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Mathematical modeling of influenza epidemic is important for analyzing the main cause of the epidemic and
finding effective interventions towards it. The epidemic is a dynamic process. In this process, daily infections
are caused by people’s contacts, and the frequency of contacts can be mainly influenced by their cognition to
the disease. The cognition is in turn influenced by daily illness attack rate, climate, and other environment
factors. Few existing methods considered the dynamic process in their models. Therefore, their prediction
results can hardly be explained by the mechanisms of epidemic spreading. In this paper, we developed a
heterogeneous graph modeling approach (HGM) to describe the dynamic process of influenza virus
transmission by taking advantage of our unique clinical data. We built social network of studied region and
embedded an Agent-Based Model (ABM) in the HGM to describe the dynamic change of an epidemic. Our
simulations have a good agreement with clinical data. Parameter sensitivity analysis showed that
temperature influences the dynamic of epidemic significantly and system behavior analysis showed social
network degree is a critical factor determining the size of an epidemic. Finally, multiple scenarios for
vaccination and school closure strategies were simulated and their performance was analyzed.

D
ue to the annual recurrence of influenza, mathematical and computational models have been used widely
in epidemiology to describe pandemic and seasonal transmission of virus and to conduct the simulations
for the analysis and control toward it. One classical approach is to use statistical agent-based modeling to

build likelihood functions with respect to person-to-person transmission probabilities to describe the spread of
influenza globally1,2. This method often assumes individuals are homogeneous and does not account for inter-
personal interactions and individuals’ personalities, which are key factors influencing the transmission of influ-
enza virus. Another classical approach is using stochastic network model by incorporating interactions based on
geography, demography and migration information to discover transmission patterns within heterogeneous
populations3–6. Those methods mentioned above studied the transmission among various regions, for example,
within communities7,8, cities9, countries2,10, or worldwide3,4,6. The purposes of these studies are to evaluate specific
intervention strategies, such as school closure11, vaccination1,12,13, isolation of cities12, and to estimate the impact
of human mobility locally and globally14–16.

An epidemic is a dynamic process. In this process, daily infections are caused by people’s contacts, and the
frequency of contacts can be mainly influenced by their cognition to the disease. The cognition is in turn
influenced by daily illness attack rate reported by media broadcasts17,18, climate19, and other environment factors.
The association between human cognitive behavior and virus transmission has been investigated through cog-
nitive behavioral theories20–22, showing highly daily virus attack rate evokes people’s precaution to the disease.
They may adopt protective behaviors in order to avoid being infected, resulting in the reduction of the daily virus
attack rate. However, few existing methods considered the dynamic process in their models. Therefore, their
prediction results can hardly be explained by the mechanisms of epidemic spreading. In this paper, we develop a
heterogeneous graph modeling approach (HGM) to describe the dynamic process of influenza virus transmission
in order to increase the validity, interpretability, and utility of network modeling by taking advantage of our
unique clinical data.

We have enrolled 4870 patients including both clinical information and demographic information in two
hospitals of Forsyth County, North Carolina, USA serving more than 94% of residents in this area for four
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consecutive influenza seasons of 2009–2010 through 2012–201323.
We also used the 2005–2009 U.S. Synthetic Population Database
from RTI International to build social network of this county24.
The population information we used includes each household’s geo-
graphical location and family members, each family member’s work-
place and school, each individual’s demographic and socioeconomic
information and locations for their activities, as well as the assign-
ments of students to schools and assignments of workers to work-
places. We then embedded an Agent-Based Model (ABM) in the
HGM to describe the dynamic change of an epidemic influenced
by individuals’ cognition and reaction to the epidemic, climate,
and degree of social network. The most important is, our HGM
approach was trained and validated by clinical data. This approach
can be used to create the transmission of influenza in silico, analyze
the agent behavior under conditions of influenza spread, and simu-
late the therapeutic and non-therapeutic interventions to prevent or
mitigate it.

Results
We simulated the epidemic spread in Forsyth Country, NC, USA (see
Methods). Simulations of local epidemic spread are conducted using
our heterogeneous graph model (HGM) approach. Generally, the
HGM consists of two layers. The first layer describes the social struc-
ture of studied region using open-access synthetized populations that
capture the demographic and geographic heterogeneities of popu-
lation in this region. The second layer is an ABM that embedded in
the HGM to describe how the virus is transmitted through indivi-
duals’ interaction and social behavior, taking into account the influ-
ence brought by individuals’ cognition and reaction to the epidemic,
climate, degree of social network, and other environmental factors.
In the model, individuals were assigned to child care centers, schools,
workplaces, and public areas based on their ages. A day is divided
into Outside Time and Family Time. In outside time, people’s con-
tacts occur at child care centers, schools, workplaces, and public
areas. Family time is from the moment people enter home to the
moment they leave home in the next morning. We simply assume
that during this period, they only have chance to contact with their
family members. The interactions between people who go into public
areas after work hours are considered as activities in Outside Time as
well. We assume a certain proportion of individuals go to public areas
after work hours and the number is influenced by daily infection rate.
In severe epidemic, individual tends to avoid staying in public area in
order to protect themselves. According to our clinical data, the simu-
lated epidemics were from the 40th week of the year (beginning of
October) to the 13th week of the next year (end of March). Public
holidays and schools’ winter break were involved in the simulation as
well. Individuals’ activities and social behaviors during holidays were
set the same as on weekends. Children at schools had winter break
during the 52nd week of the year and half of the 1st week of the next
year. During this period, their activities were also set the same as on
weekends.

