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Actinobacillus pleuropneumoniae is a mucosal respiratory pathogen causing

contagious porcine pleuropneumonia. Pathogenesis studies have demon-

strated a major role for the capsule, exotoxins and outer membrane proteins.

Actinobacillus pleuropneumoniae can also glycosylate proteins, using acytoplasmic

N-linked glycosylating enzyme designated NGT, but its transcriptional arrange-

ment and role in virulence remains unknown. We investigated the NGT locus

and demonstrated that the putative transcriptional unit consists of rimO,

ngt and a glycosyltransferase termed agt. From this information we used the

A. pleuropneumoniae glycosylation locus to decorate an acceptor protein, within

Escherichiacoli, with a hexose polymer that reacted with an anti-dextran antibody.

Mass spectrometryanalysis of a truncated proteinrevealed that this operon could

add up to 29 repeat units to the appropriate sequon. We demonstrated the impor-

tance of NGT in virulence, by creating deletion mutants and testing them in a

novel respiratory cell line adhesion model. This study demonstrates the impor-

tance of the NGT glycosylation system for pathogenesis and its potential

biotechnological application for glycoengineering.

1. Introduction
Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the causative

agent of porcine pleuropneumonia, a severe respiratory disease responsible for

significant losses to the pig industry worldwide. Economically, this disease has

a huge impact on the pig industry, costing an average E6.4 per fattened pig in

an affected herd in Europe [1]. Actinobacillus pleuropneumoniae enters the lungs

and colonizes tissues by binding to mucus proteins and cells of the lower respirat-

ory tract, including ciliated cells of the terminal bronchioli and alveolar epithelial

cells [2,3]. There are 15 established serovars that differ in capsular polysaccharide

composition [4], with another proposed based on serological results [5]. Several

surface structures have been identified as being involved in adhesion, including

fimbriae [6] and lipopolysaccharide (LPS) [7].

Advances in DNA sequencing technologies and mass spectrometry techniques

reveal that post-translational modification of proteins by glycosylation is not
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Figure 1. Genetic organization of the HMWC enzyme family. In contrast to other bacteria, NTHi has two copies of the HMW locus, and each has a gene encoding
an acceptor protein. A. pleuropneumoniae is the only species that has a second glycosyltransferase adjacent to the N-linking enzyme.
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restricted to a few bacterial species and is often important in

pathogenesis [8,9]. Understanding the mechanisms of bacterial

glycosylation and its role in pathogenesis can have practical

applications such as the design of novel bioglycoconjugate vac-

cines, antimicrobials and diagnostics [10,11]. Bacterial protein

glycosylation systems can be broadly divided into two main cat-

egories: glycans that are covalently attached to amide groups of

asparagine residues (N-linked) or to hydroxyl groups on serine/

threonine residues (O-linked). These categories can be further

subdivided depending on the cellular compartment where

protein glycosylation takes place. Oligosaccharyltransferases

(OTases) function in the periplasmic compartment of a bacterial

cell and catalyse the transfer of an oligosaccharide from a lipid

donor to an acceptor molecule, usually a protein. The best-

studied bacterial OTases are the C. jejuni PglB system, where

en bloc glycosylation operates through an N-OTase [12,13],

and the Neisseria meningitidis O-OTase PglL. N- and O-linked

glycosylation can also occur in the cytoplasmic compartment

of the bacterial cell, mediated through the action of glyco-

syltransferases that use nucleotide activated sugar donors as

substrates for transfer onto the acceptor protein. Examples of

cytoplasmic glycosylation can be found in Clostridium difficile,
where flagellin is O-glycosylated [14], and non-type-able

Haemophilus influenzae (from here on referred to as NTHi) [15],

where two copies of a cytoplasmic N-linked glycosylation

modify a high-molecular-weight adhesin with hexoses using

the enzyme HMWC. In NTHi, all proteins responsible

for high-molecular-weight adhesin synthesis, transport and

glycosylation are encoded in the same locus.

Actinobacillus pleuropneumoniae also carries a cytoplasmic

N-linking glycosyltransferase, known as NGT. It is a member

of the HMWC-like glycosyltransferase family [16–20], but

lacks an adjacent adhesin or transporter and its transcriptio-

nal unit remains to be characterized. Recently, studies into the

human pathogens Kingella kingae and Aggregatibacter aphrophilus
[21] demonstrated a similar genetic arrangement. These ‘orphan’

HMWC enzymes have been found to glycosylate trimeric
autotransporter adhesins, encoded in distant locations of the

genome [21]. Autotransporter proteins, such as the trimeric auto-

transporter adhesin (TAA) Apa found in A. pleuropneumoniae,
mediate attachment to host cells [22]. Apa is predicted to have

an N-terminal signal peptide for secretion, a functional

passenger domain containing head, neck and stalk motifs, and

a conserved C-terminal translocator domain [22]. However,

A. pleuropneumoniae has a unique chromosomal feature.

Adjacent to ngt, there is a second ORF, which we named agt,
coding for an accessory glycosyltransferase (figure 1).

When agt is heterologously expressed in Escherichia coli and

purified, it can be used in vitro, to add further glucose residues

to the N-linked glycan that NGT generates [19]. However, agt
has never been demonstrated to function in vivo in conjunction

with ngt. In addition, no virulence phenotype has been

reported in A. pleuropneumoniae for this glycosylation locus

owing to known difficulties in constructing genetic mutations

in this organism.

