
then analyzed the different survival groups using a similar comparison,
and overlaid the probes of interest from the first comparison (214
probes) with those from the second comparison (338 probes), and
found 129 common probes that were differentially expressed among
all groups. We conducted univariate, multivariate, and Kaplan–Meier
analyses and found 7 significant genes (Fig. 3, Table 2. The p values in
univariate, multivariate, and Kaplan–Meier analyses were less than
0.05.). We generated a seven-gene score for each patient by adding
the values of each coefficient (from multivariate coxph model) multi-
plied by its respective gene expression value (seven-gene score =
b1gene1 + b2gene2 + … + b7gene7). In our training cohort, survival
data with all clinical parameters was only available for 477 patient sam-
ples. To avoid any confounding effect of ACT, we excluded any patient
that received ACT or an unknown treatment (n = 159). Applying this
score in Kaplan–Meier analysis, we separated patients (n = 318) into
distinct three groups by best cutoffs (Fig. 4a).

3.4. Seven-gene Score, Age and Stage are Independent Predictors

Multivariate analysis of available clinical parameters (age, gender,
stage and cell type) suggested that cancer age, stage, and cell type
might be independent predictors of survival (Table 3). However,
Kaplan–Meier analyses using these factors were only able to separate
the patient samples into two distinct groups (Fig. 4b–d). When we in-
troduced the seven-gene score into our multivariate analysis of clinical
parameters, we found that while age and stage remained independent,
cell type was no longer significant. Furthermore, the hazard ratio (HR)
and p-value indicate that the seven-gene score is the most powerful
independent predictor (Table 3).

3.5. Seven-gene Score, Age and Stage Constitute LCPI

Having determined the seven-gene score, age and stage as indepen-
dent predictors of OS, we were able to generate survival functions:

S tð Þ ¼ e−λt ð4Þ

LCPI ¼ λ ¼ b1gene1 þ b2gene2 þ…þ b7gene7 þ b8ageþ b9stage ð5Þ

where S(t) is the survival probability before time t; λ is HR; LCPI
is the lung cancer prediction index; b1 to b9 are coefficients cal-
culated from the data in our training cohort with coxph model,
they are 0.45(VANGL1), 0.36(GNAI3), 0.30(CTSB), −0.44(ANKRD11),
−0.49(ITPKB), 0.03(KIAA0101), 0.05(PLOD2), 0.03(age) and 0.69(stage)
separately, and remain constant in all LCPI calculations; gene1 to gene7
are the log2 values of GEP; age is the real age(# in years); and stage values
are 0 to 3 (stage IA=0, stages IB–IIB= 1, stages IIIA–IV=3). To output
the LCPI, we input the expression values of the seven genes (gene1,
gene2, gene3, etc. log2 values), as well as the age (# in years), and
stage of the cancer (0 to 3). Using above function (5), we were able to
Table 2
The name, ID, location and aliases of seven common genes.

Name Gene ID Location

ANKRD11 29123 Chromosome 16, NC_000016.10 (89267619..89490561, complemen
CTSB 1508 Chromosome 8, NC_000008.11 (11842524..11868137, complement
GNAI3 2773 Chromosome 1, NC_000001.11 (109548564..109595843)
ITPKB 3707 Chromosome 1, NC_000001.11 (226631690..226739327, compleme
KIAA0101 9768 Chromosome 15, NC_000015.10 (64364994..64387687, complemen
PLOD2 5352 Chromosome 3, NC_000003.12 (146069439..146161495, compleme
VANGL1 81839 Chromosome 1, NC_000001.11 (115641953..115698224)
calculate the LCPI score for any patient and predict his/her OS (function
(4)). Lower LCPI corresponded with higher survival probability while
higher scores correspond to lower probability of survival, and higher
likelihood of death and cancer recurrence. The cutoff value was the
same as that in training cohort for the data from the same platform.
For the data from different platforms, we adjusted it to the best cutoff.

We separated our training cohort (n = 318) into three clearly dis-
tinct groups using LCPI (Fig. 4e). At ten years after surgery, the survival
probability of the low risk groupwas 100%, and remained the same even
after 15 years. In the intermediate risk group, the survival probability at
15 years was 53±10% (p b 0.001). The survival probability of the high-
risk group was less than 20% at 15 years. From the analysis of the train-
ing cohort, we are able to obtain the best cutoff values for each risk
group, and then apply them to the testing cohorts as pre-specified
cutoffs. For datasets obtained using different platforms, the best cutoff
calculation was performed to obtain cutoff values for each risk group.