Simulation of epidemics. The epidemics of influenza in 2009–2010,
2010–2011, and 2011–2012 were simulated separately. Blue lines in
Figure 1 show the number of patients who went to hospital in the
studied area weekly. They had very different patterns in the three
influenza seasons. In the 2009–2010 influenza season, the number of
infected individuals rose rapidly within four weeks, from the 40th

week to the 44th week of 2009. It then remained almost stable for
15 weeks, from the 44th week of 2009 to the 7th week of 2010. In the
2010–2011 influenza season, the number of infected individuals rose
gradually and reached a maximum in the first week of 2011, and
dropped slowly until the end of the influenza season. Different from
the two epidemics, however, the epidemic of 2011–2012 influenza
season had two waves. Red lines in Figure 1 are the predicted
epidemic dynamics of the three influenza seasons, obtained from

the average of 300 simulations (gray lines). Compared to the
existing network modeling methods6,9,15,25 (see Supplementary Fig.
S3–S4 online), our HGM approach can create a daily feedback of
human behavior to the epidemic by including Equations (1) and (2)
in the ABM and trained by clinical data (see Methods). Therefore it
can simulate the dynamic change of an epidemic and produce
distinct epidemic patterns.

Individuals’ cognitive behavior toward an epidemic can impact
their interaction and virus transmission, resulting in dynamic
changes of the epidemic. This feedback process has been included
in our ABM. To measure the function of individual’s cognition and
caution against the disease, we conducted experiments by setting
H(i,t) and J(i,t) (see Methods) as constant throughout the influenza
season (see Supplementary Fig. S5 online). The results showed that
HGM with constant cognition functions could not represent the
dynamic change of the epidemic and failed to model the epidemics
with multi-waves, because no cognitive and protective behavior was
evoked to prevent the increasing of infections.

In the simulation of 2010–2011 influenza epidemic, the basic
reproductive number R0, the average number of individuals a typical
infected person infects during his or her infectious period, was 1.26.
The average connections per person and illness attack rate with
respect to different places and age groups were listed in Table 1.
The entire results of the simulations of the three influenza seasons
can be found as Supplementary Table S3 online. All simulations
showed children were the most vulnerable group. The younger a
child was, the more possibly he or she got infected. Children have
more connections than adults; this high connectivity resulted in a
high probability of virus transmission and illness attack rate. This
finding was proved by our clinical data. In the studied county, the
percentage of persons under 18 years is 23.8%26, while clinical data
showed that 34.8% of influenza patients were children under 18.
Once they are infected, they will spread the virus to family members
and people around them. Therefore, extent and severity of epidemic
influenza largely depends on virus transmission in children27,28.
Specific interventions toward children, such as vaccination and
school closure, have been advocated to prevent an epidemic29–33. In
this paper, we will simulate multiple scenarios for vaccination and
school closure strategies and evaluate their performance to provide
suggestions about the adoption of the interventions.

Sensitivity analysis. We performed parameter sensitivity analysis to
examine the robustness of our model and to evaluate whether
varying key parameters affected the results. As shown in Equation
(3) (see Methods), r(i,t), the risk of an individual i being infected at
time t is related to daily illness attack rate R(t), local temperature T(t),
his or her social network degree D(i,t), and the age A(i). Parameters
cr, ct, cd and ca are the coefficients of function f(R(t)), f(T(t)), f(D(i,t)),
and f(A(i)), respectively. br, bt and bd are corresponding deviations.
We varied these key parameters to see if their changes can strongly
impact the total infection number.

Figure 2 is the bar chart showing the percentage changes of
infected individuals when varying parameters with respect to the
values using default parameters listed in Table S2 for the simulation
of 2010–2011 influenza season. Each bar represents the mean per-
centage changes of infected individuals calculated from 300 simula-
tions. The error bars represent the 95% confidence interval (CI) of
the means. In Figure 2(a), the sensitivity analysis was done on single
parameter. Figure 2(b) shows the results of multi-parameter sens-
itivity analyses based on deviations in Equations (1) and (2).
Figure 2(c) shows the results of multi-parameter sensitivity analyses
based on coefficients in Equations (1) and (2). We did not mix
deviations and coefficients together to make multi-parameter sens-
itivity analyses because coefficients are positively correlated with
number of infections, while deviations have reverse correlation with
them. In the three figures, the tick labels along the x-axis indicate
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which parameter (Figure 2(a)) or which groups of parameters
(Figure 2(b) and Figure 2(c)) are varied. We only varied one para-
meter or one group of parameters by reducing and increasing their
values 1% and 5% from their default values, with the rest of para-
meters fixed.

Figure 2(a) shows that, the most sensitive variables are cr, br, ct and bt,
which are related to illness attack rate and local temperature. Figure 2(b)
and Figure 2(c) show that, if a group includes parameters related to local
temperature (ct or bt), varying the parameters in the group results in
bigger change of the infection number. Hence, changes in illness attack
rate and climate, especially temperature, impact the epidemic more than
other factors. In fact, links between climate and influenza virus trans-
mission have been identified19,34. Cooling of the nasal mucosa is thought
to increase the viscosity of the mucous layer and reduce the frequency of
cilia beats34. In this way, breathing cold air would slow mucociliary
clearance and thereby encourage viral spread within the respiratory
tract19. Additionally, in cold weather, the duration of peak viral shedding
is longer than warm weather19. The increased shedding may lead to the
increased transmission.