In this study, we report the generation of A. pleuropneumoniae
ngt and agt deletion mutants, and demonstrate a biological role

for this N-linked glycosylation system using a human adenocar-

cinoma lung epithelial cell adhesion assay. Our results suggest

that ngt is part of an operon that contains the upstream ORF

rimO, encoding a methylthiotransferase, and the downstream

ORF agt, encoding ana-6-glucosyltransferase (a6GlcT). Further-

more, we were able to clone and express ngt and agt in E. coli,
demonstrating for the first time, to the best of our knowledge,

the in vivo assembly of N-linked dextran.
2. Material and methods
2.1. Bacterial strains used and culture conditions
Actinobacillus pleuropneumoniae serovar 15 reference strain,

HS143, or derived mutants were grown at 378C with 5% CO2

on BHI (Oxoid, UK) agar or broth, supplemented with
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10 mg ml21 nicotinamide adenine dinucleotide (NAD) and

when required with kanamycin (50 mg ml21) or chlorampheni-

col (1 mg ml21). Escherichia coli TOP10 and Mu Free Donor

(MFD) [23] were grown in LB broth or agar (Oxoid) sup-

plemented, when required, with 50 mg ml21 kanamycin at

378C. E. coli DH10 were grown in LB broth or agar (Oxoid)

at 378C supplemented, when required, with 80 mg ml21

spectinomycin and/or 100 mg ml21 trimethoprim.

2.2. Genomic DNA extraction
Total genomic DNA was extracted from a 10 ml overnight

culture of A. pleuropneumoniae HS143, using a proteinase K

and phenol: chloroform: isoamyl-alcohol-based procedure as

previously described by Cuccui et al. [24].

2.3. Construction of Actinobacillus pleuropneumoniae
knockout mutants

The A. pleuropneumoniae HS143 orthologues of apl_1634 and

apl_1635 (also known as agt and ngt, coding for a6GlcT

and NGT, respectively), found in the A. pleuropneumoniae L20

genome [25], were deleted using our recently described

unmarked mutation system [26]. Primers used to generate the

cat-sacB insertion/deletion and the unmarked deletion constructs

for each gene are shown in electronic supplementary material,

table S2. Briefly, the target genes and approximately 600–

900 bp of flanking sequences were amplified using CloneAmp

HiFi PCR Premix (Clontech), A-tailed and cloned into pGEMT

(Promega), as previously described [26]. Inverse PCR was then

used to open up the clones, using the appropriate primers, remov-

ing the target sequence and adding 15 bp overhangs to allow

insertion of the cat-sacB cassette by In-Fusion cloning (Clontech).

Unmarked deletion constructs were generated by amplifying the

left and right flanking sequences for each gene, using appropriate

primers with added 15 bp overhangs designed to allow direct

fusion by overlap-extension PCR. The unmarked deletion

mutants were then obtained by two sequential rounds of natural

transformation as previously described [27].

2.4. Plasmid complementation
The vector pMKExpress [28] was digested with EcoRI and SacI

(New England Biolabs, UK) and the resulting digest was

gel purified using a Qiagen MinElute gel extraction kit

(Qiagen, UK) according to the manufacturer’s instructions, to

remove the GFP coding ORF.

The ngt gene was PCR amplified using Accuprime Taq Hifi

(Invitrogen, UK) using the forward primer ngtCOMPFWD

(50-TTTTGAATTCGTGGGTAAAACGCTTGCAGT-30) and

reverse primer ngtCOMPREV (50-TTTTGAGCTCTTAATTTT

CTTTTAGGAACGCATTT-30). The agt gene was amplified

using the primers agtCOMPFWD (50-AAACTGCAGATTA

AATGCGTTCCTAAAAGAAAA-30) and agtCOMPREV (50-

TTT GCGGCCGCTTAACTCCGACTATTCTCAAG-30).

When agt only complementation failed, complementation

with ngt–agt was attempted. Both ORFs were PCR amplified

using Accuprime Taq Hifi (Invitrogen) using the forward

primer ngtagtCOMPFWD (50-TTTGAATTCCGAGCAAGAA

GTGAAAGTCG-30) and reverse primer ngtagtCOMPREV

(50-TTTGCGGCCGCCACCGATAGCCGTATTTCGT-30) with

the following cycling conditions: 948C/30 s followed by
24 cycles of 948C/30 s, 538C/30 s, 688C/2 min and a final

688C/5 min cycle. All ORFS were expressed under the control

of the plasmid promoter.

The resulting ngt only PCR product was digested with

EcoRI and SacI, the agt only product was digested with PstI
and NotI, and the ngt–agt PCR product was digested with

EcoRI and NotI before being purified using a Qiagen PCR puri-

fication kit. Digested vector and PCR products were ligated

using Promega T4 DNA ligase (Promega, UK) to yield the

vectors pMKngt, pMKagt and pMKngt–agt, prior to transform-

ation of the plasmid into One Shot E. coli TOP10 cells

(Invitrogen) according to manufacturer’s instructions. Trans-

formants were selected on LB agar supplemented with

kanamycin (50 mg ml21). The complementation vectors were

transformed into the mutant recipient strains by natural

transformation as previously described [27].

2.5. Cell culture
The A549 cell line, adenocarcinoma human alveolar basal epi-

thelial cells, (ATCC, CCL-185, US) was grown at 378C, 5% CO2

in F-12 K medium (Gibco) supplemented with 10% fetal calf

serum (Sigma).

2.6. Adhesion assay using A549 cell line
The A549 cell line (ATCC, CCL-185, USA) was seeded into

12-well tissue culture plates at a concentration of 2.5�
105 cells ml21 and incubated overnight at 378C 5% CO2. Bacterial

overnight cultures (HS143 wild-type, isogenic ngt and agt
mutants and complemented mutants) were used to seed into

BHI–NAD medium and grown to an OD600nm of 0.6. One

millilitre of the suspension was added to the A549 cells at a mul-

tiplicity of infection (MOI) of 100 : 1, and the plates incubated at

378C 5% CO2. After 3 h, non-adherent bacteria were removed by

washing three times with 1 ml DPBS (Gibco), and adherent bac-

teria were released by adding 100 ml of 0.25% trypsin–EDTA

(Sigma) for 5 min at 378C. Trypsinization was stopped by the

addition of 900 ml of DPBS. Serial dilutions were plated onto

BHI–NAD plates for quantification of adherent bacteria. In

order to determine if any of the recovered bacteria had invaded

the A549 cells, controls were treated with gentamycin (Sigma) at

a final concentration of 10 mg ml21 for 1 h to allow for killing of

adherent extracellular bacteria. The cells were then lysed by the

addition of ice-cold sterile water, and serial dilutions were plated

out on BHI–NAD.