3.6. ACT Negatively Impacts OS for Low and Intermediate Risk Groups

To discern whether ACT influences OS, we included data from
patients that received ACT or an unknown treatment and applied the
LCPI (n = 477). The fact that we observed similar separation of risk
groups with or without patients treated with ACT or unknown
confirmed that the exclusion does not affect the LCPI model's ability to
assign patients to risk groups (Fig. 4f). At 15 years after surgery, we ob-
served lower survival probabilities for both the low and intermediate
risk groups, which were 80± 5% and 30± 10% (p b 0.05), respectively.
Comparing to the cohort that did not receive treatment after surgery,
the cohort that included patients who received ACT or an unknown
treatment showed significant decreases in survival probabilities for
the low and intermediate risk groups (80 ± 5% vs. 100%, p b 0.001;
30 ± 10% vs. 53 ± 10%, p b 0.05). This suggests the possibility that
ACT may have a negative impact on individuals with low or intermedi-
ate risk, as determined by the LCPI.

To further explore the impact of ACT onOS, we separated the patient
pool (n= 477) into non-ACT, ACT and unknown treatment groups. The
non-ACT group exhibited the best OS, while the ACT group or surgery
plus unknown treatment showed worse OS (Fig. 5a; p b 0.001). We
verified this outcome with the testing cohort (n = 529) and observed
similar results (Fig. 5b, p b 0.001).

Given the effect we observed in the training and testing cohorts, we
were curious whether ACT equally affected each LCPI risk group, so we
analyzed the survival of each risk group in our training cohort separate-
ly. While ACT did not influence the survival of the patients in the high
risk group, it was detrimental for patients in the low and intermediate
risk groups (Fig. 5c–e).

Since OSmay sometimes be influenced by other factors,we analyzed
the RFS data as well. Recurrence after surgical resection is the main
reason for the early death of NSCLC patients, and RFS is more reliable
than OS. Recurrence data was only available for 377 of the 477 patients
in our training cohort, and after application of LCPI, we were again able
to distinguish the three risk groups (Fig. 5f; p b 0.001). The recurrence
data supports our analysis of the OS data.
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Fig. 4.Kaplan–Meier analysis of OS on training cohort. a. Using seven-gene score to predict OS in three stages and three cell typeswithout ACT. b. Using age to predict OS in three stages and
three cell types without ACT. The green, blue, black and red lines correspond to the first, second, third and fourth quartiles respectively. c. Using stages to predict OS in three cell types
without ACT. The green, blue and red lines correspond to the stages I, II and III separately. d. Using cell types to predict OS in three stages without ACT. The green, blue and red lines
correspond to ADC, LC and SCC respectively. e. LCPI defines low, intermediate and high risk subgroups in training cohort without ACT for OS. f. LCPI defines low, intermediate and high
risk subgroups in training cohort with ACT for OS. In a, e, and f, green, blue and red lines correspond to low, intermediate and high risk subgroups respectively. The x-axis is the survival
time (months), the y-axis is survival probability.

Table 3
Multivariate analysis of clinical data with/without seven-gene score for OS (n = 318).

Variables Without seven-gene score With seven-gene score

HR p (log-rank test) HR p (log-rank test)

Gender 1.33 0.195
Age 1.04 0.0257 1.03 0.0496
Stages (Coef) 1.99 1.13 × 10−8 2.03 5.95 × 10−8

Cell types (Coef) 2.05 0.0261 1.58 0.1684
Seven-gene score (Coef) 2.61 1.91 × 10−10

HR: hazard ratio; Coef: coefficient.
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3.7. Verification of LCPI in the Largest Multiple Institutions Dataset from the
USA and Canada