System behavior analysis. Two inputs of the system, initial infection
number at the beginning of simulation and number of weekly exotic
infections may influence the output of the system. Initial infection
number is the number of infected individuals on the first day of
simulated influenza season. We assigned the default value of initial
infection number to 0.01% of total simulated population by referring
the record of our clinical data. Number of weekly exotic infections is
the total number of infected individuals that come into the studied
area by air traffic in a week. We assigned the default value of weekly
exotic infections to 0.04% of total simulated population based on our
investigation on the passenger capacity of the airport around the
simulated area.

We perturbed the two input variables to see whether the output of
the system can reach stable status eventually. The perturbation was

under three conditions, with the degree of 6.7, 8.7, and 10.7, respect-
ively. Network degree is defined as the average connections between
individuals. 6.7 was its default value in our simulation, computed
through the optimized system under the supervision of clinical data
(see Methods). We varied both of the input variables from 0.01% to
0.12% of total simulated population. In each simulation, we only
perturbed one variable and fixed the other at its default value.

Figure 3 illustrates the analysis results. The output of the system
was characterized by R0. Figure 3(a) shows the change of R0 with
respect to the initial infection numbers. The relationship between
initial infections and R0 approximately follows a sigmoid function
(Figure 3). In general, R0 rose with the increase of initial infection
numbers until a certain initial infection numbers has reached. We
call the rate of ‘‘certain initial infection number’’ over total simulated
population as a ‘‘State Point’’. The red curve in Figure 3(a) represents
the case with the degree of social network being 6.7. The simulation
shows R0 converges to 2.12 when the State Point is 0.1%. Similarly,
the green curve represents the case with the degree of social network
being 8.7, showing R0 converges to 2.76 when the State Point is
0.08%. And the blue curve shows R0 converges to 2.79 when the
State Point is 0.05% with the degree of social network being 10.7.

Figure 3(b) is the change of R0 with respect to weekly exotic infec-
tions, showing that R0 was eventually stable with the increasing of
weekly exotic infections. Same as Figure 3(b), in this figure, red,
green, and blue curve represents the case with the degree of social
network being 6.7, 8.7, and 10.7, respectively. In the first case
(degree56.7), R0 converges to 2.16 when the State Point is 0.07%.
In the second case (degree58.7), R0 converges to 2.73 when the State
Point is 0.08%. And in the last case (degree510.7), R0 converges to
2.79 when the State Point is 0.05%.

In summary, both of the figures showed that, (1) R0 reaches a
maximum at State Point and trends to a stable status. During an
epidemic, once infected individual is recovered, he or she will be
immune to subsequent infections. When more and more individuals

Figure 1 | Simulation of epidemics. Simulated influenza clinical cases (red line) were obtained from the average of 300 simulations (gray line). Processed

real epidemic (blue line) is the actual epidemic timeline, from data collected from hospitals in Forsyth Country. (a) 2009–2010 influenza season, (b) 2010–

2011 influenza season, and (c) 2011–2012 influenza season.

Table 1 | Average connections per person and illness attack rate in five key places and in four age groups in the 2010-2011 influenza season

Average connections per person Illness attack rate

Child care center 11.26 79.39%
School 16.11 14.98%
Workplace 5.01 9.98%
Public area on workday 5.62 8.83%
Public area on weekend 8.01 11.54%
Children (0–4) - 59.58%
Children (5–17) - 14.97%
Adults (18–64) - 9.47%
Seniors (651) - 11.26%
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Figure 2 | Results of the parameter sensitivity analysis of the model. (a) Single parameter sensitivity analysis, (b) multi-parameter sensitivity analysis

based on parameters related to deviations, (c) multi-parameter sensitivity analysis based on parameters related coefficients. The bars show the percentage

changes of total numbers of infected people when varying parameters. Each bar represents the mean percentage changes of infected individuals calculated

from 300 simulations. The error bars represent the 95% confidence interval (CI) of the means.

Figure 3 | System behavior analyses by perturbing two critical variables with specific social network degree. (a) Initial infection, (b) weekly exotic

infections.
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are immune, viruses have low chance to spread. Therefore, the num-
ber of infections can hardly increase, and the accumulation of total
infections tends to be a fixed number. (2) R0 is positively correlated to
social network degree. In the region with higher social network
degree, individuals have more chance to contact with each other,
increasing the possibility of virus transmission between individuals.
It will lead to a larger size of epidemic. Therefore, severe epidemic
often happens in the region where individuals have more connec-
tions, because viruses are transmitted much easier and faster in the
region. (3) Different degree leads to different State Point. Generally,
smaller social network degree results in bigger State Point. It means
in the region individuals have fewer connections, influenza viruses
have low chance to spread. Therefore, severe epidemic does not
frequently and easily happen unless initial infection number or exotic
infection number is extremely large. Consequently, social network
degree is a critical factor determining the magnitude of an epidemic.
The reduction of network degree is important in the control of epi-
demic. In fact, many interventions against the epidemic are related to
the decrease of network degree, such as school closure and patient
self-isolation.

Simulation of interventions. Vaccination and school closure are
two common interventions in an epidemic. However, which one is
more suitable to a specific epidemic and when a community should
adopt these interventions is hard to predict. Figure 4 presents the
simulations of an influenza epidemic curve under various inter-
ventions. All intervention scenarios were simulated under the same
magnitude of epidemic (baseline, R0 5 1.26).