2.7. Statistical analysis of adhesion assay data
The number of adherent cells was calculated by counting the

colony forming units and comparing with the initial inoculum

of each individual culture to determine the percentage of

adherent cells. The statistical analysis was performed using a

one-way analysis of variance followed by a Bonferroni’s mul-

tiple comparison test. The significance level was set at 0.05

throughout. Statistical analysis was done using GraphPad

PRISM v. 4.00 for Windows (GraphPad Software, San Diego,

CA, www.graphpad.com).

2.8. Reverse transcriptase PCR
An overnight culture of A. pleuropneumoniae HS143 was diluted

1 : 20 in BHI–NAD broth. At the time points of 1.5, 3.0, 5 and

http://www.graphpad.com
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24 h, RNA was extracted as previously described [29], with the

minor modification that 2 mg of total RNA from each sample

was treated with Ambion TURBO DNase (Invitrogen) accord-

ing to the manufacturer’s instructions. cDNA was generated

from DNase-treated RNA using the SuperScript II kit (Invitro-

gen) according to the manufacturer’s instructions. For each

sample, 2 ml of reverse transcribed cDNA was used as a tem-

plate in a 25 ml total volume PCR mixture and amplified

using MyTaq master mix (Bioline, UK) using the following

cycling conditions: 948C/30 s, followed by 35 cycles of 948C/

10 s, 538C/10 s, 728C/10 s and a final single 728C/30 s cycle

using the primers listed in electronic supplementary material,

table S2.
Biol.7:160212
2.9. Quantitative real-time PCR validation
Total RNA was extracted from bacteria grown in BHI–NAD

broth by using Tri Reagent (Sigma, UK) as previously

described. Two micrograms from each sample was treated

with Ambion TURBO DNase (Invitrogen) according to man-

ufacturer’s instructions with some modifications. Total RNA

was incubated for 1 h at 378C followed by the addition of

another two units of DNase. The sample was then incubated

for an extra 1 h before inactivation.

cDNA was generated from DNase-treated RNA using

the SuperScript III kit (Invitrogen) using random hexamers

(Invitrogen) according to the manufacturer’s instructions. One

microlitre of this material was used in a QPCR using SYBR

Green dye-based PCR amplification and detection system

(Applied Biosystems). The A. pleuropneumoniae HS143 WT,

HS143Dngt and HS143Dagt were analysed for absolute quanti-

fication of cDNA using an ABI7500 Fast instrument (Applied

Biosystems). Amplification was carried out using the following

primers at a final concentration of 500 nM. agtfwd: 50-GAT TGG

ATA GGT GAA GGC GA-30, agtrev: 50-CCC TTG CTC AAA

ATG ACG GA-30, ngtfwd: 50-AGT TTG TGA GAG CAA CGG

TG-30, ngtrev: 50-AGT CCG AAT GTG TTG TTG CC-30,

rimOfwdv2: 50-CGT CCG ATT GTG CAA GTG TT-30, rimOr-

evv2: 50-CAC CGT TCC AGA AAA CCG TT-30. Samples

tested were four biological replicates, each tested as three

technical replicates.

For comparative qRTPCR analysis of A. pleuropneumoniae
HS143 WT, HS143Dngt and HS143Dagt, gene induction or

reduction values were calculated by comparing the normalized

values of the wild-type and mutant samples, using the statisti-

cal formulation for the threshold cycle (DDCT) method. The

threshold value of each gene was first normalized to the

value of the constitutively expressed control gene glyA [30]

(glyA primers: fwd: 50-CAA GCG AAT GCA GCT GTT

TA-30, glyArev: 50- CTG TGA TGC CGT AGA GGA CA-30).
2.10. Subcloning and heterologous expression of agt
and ngt

The putative NGT operon was PCR amplified using

the primers ngt-agtfwd: 50-TTTTGAATTCCGAGCAAGAAG

TGAAAGTCG-30 and ngt-agtrev: 50-TTTTTGGTACCCACC

GATAGCCGTATTTCGT-30 using Accuprime Taq Hifi (Invi-

trogen) and the following cycling conditions: 948C/30 s,

followed by 24 cycles of 948C/30 s, 538C/30 s, 688C/4 min

and a final cycle of 688C/5 min.
The amplicon was ligated into the vector pEXT20 using T4

DNA ligase (New England Biolabs, UK) following digestion

of the plasmid and the PCR product with EcoRI and KpnI.

Escherichia coli NEB10b (New England Biolabs, UK) was trans-

formed with the ligation reaction generating the plasmid

pJC78. Expression was induced by growing an E. coli colony

in LB broth with ampicillin 100 mg ml21 until an OD600 of 0.4

was reached. At that point 1 mM, IPTG was added, and the

cultures were incubated at 378C with shaking for a further

16 h. Expression of NGT and a6GlcT was monitored using

SDS–PAGE, Coomassie staining and western blotting.

2.11. Glycosylation of AtaC by NGT and a6GlcT in
Escherichia coli cells

Escherichia coli DH10b cells carrying pJC78 were transformed

with the construct pMLBADAtaC1866–2428 [17], and cultured

in LB broth with ampicillin 100 mg ml21, trimethoprim

20 mg ml21 at 378C with shaking until an OD600nm of 0.4 was

reached, followed by induction with 0.2% L-arabinose and

1 mM IPTG. After 16 h incubation, AtaC was purified. The bac-

terial cell pellet was isolated by centrifugation at 6000g for

10 min and lysed using a cell homogenizer (Stansted Fluidics

Ltd. SPCH-10). Any intact cell debris was thereafter pelleted

by centrifugation at 10 000g for 30 min before purification

from the supernatant using an Ni–NTA (Qiagen, UK) gravity

column (Thermo Scientific, USA).

