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Abstract: Poly(vinyl chloride) degrades when exposed to ultraviolet light for long durations; there-
fore, the photostability of polymeric materials should be enhanced through the application of addi-
tives. New organotin complexes containing 4-aminonaphthalene-1-sulfonic acid were synthesized
and their role as poly(vinyl chloride) photostabilizers were evaluated. The reaction of 4-amino-3-
hydroxynaphthalene-1-sulfonic acid and appropriate di- or trisubstituted tin chloride (triphenyltin
chloride, tributyltin chloride, dibutyltin dichloride, and dimethyltin dichloride) in methanol under
reflux gave the corresponding tin-naphthalene complexes with yields of 75%–95%. Elemental analy-
ses and spectroscopic techniques including infrared and nuclear magnetic resonance (proton and
tin) were used to confirm their structures. The tin complexes were added to poly(vinyl chloride) to
produce thin films that irradiated with ultraviolet light. Various parameters were assessed, such as
the weight loss, formation of specific functional groups, changes in the surface due to photoirradia-
tion, and rate constant of photodegradation, to test the role played by the organotin complexes to
reduce photodegradation in polymeric films. The results proved that organotin complexes acted as
photostabilizers in these circumstances. The weight loss, formation of fragments containing specific
functional groups, and undesirable changes in the surface of polymeric films were limited in the
presence of organotin complexes. Organotin complexes containing three phenyl groups showed the
most desirable stabilization effect. These act as efficient primary and secondary photostabilizers, and
as decomposers for peroxides. In addition, such an additive inhibits the dehydrochlorination process,
which is the main cause of poly(vinyl chloride) photodegradation.

Keywords: poly(vinyl chloride); tin-naphthalene sulfonic acid complexes; photostabilizers; weight
loss; ultraviolet irradiation; thin films; surface morphology; photodegradation

1. Introduction

Plastics are large molecular mass polymers that have very useful properties that
enable their adaptation to various applications. They are strong, durable, stable, can be
molded at a high temperature, and can resist fire, weather, and chemicals [1,2]. Plastics
can be used in sports and medical equipment, construction, automotive manufacturing,
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electronics, toys, packaging, bottles, containers, and plastic bags. Poly(vinyl chloride)
(PVC) is a common thermoplastic polymer that is commonly produced on a commercial
scale [3]. In terms of production and consumption, PVC is second to polyolefins due to its
unique properties and low production cost [4]. PVC is produced in various forms mainly
as a flexible (plasticized with a low degree of crystallinity) or rigid (non-plasticized with
a high degree of crystallinity) material [5]. It has unique properties; however, it suffers
from weathering due to long term exposure to ultraviolet (UV) light, humidity, and high
temperatures (above 100 ◦C) [6,7]. It is considered that UV light is the main cause of
PVC photodegradation. The mechanism by which PVC photodegradation takes place is
not well documented and various speculations have been made [8,9]. The photodegrada-
tion of PVC leads to the formation of small polyene fragments, a decrease in molecular
mass, a reduction in durability and strength, cracks, discoloration, and loss of mechanical
properties [10–12]. Various additives have been added to PVC to increase its photostability
and life time. These PVC additives mainly act as UV absorbers, radical decomposers, and
energy quenchers [13,14]. Therefore, suitable photostabilizers should be mixed with PVC to
prevent its decomposition and photooxidation. Such additives can preserve the mechanical
and physical properties of PVC for a long time. These additives should be safe to use, not
alter the color, blend well with the polymer, and be non-toxic and non-volatile. Recent
research has concentrated on the development and use of new inexpensive PVC photosta-
bilizers that contain aromatic moieties at a low concentration [15,16]. The most common
PVC additives include Schiff bases containing aromatic moieties such as thiophene [17],
1,2,4-triazole [18], thiadiazole [19,20], and 4H-1,2,4-triazole-3-thiol [21]. They also include
pigments [14], titanium dioxide [22,23], zinc oxide [24], polyphosphates [25], and polyben-
zimidazoles [26].

Organotin compounds are chemically and physically stable, and have been used
in various pharmaceutical and medicinal applications [27]. For example, they act as
antivirals against cancer [28], inflammatory agents [29], antimicrobials [30], and anti-
antitubercular agents [31]. In addition, they can be used as preservatives for wood, biocides,
and catalysts [32,33]. Organotin compound performance was found to be dependent on the
substituents attached to the tin in terms of their types (aliphatic, aromatic, or heterocyclic)
and number [34]. Recently, we investigated the role played by tin complexes of mefenamic
acid [35], carvedilol [36], and sodium fusidate [37] as PVC photostabilizers. In the current
research, we report the design, synthesis, and use of new tin complexes of 4-amino-3-
hydroxynaphthalene-1-sulfonic acid as additives for PVC to reduce its photooxidation and
photodegradation. These complexes are expected to work as efficient PVC photostabilizers
compared with those reported because they are highly aromatic (e.g., naphthalene ring)
and contain heteroatoms such as nitrogen, oxygen, and sulfur.