Figure 4(a) shows the predicted epidemic curves given different
coverage of vaccination. National reports from the Centers for
Disease Control and Prevention (CDC) of the United States showed
that from 2009 to 2012, the average influenza vaccine coverage was
46.27%, 35.53%, and 67.07% for persons 0.5–17 years, 18–64 years,
and 651 years of age, respectively35. It indicates the vaccination
coverage still can be increased. We therefore simulated the scenarios
when the vaccination coverage is increased by 10%, 20%, 30%, and
40% in the whole population. Additionally, research has shown that
in clinically-confirmed cases, influenza vaccine effectiveness (VE) in
persons under 4 years of age, 5–17, 18–64, and 651 was 63%, 56%,
51%, and 36%, respectively36. VE differs substantially in different age
groups. Here we modeled the efficiency of intervention when only a
specific age group is 80% vaccinated. We set the maximal percentage
of the vaccinated population as 80% because some individuals cannot
be vaccinated due to a health condition. The simulations suggested
vaccinating only toward children can prevent the outbreak. This
finding is reinforced by Table 1, showing that the illness attack rate
among children under 4 years old is 59.60% and among children with
5–17 years old is 14.98%. The numbers are far bigger than those
among adults and older adults. Thus, immunizing children and ado-
lescents with influenza vaccine could significantly protect them from
influenza virus and prevents their infecting family members29,30.

Figure 4(b) presents the simulation of school closure. The inter-
ventions started when more than 0.1% of the population goes to a
hospital due to influenza infection since the beginning of the influ-
enza season. Generally, the rate of infection is bigger than 0.1%
because a large number of infected patients choose stay at home
and use nonprescription medicines. It was reported that closing
school was very effective within the first 30 days and the infection
rate was hardly to be reduced if the closing lasts more than 30 days37.
Besides, school closure brings high economic cost33. Here we only
simulated this intervention within four weeks. Three scenarios were
simulated in which the length of school closure was one week, two
weeks, and four weeks. In any scenario, when schools were reopened,
the number of infected patients increased again and the outbreak
recurred eventually. The simulation results showed that closing
school for two weeks can only reduce the R0 from 1.26 to 0.95.

School closure may not be an appropriate intervention in moderate
epidemic. We can choose other low-cost interventions since the
epidemic is controllable.

From Figure 4(b) we have an interesting finding. We have men-
tioned that holidays were already considered in our simulation.
Individuals’ activities and social behaviors during holidays were set
the same as on weekends. Red line in Figure 4(b) is the simulated
epidemic under this condition. The other three lines in Figure 4(b)
represented the simulated epidemic when conducted school closure
interventions. Interestingly, with school closure intervention the
weekly infections dropped extremely, but during holidays and winter
breaks there is no obvious decline of weekly infections. From these
results we reached different conclusion from some existing claims
that holidays lead to a reduction of influenza transmission11. Our
conclusion is holiday cannot help reduce virus transmission if indi-
viduals’ activities and social behaviors during holidays are the same
as on weekends. It is because individuals have different recognition of
holiday and school closure. During holiday, people do not need
intentionally avoid crowded places. On the contrary, they are more
likely to travel around, which might aggravate the epidemic. School
closure often happens when the epidemic is server. People will con-
sciously avoid place where many people gather. There is a tight
association between human cognitive behavior and virus transmis-
sion. That is why school closure and holiday have essential difference
in the control of disease spread and holiday cannot replace the role of
school closure.

We also simulated two other severe epidemics (R0 5 1.9 and R0 5

2.6) by increasing the social network degree and exotic infections that
come into the studied area by air traffic. Figure 5 presents the com-
parison of interventions in response to moderate and severe epi-
demics. In Figure 5(a), we modeled the efficiency of vaccination
adopted in four targeted groups under the three epidemics. In
Group 1, we assumed 80% of children in child care centers and
schools were vaccinated; in Group 2, we assumed 80% of children
were vaccinated; in Group 3, we assumed 80% of children and 80% of
people in the workplace were vaccinated; and in Group 4, we
assumed 80% of the whole population was vaccinated. The baseline
was the officially reported coverage (46.27%, 35.53%, and 67.07% for
persons 0.5–17 years, 18–64 years, and 651 years of age, respect-
ively). In a severe epidemic (R0 5 1.9 and R0 5 2.6), interventions on
Group 1 helped reduce R0 from 2.6 to 1.96, or from 1.9 to 1.50. In
both cases, the epidemics were still out of control. Such a strategy is
not enough in a severe epidemic. If we enlarged the vaccination range
to all children (Group 2), in the very severe epidemic (R0 5 2.6), R0

was reduced to 1.58 and the epidemic was still out of control, but this
strategy prevented the epidemics of both R0 5 1.9 and 1.26 very well.
These results suggested that vaccination is more suitable when the
epidemic is not very severe. In Groups 3 and 4, 80% vaccination
resulted in a sharp decrease of R0 in each simulated epidemic, while
R0 had almost the same reduction pattern in both groups. These
results indicated that a vaccination strategy targeting children and
people in the workplace can mitigate an epidemic; urging mass vac-
cination of a whole population is not necessary.

Figure 5(b) shows the impact of school closure duration on R0.
Baseline is no school closure at all. In any case, school closure starts
when more than 0.1% population goes to the hospital due to influ-
enza infection. The duration of school closure is one week, two
weeks, and four weeks, respectively. In all of the three epidemics,
all values of R0 dropped even though school was only closed for one
week. However, if the epidemic was moderate, for instance, R0 5

1.26, the value of R0 did not reduce appreciably if schools were kept
closed for more than 2 weeks. On the other hand, closing schools for
four weeks helped reduce R0 from 2.6 to 1.52 in a very severe epi-
demic. School closure was especially useful in a severe epidemic31,32.
However, since it is a temporary strategy, adopting only school clos-
ure is not enough to completely prevent a severe epidemic.

www.nature.com/scientificreports
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Combining targeted group vaccination and school closure may
achieve the best result33.