Glycosylated product was analysed by SDS–PAGE and

transferred onto a nitrocellulose membrane before being

analysed by immunoblot using a mouse anti-His antibody

(AbCam, UK) and an IRDye 680CW goat anti-mouse conjugate

secondary antibody. Detection of fluorescent signal was

carried out using a LI-COR imaging system.

2.12. Mutagenesis of the ngt locus
The cloned locus coding for NGT and a6GlcT was mutated

using the QuickChange XL II site-directed mutagenesis kit

(Agilent Technologies, CA) using the following primers.

agtt120a_antis: 50-CAAAACAGAAGTAAACGTTTTAATC

TATATTATTTTCCATAACAT AACCTTAAGAGCC-30 and

agtt120a: 50-GGCTCTTAAGGTTATGTTATGGAAAATAAT

ATAGATTAAAACGTTTACTTCTGTTTTG-30 (underlined

nucleotide denotes the change).

The ngt gene was mutated using the following primers:

ngta1321g_a132: 50-CGGTATAGCTTCAACCACGATGGCG

CTAAATCCGTATTT CTTAGAA-30 and ngta1321g_a132: 50-

TTCTAAGAAATACGGATTTAGCGCCATCGTGGTTGAAG

CTATACCG-30 (underlined nucleotides denotes the change).

The following conditions were used: 958C/60 s followed by

18 cycles of 958C/50 s, 608C/50 s, 688C/8 min and a final

688C/7 min cycle.

Following amplification, the PCR products were DpnI trea-

ted according to the manufacturer’s instructions and used to

transform E. coli XL-10 Gold cells (New England Biolabs, UK).

2.13. Western blot analysis of glycosylated AtaC
Purified AtaC from E. coli DH10b was analysed by western

blotting. Unglycosylated, fully glycosylated and monoglycosy-

lated AtaC were analysed by dot blot by placing a 3 ml drop of a

1 mg ml21 solution of protein or dextran (dextran standard
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MW 1000 from Leuconostoc, Sigma-Aldrich UK) onto a nitro-

cellulose blotting membrane (Amersham Protran, GE

HealthCare, Germany) and allowing to air dry before blocking

the membrane by incubating with phosphate-buffered saline,

2% milk solution for 1 h at room temperature. The membrane

was then probed using a 1 : 1000 dilution of a mouse mono-

clonal antibody raised specifically against a tetrasaccharide of

a1–6 linked glucose (MS a-Dextran Clone Dx1, Stem Cell

Technologies, Canada). An IRDye 680CW goat anti-mouse

antibody at a 1 : 10 000 dilution was used as the secondary anti-

body. The western blot images were visualized using a LI-COR

imaging system.

2.14. Analysis of N-glycans released from AtaC
Glycans were released from 200 mg AtaC using the Ludger

Liberate Hydrazinolysis kit, according to the manufacturer’s

recommendations. The released glycans were fluorescently

labelled with 2-aminobenzamide (2-AB) as described pre-

viously [31]. Excess labelling reagent was removed as

follows: four discs of filter paper (Whatman) were soaked

in 30% acetic acid, inserted into a 1 ml plastic syringe and

washed sequentially with 2 � 1 ml acetic acid, 2 � 1 ml

water, 2 � 1 ml acetonitrile (ACN) and finally 2 � 1 ml 95%

ACN. The labelled glycans were diluted to 500 ml with 95%

ACN and loaded onto the column. Of 500 ml 95% ACN was

used to rinse the labelling tube and was added onto the

column as well. The column was washed with 8 � 1 ml

95% ACN and glycans were finally eluted in 50 ml water

twice. Elution fractions were pooled and passed through a

0.45 mm filter (Ultrafree-MC Durapore HV filter unit, Milli-

pore) before analysis by normal-phase HPLC (Supelcosil

LC-NH2 column, 80–20% ACN gradient over 90 min, fluor-

escence detection at 320 nm excitation and 420 nm emission

wavelength). Glyko 2-AB glucose homopolymer standard

(Prozyme) was used as a reference. The identity of the

labelled glycans was confirmed by MALDI mass spec-

trometry. Samples were mixed 1 : 1 with dihydroxybenzonic

acid matrix (15 mg ml21 in 75% ACN in water with 0.1%

formic acid (FA)), and spotted onto a matrix-assisted laser

desorption/ionization time of flight mass spectrometry

(MALDI-TOF–TOF MS) target plate. Data acquisition was

performed manually on a Model 4800 Proteomics Analyser

(Applied Biosystems, Framingham, MA) with an Nd : YAG

laser, and 1000 shots were accumulated in the reflectron

positive ion mode.

2.15. Nano-LC – ESI – MS/MS analysis of
glycosylated AtaC

For structural analysis, 50 mg of AtaC was reduced, alkylated

and digested with trypsin using the filter-aided sample prep-

aration protocol [32]. Samples were analysed on a calibrated

LTQ-Orbitrap Velos mass spectrometer (Thermo Fischer

Scientific, Bremen, Germany) coupled to an Eksigent-Nano-

HPLC system (Eksigent Technologies, Dublin (CA)). Peptides

were resuspended in 2.5% ACN and 0.1% FA, and loaded on a

self-made tip column (75 mm � 80 mm) packed with reverse

phase C18 material (AQ, 3 mm 200 Å, Bischoff GmbH,

Leonberg, Germany) and eluted with a flow rate of 200 nl

per min by a gradient from 3% to 30% ACN, 0.1% FA in

22 min, 50% ACN, 0.1% FA in 25 min, 97% ACN, 0.1% FA in
27 min. One scan cycle comprised a full-scan MS survey spec-

trum, followed by up to 20 sequential collision-induced

dissociation (CID) MS/MS on the most intense signals above

a threshold of 1500. Full-scan MS spectra (400–2000 m/z)

were acquired in the FT-Orbitrap at a resolution of 60 000 at

400 m/z, whereas CID MS/MS spectra were recorded in the

linear ion trap. CID was performed with a target value of 1e4

in the linear trap, collision energy at 35 V, Q-value at 0.25

and activation time at 30 min. AGC target values were 5e5

for full FTMS scans and 1e4 for ion trap MSn scans. For all

experiments, dynamic exclusion was used with one repeat

count, 15 s repeat duration and 60 s exclusion duration.