2. Results and Discussion
2.1. Synthesis of Tin-Naphthalene Sulfonic Acid Complexes 1–4

Four substituted tin-naphthalene sulfonic acid complexes were synthesized in high
yields using a simple procedure. Reaction of a 1:1 mixture of 4-amino-3-hydroxynaphthalene-
1-sulfonic acid (ligand) and triphenyl- and tributyltin chlorides in refluxing methanol
(MeOH) for 4 h resulted in the corresponding trisubstituted tin complexes 1 and 2 with
65% and 70% yields, respectively (Scheme 1). Similarly, the reaction of the ligand (two
mole equivalents) and dibutyl- and dimethyltin dichlorides resulted in disubstituted tin
complexes 3 and 4 with 95% and 89% yields, respectively (Scheme 2). The yields (%),
color, and melting points (MPs) of tin-naphthalene sulfonic acid 1–4 are reported in Table 1.
The purity of materials was established by the determination of the content (%) of carbon,
hydrogen, sulfur, and nitrogen (Table 1).
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Table 1. Physical properties of tin-naphthalene sulfonic acid complexes 1–4. 

Complex Color Yield (%) MP (°C) 
Elemental Analysis (%) Calculated (Found) 

C H N S 
1 Pale pink 75 213–215 57.17 (56.95) 3.94 (4.02) 2.38 (2.26) 5.45 (5.61) 
2 Pale purple 70 150–152 50.02 (50.16) 6.68 (6.61) 2.65 (3.72) 6.07 (6.27) 
3 Dark gray 95 166–167 47.40 (47.62) 4.83 (4.87) 3.95 (4.77) 9.04 (9.11) 
4 Pale purple 89 243–245 42.26 (42.37) 3.55 (4.72) 4.48 (4.68) 10.26 (10.33) 

2.2. IR Spectroscopy of Tin-Naphthalene Sulfonic Acid Complexes 1–4 
The infrared (IR) spectra of 1–4 have distinguished bands that appeared within the 

regions of 3240–3314 cm−1, 1597–1611 cm−1, and 1526–15301 cm−1, which are related to the 
vibrations of the NH2, C–N, and C–O groups, respectively (Table 2). The high shift seen 
in the wave length of the vibrations of these groups compared with those for the ligand 
proved that the complexation between the ligand and tin had taken place [38]. In addi-
tion, the disappearance of the stretching vibration of the O–H group in the tin complexes, 
which appeared at 3442 cm–1 for the ligand, provides further evidence of the complexa-
tion. New bands corresponding to the stretching vibrations of the Sn–C (515–518 cm−1) 
and Sn–O (455–518 cm−1) were seen in the IR spectra of 1–4. The assignments of these 
peaks were consistent with those reported for related compounds [39,40]. No shift was 
seen in the symmetric and asymmetric vibrations of the SO2 group in complexes 1–4 
compared with those for the ligand. 

Table 2. IR spectral data of tin-naphthalene sulfonic acid complexes 1–4. 

Complex NH2 C–N C–O Sn–C Sn–O 
1 3244 1608 1528 517 455 
2 3314 1611 1526 518 457 
3 3240 1597 1530 515 468 
4 3246 1611 1528 515 472 

Scheme 1. Synthesis of tri-substituted tin-naphthalene sulfonic acid complexes 1 and 2.
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Table 1. Physical properties of tin-naphthalene sulfonic acid complexes 1–4.

Complex Color Yield (%) MP (◦C)
Elemental Analysis (%) Calculated (Found)

C H N S

1 Pale pink 75 213–215 57.17 (56.95) 3.94 (4.02) 2.38 (2.26) 5.45 (5.61)
2 Pale purple 70 150–152 50.02 (50.16) 6.68 (6.61) 2.65 (3.72) 6.07 (6.27)
3 Dark gray 95 166–167 47.40 (47.62) 4.83 (4.87) 3.95 (4.77) 9.04 (9.11)
4 Pale purple 89 243–245 42.26 (42.37) 3.55 (4.72) 4.48 (4.68) 10.26 (10.33)

2.2. IR Spectroscopy of Tin-Naphthalene Sulfonic Acid Complexes 1–4

The infrared (IR) spectra of 1–4 have distinguished bands that appeared within the
regions of 3240–3314 cm−1, 1597–1611 cm−1, and 1526–15301 cm−1, which are related to
the vibrations of the NH2, C–N, and C–O groups, respectively (Table 2). The high shift seen
in the wave length of the vibrations of these groups compared with those for the ligand
proved that the complexation between the ligand and tin had taken place [38]. In addition,
the disappearance of the stretching vibration of the O–H group in the tin complexes, which
appeared at 3442 cm−1 for the ligand, provides further evidence of the complexation. New
bands corresponding to the stretching vibrations of the Sn–C (515–518 cm−1) and Sn–O
(455–518 cm−1) were seen in the IR spectra of 1–4. The assignments of these peaks were
consistent with those reported for related compounds [39,40]. No shift was seen in the
symmetric and asymmetric vibrations of the SO2 group in complexes 1–4 compared with
those for the ligand.
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Table 2. IR spectral data of tin-naphthalene sulfonic acid complexes 1–4.