Discussion
In an influenza season, many factors work together leading to an
influenza epidemic. These factors may include individuals’ aware-
ness of the disease (i.e. they might have strong reactions to media
reports or to observing infection among their contacts), activity (i.e.
people coming from infected areas may bring virus to their contacts),
social behavior (i.e. higher contact frequency makes transmission
faster), discrepancies between the vaccine strain and the circulating
strain of influenza virus leading to decreased vaccine effectiveness,
and climate (cool weather enhances the transmission of virus)19.
These factors play an important role in the influenza virus transmis-
sion. Understanding the influences of these factors on the spread of
influenza can be critical to improving the control strategies. While

the studies about human’s cognitive and behavioral responses to an
epidemic have been reported for several years, there has been rela-
tively little systematic investigation into their function and role in the
spread of the disease20. In this paper, we systematically studied the
influence of human cognition and behaviors to an epidemic by build-
ing a mathematical framework for incorporating above factors into
an agent-based epidemic model. We built the relationship between
the simulated epidemics and individuals’ cognition toward an
epidemic by embedding the ABM into a HGM and simulating the
epidemics in three influenza season.

In order to illustrate the importance of the individual’s cognitive
behavior to an epidemic, we conducted experiments to systematically
compare our proposed HGM with the existing epidemiological mod-
els. The results showed that, these methods only can simulate epi-
demic with one wave, but failed to simulate multiple waves. The main
reason is, their mathematical models did not describe the feedback of

Figure 4 | Simulation of the influenza epidemic curve with different interventions. (a) Vaccination. Seven scenarios were simulated for this

intervention. In the first four scenarios, the coverage of vaccination is enlarged by 10%, 20%, 30%, and 40% in all population, respectively. In the last three

scenarios, the coverage of vaccination was set as 80% in children, adults, and seniors, respectively; and (b) School closure. Three scenarios were simulated

in which the length of school closure was one week, two weeks, and four weeks. The time of school closure started when more than 0.1% of populations go

to a hospital due to influenza infection. Baseline means there was no intervention and R0 5 1.26.

Figure 5 | Comparison of interventions in response to three different sizes of epidemic. The baseline is R0 5 1.26. Another two severe epidemics (R0 5

1.9 and R0 5 2.6) were simulated as well. Red lines indicate the case of R0 5 1.26; green lines show intervention results when R0 5 1.9, and blue lines

present the case when R0 5 2.6. (a) Vaccination. (b) School closure.
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the epidemic. In our model, however, agents’ perceptions were influ-
enced by daily virus attack rate. They may adopt protective behaviors
in order to avoid being infected, resulting in the fluctuation of epi-
demic curve.

The simulation results showed that the major virus transmission
happens in public places, especially child care centers and schools.
Children are more likely to be infected and spread virus to their
family members and people around them, because both their infec-
tivity and duration of infection are stronger and longer than those in
adults38.

The sensitivity analysis of our model showed that the number of
infections were very sensitive to local temperature. This result is
coincident with the conclusion that virus transmission occurred with
greater frequency in cold temperatures19,34.

Through system behavior analysis, we found that social network
degree is a critical factor determining the magnitude of an epidemic.
In the region with higher population density, individuals have more
chance to contact with each other, increasing the possibility of virus
transmission. Therefore, the interventions related to the decrease of
social network degree, such as school closure and patient self-isola-
tion are critical to prevent the epidemic.

Our simulations suggested that vaccination is the best method in a
moderate epidemic. It brings little economic and social cost com-
pared with school closure. Current VE is not very high and still can be
improved, especially in older adults. As a result, we proposed a tar-
geted vaccination strategy that only includes children and people in
workplace. School closure can significantly moderate the stress on
the health care system when the epidemic is severe. As a temporary
and isolated intervention, however, its action is very limited and is
not necessary when the epidemic is moderate. However, when the
epidemic is severe, school closure is more effective than vaccination.
It can rapidly reduce the daily infection cases. The effectiveness and
impact of this strategy depends on the epidemiological characteris-
tics31,32. Combined multiple strategies may obtain the best result.

Finding the best way to prevent an epidemic is a very challenging
task because interactions between individuals are highly connected
and complicated in today’s world. Network modeling can be a flex-
ible tool to build a plausible world, to re-enact past epidemics and
simulate future outbreaks, and to analyze the major causes leading to
spread of the disease. In our future work, we will improve the HGM
to increase the reliability and accuracy of prediction by gathering
data on contact patterns of typical places in schools and workplace
to draw a general law for the reproducing of contact patterns among
the county and collecting survey data about people’s perception and
cognition toward an epidemic to improve our agent-based model.
It will help us systematically understand the virus transmission
between individuals.

Methods
Heterogeneous graph model (HGM). We used a stochastic network modeling
method to construct the social structure in a specific region. The population
information includes synthesized households, schools, workplaces, and the
assignments of individuals to these places. We constructed sub-networks
G1,G2, � � � ,Gn according to the population information (see Supplementary Fig. S1
online). Each of them stands for a public place, such as school and workplace. The
degree of each sub-network Gi is determined by two parameters: the probability that a
given individual is connected to another in the same group in pin and the probability
that a given individual is connected to another from a different group pout. The
parameters were estimated using the Markov Chain Monte Carlo (MCMC)
Metropolis-Hastings algorithm39 to find the best fitting of the clinical data. The
parameters can be found as Supplementary Table S1 online. The whole social network
was given by a block diagonal matrix G with Gi as diagonal elements.