2.16. Database analysis and identification of modified
residues

MS and MS/MS data were processed into Mascot generic

format files and searched against the Swissprot database

(version 201402) through the Mascot engine (v. 2.2) with

the consideration of carbamidomethylation at cysteine, oxi-

dation at methionine and N-hexosylation at Asparagine. The

monoisotopic masses of 2 þ or more charged peptides were

searched with a peptide tolerance of 10 ppm and an MS/MS

tolerance of 0.6 Da for fragment ions. Only peptides with a

maximum of two missed cleavage sites were allowed in data-

base searches. Positive identification of hexosylated peptides

was performed by manual inspection of spectra. Peptides

modified with extended glycan chains were investigated

manually, and their corresponding MS/MS spectra were

annotated. Here, XCALIBUR v. 2.2 sp1.48 was used for data pro-

cessing, and MS deconvolution was performed by XtractRaw

file from Thermo Scientific.

2.17. Construction of acceptor protein JC1
Amino acid residues 23–163 of Cj0114 from C. jejuni NCTC

11168 were used as a scaffold to design a novel acceptor

protein. The native signal sequence from residues 1 to 23 was

removed along with the native tetratricopeptide domain

encoded within residues 164–315. Twelve NAT glycosylation

sequons were added at the C-terminus of the new protein,

each separated by a proline and a glycine. Finally, a hexa-

histidine tag was added to the C-terminus to enable protein

purification. This construct was DNA synthesized (Celtek

Genes, USA) and subcloned into BamHI and SphI digested

expression vector pACYC184.
3. Results
3.1. NGT and a6GlcT are required for adhesion

of Actinobacillus pleuropneumoniae HS143 to
A549 cell lines

Within the genome of A. pleuropneumoniae strain HS143, we

identified two ORFs, orthologues of apl_0104 (70% identity,

BlastP) and apl_0443 (82% identity, BlastP) in the L20 genome

[25], coding for autotransporter adhesins. In silico analysis
revealed that these adhesins have 75 and 95 N-X-(S/T)

sequons, respectively (PROGLYCPROT). Naegeli et al. [17] car-

ried out mass spectrometry analysis of A. pleuropneumoniae’s
proteome for strain 4074 serotype 7, and the only
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glycopepetides identified belonged to two autotransporter

adhesins [17], making these two adhesins the only native

substrates for NGT identified so far. In NTHi, deletion of the

N-linked glycosylation system results in a significantly reduced

adherence phenotype [15]. In order to investigate whether this

was the case for A. pleuropneumoniae, adhesion of WT HS143,

isogenic mutants HS143Dngt and HS143Dagt and its comple-

ments to A549 human adenocarcinoma lung epithelial cells

was investigated.

Actinobacillus pleuropneumoniae strain HS143, the wild-

type strain, was found to have a percentage of adherent cells

of 8.55+0.84, n ¼ 78 to A549 cells after 3 h incubation

(figure 2). In order to understand the role of the cytoplasmic

NGT in this adhesion phenotype, an in-frame deletion

mutant of the ngt gene was generated in A. pleuropneumoniae
and found to have a reduced percentage of adherent cells,

2.39+0.25 (n ¼ 78, p , 0.05), when compared with the wild-

type. This phenotype was restored (11.05+1.10, n ¼ 30, p .

0.05) upon complementation with the ngt gene. Furthermore,

when an a6GlcT deletion mutant in A. pleuropneumoniae was

tested for adherence, it was observed that there was a decrease

in adhesion (2.85+0.60, p , 0.05, n ¼ 30) to the same level

as the NGT mutant. However, complementation with the

ORF coding for a6GlcT was unable to rescue this phenotype

(figure 2). Gentamycin treatment of cells confirmed that

the bacterial counts observed were due to adhering and not

invading bacteria.
3.2. Agt is part of a conserved putative operon that
includes ngt and rimO

Unlike NTHi, adjacent to the A. pleuropneumoniae N-linking

transferase gene, ngt, the flanking genes do not encode

an adhesin or a dedicated adhesin transporter (figure 1).

Instead, we identified an ORF coding for a protein

with amino acid similarity to 30S ribosomal protein S12

methylthiotransferase, rimO, upstream of ngt, and a second
glycosyltransferase-encoding gene downstream of ngt. Analy-

sis of all available A. pleuropneumoniae genomes demonstrated

that the genetic arrangement of the locus was absolutely

conserved in all published A. pleuropneumoniae genomes and

over 180 sequenced isolates (J.T.B. 2016, personal com-

munication). Reverse transcriptase-PCR (RT-PCR) was used

to analyse the expression of this locus in serovar 15 A. pleurop-
neumoniae reference strain HS143. Primers were designed

spanning intergenic regions between the three ORFs. Probe 1

tested if an mRNA transcript was generated between rimO
and ngt, and probe 2 tested for the presence of an mRNA tran-

script between ngt and agt. The results suggest that all three

genes form an operon (figure 3a). Further RT-PCR analysis

showed that the promoter driving rimO expression was

independent of the ORF immediately upstream (figure 3b).

Messenger RNA was extracted at different time points

during the growth of A. pleuropneumoniae and cDNA was gen-

erated by RT-PCR using a probe designed within ngt. This

showed that ngt was transcribed at all-time points tested

(electronic supplementary material, figure S1).