After integrating Jacob-00182 (Director's Challenge Consortium for
the Molecular Classification of Lung, A. et al., 2008), GSE14814 (Zhu
et al., 2010) and GSE4573 (Raponi et al., 2006) datasets with COMBAT,
we produced the second largest multiple institution dataset for NSCLC,
which included all stages, three cell types and post-surgery ACT or
ART from seven institutions in the United States and Canada without
batch effects (n= 659). This dataset was obtained using the Affymetrix

image of Fig.�4


Fig. 5. Effects of ACT or ART on NSCLC in training and testing cohorts and LCPI for RFS. a. The OS probabilities in both ACT (red) and unknown (blue) subgroups weremarkedly decreased
comparing to non-ACT subgroup (green) in training cohort. b. TheOS probability in ART (red) subgroupwas the lowest comparing to other subgroups in testing cohort. On contrary, theOS
probability in non-adjuvant treatment (green) subgroupwas the highest. The OS probabilities in ACT (black), ACT+ ART (pink) and unknown (yellow) subgroupswere lower than non-
adjuvant treatment subgroup (green), but higher thanART subgroup (red). c. In low risk subgroup defined by LCPI in training cohort, all the patients innon-ACT subgroup (green) had high
up to 100% of survival probabilities at 15 years, but the survival probabilities in ACT (blue) or unknown subgroups were sharply dropped. d. In intermediate risk subgroup defined by LCPI
in training cohort, ACT (blue) had no benefit evenmade itworse at longer follow-up time compared to non-ACT (green). The survival probability in unknown subgroup (red)was severely
dropped at any time points. e. In high risk subgroup defined by LCPI in training cohort, the survival probabilities in ACT (blue) and unknown (red) subgroups were similar to non-ACT
subgroup (green). The x-axis is the survival time (months), the y-axis is survival probability. f. LCPI defined low, intermediate and high risk subgroups in training cohort for RFS.

162 T. Chen, L. Chen / EBioMedicine 1 (2014) 156–166
platform GPL96, which differed from our training cohort, so we verified
the power of LCPI by adjusting it to the best cutoff. Fig. 6d showed that
using besting cutoff values for this cohort performed using this
platform, LCPI was able to separate the 659 NSCLC patients into three
distinct risk subgroups. The OS probabilities in high risk subgroup at
five years and 10 years were 28% and 9.5% respectively. All patients
died before 130 months. The OS probabilities in intermediate risk sub-
group at five years, 10 years and 15 years were 64%, 39% and 23%. The
above results were very similar to the results in 477 of training dataset
included ACT and unknown patients. But the OS probabilities in low risk
subgroup at 5 years, 10 years and 15 years were 80%, 76% and 63%
which were lower than that in 477 of training dataset. Given our
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Fig. 6. Verification of LCPI in multiple large NSCLC datasets including all stages and all cell types from multiple countries. a. OS, dataset GSE42127, n = 176, including two cell types, all
stages and 49 ACT, from the USA. b. OS, dataset GSE41271, n = 274, including seven cell types, all stages and 49 ACT, from the USA. c. OS, dataset GSE30219, n = 271, including seven
cell types, all stages from France. d. OS, Integrated datasets (DFCI, HLM, MI, MSKCC and GSE4573), n = 659, including three cell types, three stages (I–III), 137 ACT and 64 ART, from
the USA & Canada. e. RFS, dataset GSE8894, n = 136, including two cell types and all stages, from South Korea. f. RFS, dataset GSE41271, n = 274, including seven cell types, all stages
and 49 ACT, from the USA. g. OS, two-channel dataset GSE11969, n = 149, including five cell types and three stages (I–III), from Japan. In a, b, c, d, e, f, and g, green, blue and red lines
correspond to low, intermediate and high risk subgroups defined by LCPI respectively. The x-axis is the survival time (months), the y-axis is survival probability.
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previous analysis (Figs. 4–5), it is possible that these differences may be
attributable to patients with ART and/or ACT (Fig. 5b). However, further
study would be required to confirm the effect of post-surgical ACT for
NSCLC. The above results indicated that LCPI was able to work in multi-
ple institution dataset of NSCLC including all stages, three cell types and
different adjuvant treatments (ACT and/or ART).