Agent-based model (ABM). We embedded an ABM in the heterogeneous graph
model to describe how the virus is transmitted through individuals’ interaction,
taking into account the influence brought by individuals’ cognition and reaction to
the epidemic (see Supplementary Fig. S2 online). ABM models epidemic as a dynamic
process, which is characterized by several factors such as individual’s cognition,
climate, degree of social network, and daily infection rate.

To model this process, we defined two functions to describe an individual’s cog-
nition to the epidemic

H(i,t)~(
cr

1ze{R(t)
{br)(

ct

1ze{max(T(t))=T(t)
{bt) ð1Þ

and

J(i,t)~(cde{1=D(t){bd)ca|
1
�

(1ze{1=A(i))z"1 if aƒ17

1z"2 if aw17

(
ð2Þ

where H(i,t) represents the cognition of individual i on day t due to external warning,
which is related to daily illness attack rate R(t) reported by media broadcasts17,18 and
local temperature T(t)19. J(i,t) stands for the cognition of individual i on day t due to
self-awareness, which is related to his or her social network degree D(i,t) and the age
A(i). With the cognition, he or she may adopt protective behavior to avoiding con-
tacting with infected individuals. Parameters cr, ct, cd and ca are constants of pro-
portionalities, br, bt and bd are constants of deviation. cd~fcdC ,cdH ,cdW g is set as three
different values depending on the place the individual stays. cdC is used in the case
where simulated activity happens in public places, such as the schools and the
workplaces, cdH is used when simulated activity happens at home, and cdW is used
when simulated activity happens on weekends. e1 and e2 are slack variables. These
parameters were estimated using the MCMC Metropolis-Hastings algorithm39 under
the supervision of the clinical data. The parameters can be found as Supplementary
Table S2 online.

Given H(i,t) and J(i,t), we defined the subject’s risk of being infected on day t:

r(i,t)~e
{(H(i,t)zJ(i,t)(

si

ki
)a)

ð3Þ

where ki indicates how many connections the individual i has and si represents the
amount of his or her infected connections. a represents the use of special prophylaxis.
a , 1 means special prophylaxis has been used and a 5 1 indicates there is no
prophylaxis.

Finally, we obtained the force of infection of susceptible individual i caused by his
or her infected neighbors j (j~1, � � � ,si) on day t17

l(i,t)~1{ P
si

j~1
(1{r(i,t)t(t’,j)) ð4Þ

where t(t9, j) is the infectivity of the infected contact j. t9 is the infection period.
Infectivity t(t9, j) indicates the ability of infected individual j to infect others. It varies
with infection time t9 and is proportional to the amount of viral shedding in infected
individuals8.

Infectivity of children is different from that in adults and aged individuals40. For the
latter group, we obtained infectivity risk based on research data where viral shedding
was measured in volunteers challenged with wild-type influenza viruses41–48. We
mapped the viral shedding to infectivity8 and rescaled the infectivity curve according
to the length of infectivity period. For children, we obtained their infectivity curve and
the length of infection from previous work38,40,49. Studies confirmed that for influenza,
the infectious period in adults is 5–8 days, and in children under 10 years old 7–15
days40,50. For children between 10 to 17 years old, we assumed the viral load and
duration had a linear relationship with their age. We therefore rescaled the mean viral
load curve to match the duration of viral shedding. Then we used the equation: t(t9) 5

0.02V(t9) to calculate the corresponding infectivity (t(t9)) of children and adults8,
where V(t9) is the viral load during infection. To calculate the distribution of duration
of viral shedding in infectious patients, we inferred the percentage of patients who still
have detectable virus in infectious period from the studies in Refs. 40, 51.

Determine Daily Infection. People who are infected with the influenza virus typically
undergo four states: Susceptible, Exposed, Infectious, and Recovered (SEIR)52.
Individuals in each SEIR state were coded as 0, 1, 2, or 3, respectively. A state matrix ST

3 N stores each individual’s SEIR state every day, where N is the amount of simulated
individuals and M is number of days across the whole influenza season. Vaccinated
individuals have a probability of moving a susceptible (S) individual into the
recovered (R) state. We assume a portion of individuals has already been vaccinated.
Influenza vaccine effectiveness36 and vaccination coverage35 are used estimate the
probability of an individual’s immunity. We assume all vaccinations are completed
before the influenza season. In influenza season, we regarded all individuals as being
in a susceptible state (S(i,0)~0, i~1, � � � ,N). When they have contact with infectious
patients on day t(t g [1,M]), their state becomes Exposed (S(i,t) 5 1). Through the
Equation (4), we obtained l(i,t), the force of infection of a susceptible individual i on
day t(t g [1,M]).

After contacting with an infected patient, the individual may or may not be
infected, depending on the ability of his or her immune system. Mucosal immunity is
the first line of body defense blocking influenza virus from infection, which differs by
age53,54. When individuals have contact with infected patients, the strength of their
mucosal immunity is used to determine the probability they will be infected. The
protective status of the mucosal immune system is measured by IgA antibodies, which
are secreted by mucosal surfaces and found in saliva55. Secretion rates of IgA indicate
the level of protection offered by IgA in efficiently coating the mucosa. Research
showed that the mean secretion rates of IgA in children, adults 18–64 years, and
adults 65 years and older decrease with increasing age with secretion rates (Sr) of Sr 5
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3.84, 3.62, and 3.25 (log mg/2 min), respectively54. We therefore used the normalized
secretion rate of IgA to determine the strength of an individual’s mucosal immunity.
We defined mir(i) as the index of mucosal immunity for each person according to his
or her ages and use the following equation to determine whether the individual is
infected or not.