3.3. Absolute quantification of rimO, ngt and agt by
qPCR

In order to further validate the hypothesis that rimO, ngt and

agt are co-transcribed, an absolute quantification qPCR was

performed. The results were normalized by the absolute

number of copies of rimO within each sample assuming rimO
is the first ORF in the operon and therefore the closest to the

putative promoter identified by bioinformatics analysis.

A trend was observed in all four biological replicates (n ¼ 12;

4 biologicals, 3 technical replicates) indicating a decrease

in expression level from rimO to agt consistent with the genetic

organization of the putative operon (rimO versus ngt, p , 0.05;

rimO versus agt, p , 0.001; figure 4).

3.4. Reconstruction of the NGT glycosylation operon and
its functional transfer and expression in Escherichia
coli

Following on from the RT-PCR studies indicating that both

agt and ngt were co-transcribed, we amplified by PCR the

two ORFs as a single amplicon and cloned them into the

IPTG-inducible expression vector pEXT20 [33], to generate

the plasmid pJC78. When the ORFs encoding a6GlcT and

NGT were co-expressed with a fragment of an autotrans-

porter adhesin from A. pleuropneumoniae (AtaC), which is a

natural acceptor [17], a reduction in protein migration on

SDS–PAGE was observed, indicating an increase in molecu-

lar weight consistent with the addition of an oligosaccharide

(figure 5).

To further understand the in vivo glycosylation operon,

individual mutations in ngt or agt were constructed within

the plasmid pJC78. NGT activity was abolished by substitut-

ing the conserved lysine residue at position 441 by alanine

(K441A) [18,20], whereas a6GlcT activity was abolished by

the replacement of the leucine codon at amino acid position

7 with a stop codon (L7*). Schwarz et al. [19] indicated that

in vitro, NGT and a6GlcT could assemble a glucose polymer

between two and six residues on an acceptor peptide. We

reasoned therefore that a commercially available antibody
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specific for a1–6 linked glucose tetrasaccharide (isomaltote-

traose) may be able to detect and verify the nature of the

polysaccharide generated by the cloned agt–ngt operon and

of the knockouts. Ni–NTA purified proteins from the three

construct combinations were tested for expression by dot

blot analysis using an anti-dextran monoclonal antibody

(mAb). This showed that a recognizable epitope could only

be generated when NGT and a6GlcT were both functional

(figure 5, top panel). SDS–PAGE and western blot analysis

using an anti-HIS monoclonal antibody showed a smear vis-

ible above the point at which AtaC should migrate, but only

when NGT and a6GlcT are both functional. This smearing

was also detected using the anti-dextran monoclonal
antibody (figure 5f, lane 1). AtaC glycosylated appears to

migrate less than when detected by anti-HIS antibody,

because the anti-dextran antibody will only recognize AtaC

modified with four or more glucoses per site. Removing the

function of NGT yielded an AtaC fragment that migrated

to its unglycosylated location losing the epitope recognized

by the anti-dextran mAb (figure 5e, lane 2). Finally, knocking

out the function of a6GlcT reduced protein migration to a

slightly higher level than that observed with NGT mutation

alone (figure 5e, lane 3). This can be explained by glyco-

sylation with a single hexose at multiple sites within the

acceptor protein. Furthermore, this material was not recog-

nized by anti-dextran mAb, suggesting that glycosylation
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had occurred, but that no polymer had been generated

(figure 5f, lane 3).
3.5. Confirmation of hexose build-up on AtaC
In order to confirm the identity of the observed post-transla-

tional modification of AtaC, the glycans from purified protein

were released by hydrazinolysis, fluorescently labelled with

2-aminobenzamide (2-AB) and analysed by normal-phase

HPLC (figure 6a).

With a labelled dextran ladder used as a reference, this

analysis revealed the presence of glycan chains of varying

lengths (1–27 monosaccharide units). This was further con-

firmed by MALDI-MS analysis. Peaks differing in mass by

162 Da suggested potential for glucose or galactose attach-

ment (figure 6b,c). Therefore, the results from both methods

were in agreement showing a hexose polymer ranging up

to at least 20 units.

To confirm that particular sites on the protein were modi-

fied with these elongated glycans, LC–ESI–MS/MS analysis

of glycosylated AtaC was performed (figure 7 and table 1).

This showed that previously identified glycosylation sites

were occupied [17]. In total, 15 asparagine (Asn) residues

were identified as being modified with glycan chains of vari-

able length. For example, glycopeptide GNLSTAADVTDK

could be detected modified with an N-linked glycan consist-

ing of 1–29 hexose units (table 1). On other sites, only short

glycan chains could be detected, whereas one peptide

(NISTVVK) could only be detected as being modified with
glycan chains of more than 14 hexoses. These results are sum-

marized in table 1 and confirm western blot evidence that

co-expression of NGT and a6GlcT leads to the formation of

Asn-linked, linear hexose chains of up to 29 units in length.
3.6. The ngt/agt operon can be used to modify
alternative substrates with dextran

Following assembly of plasmid pJC78, we began testing if the

ngt/agt operon could be used to make N-linked glucose poly-

mers on non-native substrate proteins in a similar manner to

NGT alone [17]. We selected Cj0114 from the 1-proteobacter-

ium Campylobacter jejuni as a scaffold for designing a new

acceptor protein. The native Cj0114 tetratricopeptide domain

was removed to reduce protein toxicity and simplify purifi-

cation. At the C-terminus of the protein, the 12 added NAT

glycosylation sequons were followed by a hexa-histidine tag

to enable protein purification. The new protein, named JC1,

was constitutively expressed from the plasmid pJC1. Combin-

ing the plasmids pJC1 and pJC78 generated an epitope that

could be recognized by the anti-dextran mouse mAb; this dis-

appeared upon knocking out the function of ngt or agt
(figure 8). The marginally different sizes in the anti-His and

anti-dextran western blot are due to the recognition epitope

for the anti-dextran antibody, where only highly polymerized

proteins are detected (acceptors modified with four or more

glucose residues). These findings indicated that NGT and

a6GlcT can be made to target any protein.
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4. Discussion
Novel bacterial glycosylation systems are regularly being dis-

covered as glycan analyses methodologies improve [34–37].