3.8. Verification of LCPI in USA Dataset GSE42127

The samples in dataset GSE42127 (Tang et al., 2013) were fromMD
Anderson Cancer Center in Texas, United States. In this independent
testing cohort, 133 patients were adenocarcinomas (ADC) and 43
patients were afflicted with squamous cell carcinomas (SCC). Forty-
nine patients received ACT (mainly Carboplatin plus Taxanes) and 127
patients did not receive ACT. The patient sample included patients
with cancer stages I, II, III and IV. We applied LCPI to this dataset, and
since this cohort differed in platform, we used the best cutoff values to
separate patients into different risk groups. Fig. 6a showed that LCPI
was able to separate this cohort into three distinct subgroups (low, in-
termediate and high risk subgroups) similar to that in training cohort.
The OS probability of low risk subgroup was up to 100% at 80 months,
and the OS probability of intermediate risk subgroup was great than
40% at 10 years while all of the patients in high risk subgroup died
before 10 years.

image of Fig.�6
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3.9. Verification of LCPI in the Largest Single Institution Dataset GSE41271
from the USA

To date GSE41271 (Sato et al., 2013), which included 176 samples
from GSE42127 (Tang et al., 2013), was the largest NSCLC dataset
from single institution in the United States (n = 275). The patients in
this testing cohort belong to four different races (Caucasian, African
American, Hispanic and Asian), and the clinical stages in this cohort
were from IA to IV. There were 184 ADC patients, 80 SCC patients, and
10 patients that had five over rare cell types. One patient sample did
not have the data necessary for analysis, and was not included. Using
LCPI we performed Kaplan–Meier analyses for this testing cohort,
which was performed with a different platform, by adjusting to the
best cutoff. Fig. 6b showed that the results were very similar to that of
the testing cohort GSE42127. The OS probability of low risk subgroup
was up to 100% at 80 months, and the OS probability of intermediate
risk subgroup was about 40% at 10 years while all of the patients in
high risk subgroup died before 10 years. That suggested even in large
dataset that included different races, some use of ACT, all stages and
all cell types of NSCLC, LCPI still worked very well for identifying three
different risk subgroups.

3.10. Verification of LCPI in the Largest Single Institution Dataset GSE30219
from France

GSE30219 (Rousseaux et al., 2013) was the largest single institution
dataset from France even excluding the control (n= 14) and small cell
lung cancer samples (n = 22), which were not relevant to our study.
There were 271 of NSCLC including all stages and seven cell types in
this testing cohort. The data were obtained using the same platform as
the training data, so we were able to apply LCPI to this cohort with
pre-specified cutoff or the same cutoff value as that of the training co-
hort (6.83, 8.19). Fig. 6c showed that LCPI was able to separate this co-
hort into three distinct subgroups (low, intermediate and high risk
subgroups) similar to that in training cohort and testing cohorts
(GSE42127 (Tang et al., 2013), GSE41271 (Sato et al., 2013)). The OS
probability of low risk subgroup was up to 100% at six years, stable at
89% from 10 years to over 18 years. The OS probability of intermediate
risk subgroup was greater than 40% at 10 years and greater than 30% at
18 years. While the OS probabilities in high risk subgroup at any given
time point were significantly lower than the other two subgroups.
This was a single dataset, and since we did not need to combine it
with another, we did not perform COMBAT. Even without the use of
COMBAT, LCPI still worked very well for identifying three different
risk subgroups for the France dataset, which included all stages and all
cell types of NSCLC.

3.11. Verification of LCPI to Predict RFS in South Korea Dataset GSE8894

Recurrences after surgical resection are the main reasons for the
early deaths of NSCLC patients. RFS tends to be more reliable than OS
because it is not affected by nonspecific deaths. If our LCPI model is re-
liable, it should work for both OS and RFS in multiple countries. This
RFS dataset GSE8894 (Lee et al., 2008) from South Korea included 138
of NSCLC patients (two cell types). Two patients were missing the
necessary data, and were thus excluded. The platform was the same as
training cohort, but the stage information was not available. Then we
applied LCPI without inputting data about cancer stage in 136 of
NSCLC patients and defined risk groups by best cutoff. Although we
did not have cancer stage information, ourmodel was still able to define
risk groups for the RFS data (Fig. 6e). The 136 of patientswere separated
into three different risk subgroups. All patients in high risk subgroup
were recurrent before eight years while the probability of RFS in inter-
mediate risk and low risk subgroups were great than 55% and 83%
respectively at eight years.
3.12. Verification of LCPI to Predict RFS in the Largest Single Institution
Dataset GSE41271 from the USA

The largest NSCLC dataset for OS and RFS from a single institution in
the United States (n = 275) was GSE41271 (Sato et al., 2013). One pa-
tient sample did not possess the complete data required for analysis,
andwas excluded fromour study.We applied LCPI to the 274NSCLC pa-
tients in this cohort, which included RFS data from patients with all
stage and all cell types. The cutoff value was the same as that for the
OS analysis (Fig. 6b). LCPI separated the dataset into three significantly
different risk subgroups (Fig. 6f). All patients in high risk subgroup ex-
perienced cancer recurrence before eight years while the probability
of RFS in intermediate risk and low risk subgroups were great than
52% and 100% separately at five years. These results provide further
support for the LCPI model's ability to separate low, intermediate and
high risk subgroups for overall survival as well as recurrence datasets.