S(i,t)~
2 if l(i,t)wmir(i)

0 if l(i,t)ƒmir(i)

�
ð5Þ

A discrete time step (half a day) was set to count the number of individuals in the four
states. Every morning, before people went out, their states were recorded and updated.
Every night, before they went home, their states were updated as well. xt(t 5 1:M)
stores a daily new infected number.

Learning model parameters. The case study we used is in Forsyth County, North
Carolina, USA because here we have performed prospective surveillance in the 2009/
2010 to 2011/2012 influenza seasons in the two emergency rooms serving more than
94% of all county residents56. Clinical data of the three influenza seasons was used to
learn parameters of our model.

We define the observation dobs using our clinical data and define m as a set of
parameters to be estimated. The posterior probability of the parameters given by
observation is defined by:

ppost(m) : ~p(mjdobs)!pprior(m)p(dobsjm) ð6Þ

where pprior (m) is given by exp({
1
2

m{ �mprior

�� ��2

C{1
prior

) and p(dobs j m) is given by

exp({
1
2

f (m){dobsk k2
C{1

noise
). f (m)~ x1(m),x2(m), � � � xT (m)½ � is the predicted epi-

demic curve. We wish to find m̂ by maximizing the posterior density:

m̂~ argmax
m[R

(exp {
1
2

f (m){dobsk k2
C{1

noise
{

1
2

m{ �mprior

�� ��2

C{1
prior

� �
) ð7Þ

This process can be solved by a Markov Chain Monte Carlo (MCMC) Metropolis-
Hastings algorithm, using the MATLAB package provided by Ref. 39.

The training process has three steps:
Step 0 (initialization): Assign all pin of the sub-network Gi to the same value, and

assign all pout of the sub-network Gi to the same value.
Step 1 (learn network G), set m~½½p1

in,p1
out �,½p2

in,p2
out �, � � � ½pn

in,pn
out ��, n is the number

of sub-networks in total and fix the ABM.
Step 2 (learn ABM), fix network G and set m 5 [cr, ct, cdC, cdH, cdW, br, bt, bd].
We repeat step 1 and step 2 until the biases between the simulated and real

epidemic curve cannot be reduced any more. Finally, the learned parameters (see
Supplementary Table S1 and S2) are used to simulate the epidemics, analyzing
the factors impacting the spread of influenza, and evaluate various interventions
toward it.
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20. Funk, S., Salathé, M. & Jansen, V. A. Modelling the influence of human behaviour
on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256
(2010).

21. Durham, D. P. & Casman, E. A. Incorporating individual health-protective
decisions into disease transmission models: a mathematical framework. J. R. Soc.
Interface 9, 562–570 (2012).

22. Wagner, K. D. et al. Cognitive behavioral theories used to explain injection risk
behavior among injection drug users: a review and suggestions for the integration
of cognitive and environmental models. Health Educ. Behav. 37, 504–532 (2010).

23. Peters, T. R. et al. Influenza testing, diagnosis, and treatment in the emergency
department in 2009–2010 and 2010–2011. Acad. Emerg. Med. 20, 786–794 (2013).

24. Wheaton, W. D. et al. Synthesized population databases: A US geospatial database
for agent-based models. Methods Rep RTI Press 10, 905 (2009).

25. Grefenstette, J. J. et al. FRED (A Framework for Reconstructing Epidemic
Dynamics): an open-source software system for modeling infectious diseases and
control strategies using census-based populations. BMC Public Health 13, 940
(2013).

26. CensusBureau. Demographic Information in Forsyth County, North Carolina
(2013) Available at: http://quickfacts.census.gov/qfd/states/37/37067.html
(Accessed: 16th September 2013).

27. Monto, A. S. Interrupting the transmission of respiratory tract infections: theory
and practice. Clin. Infect. Dis. 28, 200–204 (1999).

28. Viboud, C. et al. Risk factors of influenza transmission in households. Br. J. Gen.
Pract. 54, 684–689 (2004).

29. Hurwitz, E. S. et al. Effectiveness of influenza vaccination of day care children in
reducing influenza-related morbidity among household contacts. JAMA. 284,
1677–1682 (2000).

30. Loeb, M. et al. Effect of influenza vaccination of children on infection rates in
Hutterite communities: a randomized trial. JAMA. 303, 943–950 (2010).

31. Cauchemez, S. et al. School closures during the 2009 influenza pandemic: national
and local experiences. BMC Infect. Dis. 14, 207 (2014).

32. Johnson, A. J. et al. Household responses to school closure resulting from outbreak
of influenza B, North Carolina. Emerg. Infect. Dis. 14, 1024–1030 (2008).

33. Cauchemez, S. et al. Closure of schools during an influenza pandemic. Lancet
Infect. Dis. 9, 473–481 (2009).

34. Eccles, R. An explanation for the seasonality of acute upper respiratory tract viral
infections. Acta Otolaryngol. (Stockh.) 122, 183–191 (2002).

35. CDC. Seasonal Influenza (Flu) (2013) Available at: http://www.cdc.gov/flu/
(Accessed: 12th December 2013).

36. Treanor, J. J. et al. Effectiveness of seasonal influenza vaccines in the United States
during a season with circulation of all three vaccine strains. Clin. Infect. Dis. 55,
951–959 (2012).

