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With the publication of high-quality genome-scale metabolic models

(GSMs) for several organisms, the Systems Biology community has

developed a plethora of algorithms for their analysis making use of

ever-growing omics data (Heirendt et al., 2019). In particular, in

human metabolism, the reconstruction of the first genome-scale

model RECON1 (Duarte et al., 2007) promoted the development of

Context-Specific Model (CS-Model) reconstruction methods

(Opdam et al., 2017). This family of algorithms aims to identify the

catalogue of metabolic reactions involved in a cell in a given condi-

tion using omics data, commonly gene expression levels. CS-Models

are particularly suitable for studying metabolic differences between

human tissues and are widely used in the area of human health

(Uhlen et al., 2016), with applications including the prediction of

metabolic vulnerabilities in cancer (Agren et al., 2014) and the infer-

ence of biomarkers in Alzheimer and diabetes (Geng and Nielsen,

2017), among others. Currently, we have dozens of these CS-

Models available in different public repositories, usually stored

under the Systems Biology Markup Language standard (Hucka

et al., 2003).

An essential component of CS-Model reconstruction algorithms

are gene-protein-reaction (GPR) rules, which include the informa-

tion about how genes relate to protein complexes and isozymes as

well as the reactions they catalyze. GPR rules are expressed in the

form of logical equations and allow us to define active/inactive reac-

tions by mapping expression data onto them. This set of reaction

states is used by reconstruction algorithms to extract the final CS-

Model, which involves the reactions mapped as active plus a small

set of inactive reactions automatically added to fill gaps in the

network (gap-filling reactions). The relevance of GPR rules for CS-

Model reconstruction algorithms can be more clearly observed in

the Supplementary Information, where a general workflow is

depicted.

Different CS-Model reconstruction algorithms have their own

strengths and weaknesses depending on the problem under study

and omics data available. In this direction, Opdam and collabora-

tors performed an extensive benchmark of CS-Model algorithms

and found that no particular method outperforms the others

(Opdam et al., 2017). However, after careful inspection, we found

that all of these algorithms share a common ‘bug’ in the way GPR

rules and gene expression data are treated when reconstructing CS-

Models.

The first issue we encountered is related to how gap-filling reac-

tions are managed in the reconstruction process. Model extraction

algorithms may add reactions classified as inactive to fill gaps in the

CS-Model. Figure 1A represents a toy model with four reactions:

two categorized as active, f1, 4g, and two as inactive, f2, 3g. In this

example, the CS-model includes the active reactions and the reaction

2 for gap filling. Importantly, the decision to include the gap-filling

reaction 2 implies to update our assumption about the state of genes

involved in such reaction, which in this case means to update the

state of gene B to active. In addition, if the state of gene B is updated,

this change must be propagated through the CS-model. Following

the example in Figure 1A, propagating the change on the state of

gene B implies that reaction 3 becomes active and thus it should be

included in the consolidated CS-Model. We found that this consoli-

dation step is not performed by the published CS-Model
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reconstruction algorithms, and that neglecting the GPR consolida-

tion step will worsen the model predictions by overestimating the ef-

fect of gene knockouts.

The second and more striking issue is that the molecular context

used to reconstruct the CS-model is usually not included as part of

the CS-model. If the expression confidences used to infer the reac-

tion states (active/inactive) are left aside after the reaction mapping,

part of the information used to reconstruct the CS-Model is lost

and, therefore, the model formulation will be incomplete. In the ex-

ample of Figure 1B, the enolase reaction was set as active based on

its expression scores and GPR rule. However, if the GPR of enolase

is evaluated without the expression scores, it is not possible to guess

which genes are supporting the enolase activity (in Fig. 1B ENO1).

Moreover, without the information about gene expression, the de-

fault hypothesis will be that all the genes included in the CS-Model

are active. Thus, analyzing a CS-Model without considering the con-

text can affect the predictions. Specifically, we found that this incon-

sistent treatment of the CS-Model leads to under-estimating the

effect of gene knockouts. This can be observed in Figure 1B, where

the deletion of ENO1 should lead to disrupt the enolase reaction

and this is not the case if the context is not taken into account.

In order to evaluate the effect of this flaw, we reconstructed

�400 CS-Models for cell lines from the Cancer Cell Line

Encyclopedia (Barretina et al., 2012) and conducted a gene essential-

ity analysis. The CS-Models were reconstructed using Gene

Expression Barcode to classify genes as active/inactive (McCall

et al., 2014), Recon3D as the reference model (Brunk et al., 2018)

and GIMME as the extraction algorithm (Becker and Palsson,

2008). We amended the output of GIMME to account for the issues

discussed above, using a simple and effective approach, which is

fully detailed in the Supplementary Information. Summarizing the

results over all the cell lines, our approach found 3160 essential

genes not predicted by standard GIMME (�8 per model) and dis-

carded 1061 essential genes predicted by standard GIMME (�2.5

per model) (Supplementary Fig. S1). These results clearly indicate

that ignoring the molecular context has drastic effects on the in-

silico predictions.

To validate these results, for each cell line we gathered CRISPR–

Cas9 essentiality data from DepMap (Tsherniak et al., 2017)

corrected using CERES essentiality score (Meyers et al., 2017).

Figure 1C shows the CERES scores’ probability distributions for

the aforementioned 3160 non-essential genes becoming essential

(orange curve) and 1061 essential genes becoming non-essential

when GIMME considered context (blue curve). This same result is

shown in Supplementary Figure S2 using absolute frequencies

instead of probability density. As expected, the first group is signifi-

cantly enriched in DepMap essential genes (one tailed Mann-

Whitney test p-value ¼ 9.96�10-41), demonstrating the practical

importance of the correct treatment of GPR rules and molecular

context. The same analysis was performed with other model

extraction methods, i.e. FastGapFill (Thiele et al., 2014) and

FASTCORMICS (Pacheco et al., 2015) finding similar results

(Supplementary Fig. S3).

Altogether, our results illustrate the importance of the errors

introduced during the GPR translation in many of the published

metabolic reconstructions. It is worth to note that, despite the

main results were obtained using a particular gene expression

thresholding, the problem of the inconsistent treatment of GPR

rules is independent of the gene expression thresholding approach.

To overcome this issue, we advocate for a strict control of the spe-

cific molecular context during the translation of the GPR rules to

CS-Models. To that end, the existing CS-Model reconstruction

algorithms and storage standards should be modified to be GPR

consistent and provide the molecular context. Here, we showed

the positive results in the performance of GIMME when this limi-

tation was corrected and similar results are expected with other

algorithms.
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Fig. 1. Identified errors in context-specific metabolic model reconstruction.

(A) Illustration of the consequences of not managing the gap-filling reactions

properly. (B) Illustration of the consequences of not taking the molecular con-

text into account. (C) The probability distribution of CERES essentiality scores

(Meyers et al., 2017) for recovered essential (orange) and non-essential (blue)

genes. The recovered essential genes are those genes which are predicted

non-essential by standard GIMME (Becker and Palsson, 2008) but essential

when the errors in (A) and (B) are amended. The recovered non-essential

genes are those genes which are predicted essential by standard GIMME

(Becker and Palsson, 2008) but non-essential when the errors in (A) and (B)

are amended. Red and green coloring refers to inactive and active genes, re-

spectively. The green arrows correspond to active reactions, the red arrow

refers to an inactive reaction which has been selected as gap-filling and the

gray arrow corresponds to an inactive reaction which has not been selected

as gap-filling
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