3.13. Verification of LCPI to Predict OS in Two-channel Dataset GSE11969
from Japan

So far we have verified LCPI in all available NSCLC single channel
array datasets from multiple countries. Some of datasets were per-
formed with Agilent's two-channel array GPL7015 platform instead of
single-channel array. Therewere 149NSCLCpatients in the Japanese co-
hort, GSE11969 (Takeuchi et al., 2006),which included IA to IIIB andfive
cell types. Using function (3) we were able to transform two-channel
array data into single channel data and get the LCPI score. Here we
also defined risk group cutoffs to best cutoff. We showed that LCPI
was able to separate this cohort into three different risk subgroups
(Fig. 6g). The OS probabilities in the low, intermediate and high risk
subgroups were 95%, 68% and 32% at 5 years and 84%, 58% and 22% at
about 10 years respectively.

In summary, themost important aspect of any predictivemodel is its
validation. To confirm the power of LCPI, we verified its ability to predict
survival timeusingmultiple datasets of NSCLC (n= 1665, all stages and
multiple cell types) from five countries (Fig. 6).

GSE42127 (n = 176) and GSE41271 (n = 274) included patients
with all four stages and multiple cell types, some of which received
ACT after operation. Application of LCPI to the OS data allowed us to
separate these cohorts into the same risk groups we observed in the
training cohort (Fig. 6a, b). We also analyzed the available RFS data
(n = 274) using LCPI. The recurrence analysis of the testing cohort
further verified the predictive power of LCPI (Fig. 6f).

To assess whether LCPI can be accurately applied to data collected
from different countries, we applied it to datasets GSE30219 (n =
271, France), GSE8894 (n = 136, South Korea), GSE11969 (n = 149,
Japan), and the combined datasets Jacob-00182, GSE14814 and
GSE4573 (n = 659, the USA and Canada). After application of LCPI to
the OS data of each dataset, wewere able to observe distinct risk groups
for all available testing cohorts (Fig. 6c, d, g). Similarly, we were able to
predict the RFS for GSE8894 and separate patients into different risk
groups (Fig. 6e). The fact that LCPI consistently predicted high, interme-
diate, and low risk groups for all the tested datasets demonstrates its
reliability.

4. Discussion

We have proposed a multigene model (LCPI), which incorporates
seven differentially expressed genes, age and stage, to predict clinical
outcome. Utilizing the LCPI, we were able to separate patients into
three distinct groups with different survival probabilities (Figs. 4, 6).
Aided by this model, clinicians will be able to personalize post-surgical
treatment for NSCLC patients. Low risk individuals have very high sur-
vival probabilities and may not require any further treatment beyond
regular observation (Fig. 4e). The average age for patients that received
surgery for NSCLC was around 62, and our model showed that the low
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risk individuals could survive more than 15 years after surgery. If we
consider that the average world life expectancy is around 70–80 years
old, then the average patient in the low risk group could expect to live
out his/her full life expectancy after surgery. In fact, our data suggests
that for patients in the low or intermediate risk groups, post-surgery
treatment like ACT may actually decrease survival probabilities
(Fig. 4e, f). For patients that have high risk, as determined by LCPI, sur-
gery is insufficient. Based on the patient's survival probability, clinicians
can determinewhether to use conservative, aggressive, or experimental
treatment strategies following surgical resection.