The functions of these glycosylation systems are yet to be

fully appreciated, but it is now apparent that glycosylation

is a feature common to most bacteria.
In this study, we report the investigation of a cytoplasmic

glycosylation system in a member of the Pasteurellaceae family,

A. pleuropneumoniae. Our results demonstrate that despite simi-

larities between NGT and its orthologue, HMW1C, in NTHi,

the system described here is unique. The A. pleuropneumoniae
N-linking locus consists of two co-transcribed glycosyl-

transferases (ngt and agt) with no associated adhesin or



Table 1. Summary of glycosylation status for each site from AtaC. Underlined letters: in red, N-X-S/T sequons; in blue, asparagine residues found to be
occupied but not part of an N-X-S/T consensus sequon.

tryptic peptide peptide sequence glycan

1 ELNETLTIK Hex1 – 5

2 GNLSTAADVTDK Hex1 – 29

3 VINVAAGDVNANSTDAVNGSQLYAVSEVANK Hex1 – 14

4 GWNIQTNGNDTTNVKPGDTVNFVNGDNIAITNDGTK Hex1 – 15

5 VGDNVSLTK Hex3 – 19

6 GANVTQNLGK Hex1 – 20

7 NISTVVK Hex14 – 20

8 DGSLTIGNTTINSDQVK Hex1 – 22

9 VSGVADGDISPNSTEAINGSQLYDANQNIANYLGGGSK Hex1 – 13

10 VDGNTTTANNVGDAITNLNNEVVKPLTFEGDTGVASK Hex1 – 12

11 TVNANTVNANTVK Hex1 – 6

12 AGQADTDAVNVSQLK Hex1 – 5
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Figure 8. Glycosylation of engineered acceptor protein (JC1) by NGT and
a6GlcT. (a) Amino acid sequence of the new target glycoprotein JC1. High-
lighted in yellow are glycosylation sequons, and in red, the hexa-HIS tag used
for protein purification. (b) Glycosylation of the acceptor protein JC1 with
NGT and a6GlcT. Left panel: anti-histidine tag western blot; right panel,
anti-dextran western blot. Lane 1: JC1 expressed with functional NGT and
a6GlcT; lane 2: JC1 with NGT K441A and a6GlcT; lane 3: JC1 with NGT
but non-functional a6GlcT.
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transporter. Another significant difference between the

A. pleuropneumoniae system and that of NTHi is that the promo-

ter for rimO, upstream of ngt, appears to be responsible for

driving transcription of ngt and agt (figure 3). Recent studies

have shown that in Aggregibacter aphrophilus and Haemophilus
ducreyi [16,21] hmwC is also located downstream of rimO,

although a transcriptional link has yet to be proven [21]. In

E. coli, RimO is an enzyme that catalyses the methylthiolation

of ribosomal subunit S12 at the universally conserved D88

residue. Furthermore, it has been shown that knocking

out rimO in E. coli leads to a growth defect [38,39]. The signifi-

cance of RimO has also been reported in Thermus thermophilus,
where residue D88 cannot be mutated [40], leading to the

conclusion that although methylthiolation is not essential in

every organism, RimO clearly plays an important role in main-

taining bacterial fitness [39]. Our tests indicate that the

A. pleuropneumoniae rimO promoter is active at every time

point tested, suggesting that ngt and agt are constitutively
expressed (electronic supplementary material, figure S1), and

therefore the cytoplasmic N-linking glycosylation system is

always available to modify substrate proteins. Furthermore,

qPCR analysis of the locus indicated transcriptional levels

consistent with an operonic structure, where the highest level

of transcription detected was of rimO, followed by ngt
and agt, respectively (figure 4). This is in agreement with the

findings reported by Lim et al. [41] whereby the expression

level of the genes proximal to the promoter was greater than

the ones farthest from it. Bioinformatic analysis of the DNA

sequence surrounding the putative rimO/ngt/agt operon ident-

ifies a transcriptional promoter just upstream of rimO and a

Rho-independent terminator downstream of agt (electronic sup-

plementary material, figure S2) [42]. Nevertheless, to gain further

insights into the regulation of the locus, other approaches such as

RNAseq could be carried out. Furthermore, in silico analysis of all

publically available genomes and over 180 others (J.T.B. 2016,

personal communication) indicates that the gene order is

absolutely conserved (data not shown).

In this work, we also demonstrate that NGT plays an impor-

tant biological role in the ability of A. pleuropneumoniae to adhere

to A549 human adenocarcinoma lung epithelial cells, which,

although from human origin, are from biologically relevant

tissue. The rationale for using A549 cells, instead of St Jude

Porcine lung (SJPL) cells, which have been widely used to

assess A. pleuropneumoniae adhesion [4,43,44], was that the

SJPL cell line was found to be misclassified, and is simian in

origin [45]. In order to draw absolute conclusions regarding

the role of this N-linked glycosylation system in aiding A. pleur-
opneumoniae pathogenesis in the pig, the adhesion assay data

that obtained in this study could be extended to investigate

other tissues such as ex vivo organ cultures [46] possibly primary

cell cultures from pig lung epithelial cells.