37. Nishiura, H. et al. Cost-effective length and timing of school closure during an
influenza pandemic depend on the severity. Theor. Biol. Med. Model. 11, 5 (2014).

38. Li, C.-C. et al. Correlation of pandemic (H1N1) 2009 viral load with disease
severity and prolonged viral shedding in children. Emerg. Infect. Dis. 16,
1265–1272 (2010).

39. Haario, H., Laine, M., Mira, A. & Saksman, E. DRAM: efficient adaptive MCMC.
Stat. Comput. 16, 339–354 (2006).

40. Esposito, S. et al. Viral shedding in children infected by pandemic A/H1N1/2009
influenza virus. Virol. J. 8, 349 (2011).

41. Hayden, F. G. et al. Local and systemic cytokine responses during experimental
human influenza A virus infection. Relation to symptom formation and host
defense. J. Clin. Invest. 101, 643–649 (1998).

42. Murphy, A. W., Platts-Mills, T. A., Lobo, M. & Hayden, F. Respiratory nitric oxide
levels in experimental human influenza. Chest 114, 452–456 (1998).

43. Barroso, L., Treanor, J., Gubareva, L. & Hayden, F. G. Efficacy and tolerability of
the oral neuraminidase inhibitor peramivir in experimental human influenza:
randomized, controlled trials for prophylaxis and treatment. Antivir. Ther. 10,
901–910 (2005).

44. Hayden, F. G. et al. Safety and efficacy of the neuraminidase inhibitor GG167 in
experimental human influenza. JAMA. 275, 295–299 (1996).

45. Hayden, F. G. et al. Oral LY217896 for prevention of experimental influenza A
virus infection and illness in humans. Antimicrob. Agents Chemother. 38,
1178–1181 (1994).

46. Fritz, R. S. et al. Nasal cytokine and chemokine responses in experimental
influenza A virus infection: results of a placebo-controlled trial of intravenous
zanamivir treatment. J. Infect. Dis. 180, 586–593 (1999).

47. Treanor, J. J. et al. Intranasally administered interferon as prophylaxis against
experimentally induced influenza A virus infection in humans. J. Infect. Dis. 156,
379–383 (1987).

48. Youngner, J. S., Treanor, J. J., Betts, R. F. & Whitaker-Dowling, P. Effect of
simultaneous administration of cold-adapted and wild-type influenza A viruses
on experimental wild-type influenza infection in humans. J. Clin. Microbiol. 32,
750–754 (1994).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8980 | DOI: 10.1038/srep08980 8

http://quickfacts.census.gov/qfd/states/37/37067.html
http://www.cdc.gov/flu


49. Sato, M., Hosoya, M., Kato, K. & Suzuki, H. Viral shedding in children with
influenza virus infections treated with neuraminidase inhibitors. Pediatr. Infect.
Dis. 24, 931–932 (2005).

50. Carrat, F. et al. Time lines of infection and disease in human influenza: a review of
volunteer challenge studies. Am. J. Epidemiol. 167, 775–785 (2008).

51. Lee, N. et al. Viral loads and duration of viral shedding in adult patients
hospitalized with influenza. J. Infect. Dis. 200, 492–500 (2009).

52. Lee, B. Y. et al. A computer simulation of vaccine prioritization, allocation, and
rationing during the 2009 H1N1 influenza pandemic. Vaccine 28, 4875–4879
(2010).

53. Chen, D. et al. Serum and mucosal immune responses to an inactivated influenza
virus vaccine induced by epidermal powder immunization. J. Virol. 75, 7956–7965
(2001).

54. Evans, P. et al. Social class, sex, and age differences in mucosal immunity in a large
community sample. Brain. Behav. Immun. 14, 41–48 (2000).

55. Mestecky, J. Saliva as a Manifestation of the Common Mucosal Immune Systema.
Ann. N. Y. Acad. Sci. 694, 184–194 (1993).

56. Peters, T. R., Blakeney, E., Vannoy, L. & Poehling, K. A. Evaluation of the limit of
detection of the BD VeritorTM system flu A1 B test and two rapid influenza
detection tests for influenza virus. Diagn. Microbiol. Infect. Dis. 75, 200–202
(2013).

Acknowledgments
We thank Mr. William Wheaton at RTI International’s Geospatial Science and Technology
Program to provide valuable synthetic population data and Ms. Karen Klein at Wake Forest
University Health Sciences for critical editing of the manuscript. This work was partially

supported by a pilot project in the Department of Radiology and NIHU01HL111560-01
(Zhou). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Author contributions
Conceived and designed the models: D.G., K.L. and X.Z. Performed the simulations: D.G.
Analyzed the data: D.G. Contributed reagents/materials/analysis tools: K.P. and X.Z. Wrote
the paper: D.G. Provided ideas to improve the system modeling: K.L., B.S., K.P. and T.P.
Provided ideas about how to simulate the intervention strategies: D.G. and K.P.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Guo, D. et al. Multi-scale modeling for the transmission of
influenza and the evaluation of interventions toward it. Sci. Rep. 5, 8980; DOI:10.1038/
srep08980 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need
to obtain permission from the license holder in order to reproduce the material. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8980 | DOI: 10.1038/srep08980 9

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by/4.0/

	Title
	Figure 1 Simulation of epidemics.
	Table 
	Figure 2 Results of the parameter sensitivity analysis of the model.
	Figure 3 System behavior analyses by perturbing two critical variables with specific social network degree.
	Figure 4 Simulation of the influenza epidemic curve with different interventions.
	Figure 5 Comparison of interventions in response to three different sizes of epidemic.
	References