Efforts to find a predictive model for lung cancer have been under-
way since 2001 (Bhattacharjee et al., 2001) and at present, more than
17 independent NSCLC gene expression datasets and their respective
predictive models have been published. However, while these models
span the spectrum between a single gene to hundreds of genes, their
predictive abilities are limited by small sample sizes and institutional
variations. In order to account for sample size and increase the power
of our model, we combined nine different datasets with NSCLC samples
and control samples for our training cohort. To account for institutional
variation, we used COMBAT to completely eliminate the batch effects
observed among the different datasets (Fig. 1). Using this strategy, we
generated two of our largest datasets, a training cohort of n = 1073
and a testing cohort of n = 659. From the training cohort, we created
a LCPI capable of predicting individual survival probabilities using the
expression levels of seven genes, age, and stage. Since the success of a
predictive model is determined by its verification, we tested our
model using several independent datasets collected from multiple
countries (Fig. 6). These testing cohorts contained samples from pa-
tients with multiple stages and cell types. The fact that our model was
able to separate these patients into three distinct risk groups regardless
of cancer stage, cell type, and country of origin, illustrates the exception-
al reliability and predictive capacity of the LCPI.

Shedden et al. provided one of the largest gene-expression datasets
for NSCLC in 2008 (Director's Challenge Consortium for the Molecular
Classification of Lung, A. et al., 2008). After the analysis of several
different methodologies for the prediction of tumor biology and the
inference of patient survival, they concluded that the subject outcome
was best predicted using 100 gene clusters with clinical parameters. In
2012, Okayama et al. proposed a similarly large predictive model
using 174-gene signatures (Okayama et al., 2012). Regardless of predic-
tive accuracy, however, the collection and analysis of hundreds of genes
to infer patient prognosis are economically unfeasible and difficult to
apply in practice. Furthermore, compared to many of published models
for NSCLC, which have been developed from data truncated at
60 months, we've shown in our model verification that our seven-
gene model is capable of clearly distinguishing patient survival groups
from uncensored data collected over 200 months (Fig. 6c).

The postoperative use of ACT is the standard of care for themanage-
ment of some stages of NSCLC. The benefits of ACT, however, remain de-
batable. Some studies have shown that NSCLC patients treatedwith ACT
have prolonged survival (Winton et al., 2005; Douillard et al., 2006;
Soria et al., 2013), while some of them failed to observe any overall sur-
vival benefit with ACT (Waller et al., 2004; Scagliotti andNovello, 2003).
Five of the largest adjuvant trials to date include the following: (1) Na-
tional Cancer Institute of Canada (NCIC) JBR.10 (n= 482), (2) Adjuvant
Navelbine International Trialist Association (ANITA, n = 840), (3) Big
lung trial (BLT), (4) International Trialist Association Trial (IALT, n =
1867), and (5) Adjuvant Lung Project Italy (ALPI) (Patel and Wakelee,
2011b). The NCIC JBR.10 (Winton et al., 2005) and the ANITA trials
(Douillard et al., 2006) demonstratedOS benefit and the survival advan-
tage did not diminish over time at seven year follow-up. The IALT
showed a slightly improvement in the five-year survival rate of 4%
with adjuvant chemotherapy (Arriagada et al., 2004). The BLT (Waller
et al., 2004) and the ALPI (Scagliotti and Novello, 2003) trials were
negative. Another dataset of 2194 patients (1313 bevacizumab; 881
controls) from four phase II and III trials showed that bevacizumab
significantly prolonged OS and RFS (Soria et al., 2013). The NSCLC
Meta-analysis Collaborative Group published a paper in Lancet in
April, 2010,which summarized 34 trials, showed the benefit of adjuvant
therapy was undeniable at 5 years, the improvement was slight (4%) at
5 years (NSCLCMeta-analysis Collaborative Group, 2010). Contributing
to the ongoing dialog regarding the effectiveness of ACT, our analysis
suggests that post-operative ACT treatment may have a detrimental ef-
fect on individuals that have low or intermediate risk, as determined by
LCPI (Fig. 4e, f). While further investigation is necessary to confirm our
observation, it highlights a pressing need to determine the effectiveness
of ACT as a treatment for low-risk NSCLC. In some cases, postoperative
treatment is unnecessary, and an accurate predictivemodel can help cli-
nicians individualize treatments for NSCLC.

We conclude that survival time of NSCLC is a quantitative trait. The
seven genes, age and stages together determine the survival probability
at 10 and 15 years. LCPI is able to simultaneously define three risk
subgroups for all stages and multiple cell types of NSCLC. Based on our
analysis of patients defined to be low risk by LCPI, surgical resection
may be sufficient to maximize overall survival and recurrence free
survival.
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