Similarly to our study, a significant reduction in adherence

was reported for E. coli expressing the cloned hmw1 locus from

NTHi when the function of HMW1C (the NGT orthologue)

was removed [15]. The hmw1/hmw2 loci and the ngt operon

differ in that the NTHi loci encode an adhesin and an adhesin

transporter alongside hmwC, whereas the A. pleuropneumoniae
locus encodes an a6GlcT polymerizing glucosyltransferase

(figure 1). Surprisingly, knocking out the function of the
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a6GlcT transferase also resulted in a significant reduction in

adherence comparable to that detected when NGT activity

was abolished. Plasmid-based complementation with agt
only (figure 2) and ngt/agt (data not shown) proved insufficient

to rescue the adhesion phenotype seen with the wild-type.

Our failed attempts to rescue the phenotype suggest a need

for fine transcriptional control of agt levels in the bacterium.

It is possible that, when ngt is being expressed in the chromo-

some and agt is on a plasmid, over-glycosylation of target sites

occurs, resulting in incorrect adhesin structural conforma-

tion. Potentially, this incorrect folding could prevent surface

presentation or adhesin function.

Some of the best-studied examples of glycosylated autotran-

sporter adhesins are O-linked, and found in E. coli. O-linked

glycosyltransferases can glycosylate TibA, Ag43 and AIDA-I

in their passenger domains [47–49]. Bioinformatic analysis

of the autotransporter adhesin used in our study, AtaC from

A. pleuropneumoniae AP76 (GenBank accession number

ACE61172.1), indicated the presence of 72 NX-(S/T) sequons.

The majority of these (59/72) are localized in the passenger

domain of the adhesin, further demonstrating the similarities

with the O-linked counterparts. Whether glycosylation is

required, so that the adhesin assumes the correct conformation

and is not degraded as observed in AIDA-I, or if it is so that the

adhesin can adopt a conformation suited for adhesion as

described in TibA [50], remains to be determined even in

these well-studied proteins.

Our demonstration of glucose polymer assembly within

E. coli cells, when the ngt/agt locus is overexpressed alongside

an acceptor protein (figure 5), led us to investigate if this glycan

could be detected on the surface of A. pleuropneumoniae. Immuno-

fluorescence studies using an anti-dextran antibody that

recognizes isomaltotetraose as a minimum epitope failed to

detect any signal, even in permeabilized cells (data not shown).

This suggests that although the capabilityexists to forma-1,6 glu-

cose chains greater than four subunits heterologously, in

A. pleuropneumoniae the necessary epitope for detection with

anti-dextran antibody does not appear to be formed. Analysis

of the glycosylated peptides generated within E. coli, as deter-

mined by peak quantification of the HPLC chromatogram

(figure 6), revealed a steady decrease in abundance of the oligo-

saccharide with increasing chain length. It was however

noteworthy that the peak corresponding to Glc2-2AB (retention

time: 8.8 min) was considerably smaller than the peaks corre-

sponding to Glc1-2AB and Glc3-2AB, indicating that the

addition of the first a1–6-linked glucose might be considerably

slower than the subsequent transfer reactions. This suggests

that the first a6GlcT-catalysed reaction is, in fact, the rate-limit-

ing step in the biosynthesis of these extended N-glycan chains.

In a review of the HMWC literature, we found instances

where adhesin glycopeptides with dihexose modifications

have been reported, in the absence of a co-localized ORF-like

agt [15,51]. Rempe et al. [21] report dihexose modifications on

four glycopeptides belonging to the autotransporter adhesin

of K. kingae. These raise several possibilities; the first is that the

reported glycopeptides actually contain two individual hexose

attachments and not two hexoses together. Second, it may be

possible that the HmwC from K. kingae is able to catalyse

N-linked attachment and subsequent polymerization. Third,

one cannot rule out there may be another glycosyltransferase

in the genome that is enabling dihexose assembly.

A review of the NGT-specific literature reveals an interest-

ing disparity in the function of this enzyme when tested in vitro
and in vivo. Choi et al. [51] reported that in vitro, NGT is capable

of forming dihexoses. However, this study indicates that

a6GlcT is essential for glycosidic bond formation and exten-

sion of the glucose polymer in vivo. This is in agreement

with a previous study by Naegeli et al., which failed to

detect any polymerization when NGT alone was expressed

in E. coli to glycosylate an acceptor protein [17].

Our finding that a6GlcT function is necessary to maintain

adhesion in A. pleuropneumoniae indicates that this enzyme

must be extending glucose residues at some sites within

the autotransporter adhesins. However, by transferring the

N-linking glycosylation locus into E. coli, we showed that

a6GlcT and NGT are unable to fully complement each other’s

functions. Our study also provides further evidence that

‘orphan’ HMWC family of enzymes that have not evolved to

be co-localized with their target substrate continue to modify

proteins involved in adhesion. It is noteworthy that every bac-

terial species reported thus far with this genetic arrangement

uses the glycosylation system to target autotransporter adhesins

[16,21]. Glycosylation has been linked to protection from proteo-

lytic degradation, correct protein folding and correct transport to

the surface, all of which would have an effect on cell adhesion.

Further studies are ongoing to ascertain the level of interaction

between a6GlcT/NGT and the target protein(s).

By demonstrating how to harness the ngt/agt operon, we

have shown potential for glycoengineering applications,

including the generation of N-linked glucose-based conjugate

vaccines against A. pleuropneumoniae. The genetic conserva-

tion of the ngt operon in A. pleuropneumoniae would favour

the development of a glycoconjugate vaccine against multiple

A. pleuropneumoniae serovars. Other potential applications

include the development of dextran-based conjugates that

may be useful against bacteria such as Helicobacter pylori
[52]. Recently, such conjugates have been shown to be immu-

nogenic, and post-immune sera from rabbits vaccinated with

dextran-based conjugates exhibited activity against strains of

H. pylori that contain a(1–6) glucose as part of their LPS [52].

The field of bacterial glycobiology is burgeoning and

investigations into various glycosylation systems, such as

the NGT/a6GlcT system reported here, help to understand

their functional roles. Our results demonstrate the impor-

tance of genetic and phenotypic screens for investigating

glycosylation systems, and that this data can directly benefit

bacterial glycoengineering.
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