Complex NH2 C–N C–O Sn–C Sn–O

1 3244 1608 1528 517 455
2 3314 1611 1526 518 457
3 3240 1597 1530 515 468
4 3246 1611 1528 515 472

2.3. NMR Spectroscopy of Tin-Naphthalene Sulfonic Acid Complexes 1–4

The 1 H and 119 Sn NMR spectral data of tin-naphthalene sulfonic acid complexes
1–4 confirmed their structures (Table 3). The 1 H NMR spectra showed the presence of
two exchangeable broad singlets that appeared within the regions of 11.01–11.06 ppm
and 9.78–9.84 ppm corresponding to the SO3H and NH2 protons, respectively. They also
showed the presence of protons corresponding to naphthyl and substituent groups. The
119 Sn NMR spectra showed the presence of a singlet that appeared at the −167.0 ppm to
the −274.1 ppm region. The chemical shifts for the tin atom indicated that the coordination
number for the complexes 1 and 2 is five, whereas complexes 3 and 4 have a coordination
number of six [41–43].

Table 3. 1 H and 119 Sn NMR spectral data (DMSO-d6; ppm, Hz) of tin-naphthalene sulfonic acid complexes 1–4.

Complex 1 H 119 Sn

1 11.04 (1H, exch., s, SO3H), 9.78 (2H, exch., br s, NH2), 8.81 (1H, d, J = 8.1 Hz,
Ar), 7.92 (1H, d, J = 8.1 Hz, Ar), 7.88 (1H, s, Ar), 7.58–7.37 (17H, m, Ar) −174.0

2

11.06 (1H, s, SO3H), 9.84 (2H, exch., br s, NH2), 8.80 (1H, d, J = 8.0 Hz, Ar),
7.89–7.84 (2H, m, Ar), 7.59 (1H, app. t, J = 8.0 Hz, Ar), 7.42 (1H, app. t,

J = 8.0 Hz, Ar), 1.62–1.59 (6H, t, J = 7.6 Hz, 3 CH2) 1.34–1.29 (6H, m, 3 CH2),
1.14–1.1 (6H, m, 3 CH2), 0.88 (9H, t, J = 7.6 Hz, 3 Me)

−167.0

3

11.01 (2H, s, 2 SO3H), 9.80 (4H, exch., br s, 2 NH2), 8.77 (2H, d, J = 8.2 Hz, Ar),
7.83–7.65 (4H, m, Ar), 7.42 (2H, app. t, J = 8.2 Hz, Ar), 7.28 (2H, app. t, J = 8.2
Hz, Ar), 1.62–1.54 (4H, t, J = 7.5 Hz, 2 CH2) 1.46–1.23 (8H, m, 4 CH2), 0.82 (6H,

t, J = 7.5 Hz, 2 Me)

−274.1

4
11.03 (2H, s, 2 SO3H), 9.74 (4H, exch., br s, 2 NH2), 8.81 (2H, d, J = 8.0 Hz, Ar),

7.90–7.85 (4H, m, Ar), 7.58 (2H, app. t, J = 8.0 Hz, Ar), 7.41 (2H, app. t,
J = 8.0 Hz, Ar), 0.69 (6H, s, 2 Me)

−242.5

2.4. Weight Loss of PVC

Photooxidation, thermal decomposition, and photodegradation of PVC leads to hy-
drogen chloride (HCL) release and formation of polymeric chains containing double bonds
(polyenes). The UV light absorption by PVC increases as more double bonds form (conju-
gated polyenes), leading to bond cleavage and formation of unsaturated fragments with a
low molecular weight [44,45]. In addition, PVC develops discoloration, crosslinking, and
scissions over time. The PVC mass loss becomes more noticeable as photodegradation
proceeds. Therefore, the PVC photodegradation can be simply and efficiently assessed
by measuring the mass loss. The PVC mass loss is the difference between the weight of
non-irradiated (W1) and irritated (W2) film after a specific irradiation time. Complexes
1–4 were added to PVC at a concentration of 0.05% by weight and thin films (40 µm)
were produced. Such a concentration has been proven to be optimal to provide the most
PVC protection without altering the color [17,46]. The blank and blended PVC films were
irradiated (50 to 300 h) at room temperature, and the weight loss (%) of materials due to
photodegradation was measured for different irradiation times using Equation (1). The
results obtained are plotted and presented in Figure 1.

Weight loss (%) = [(W1 −W2)/W1 × 100 (1)
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Figure 1. Effect of UV irradiation time on weight loss % of PVC films.

Figure 1 shows that tin-naphthalene complexes 1–4 played a role in reducing the PVC
weight loss due to UV irradiation. The weight loss (%) after 50 h of irradiation was 0.312 for
the blank film compared with 0.112 to 0.204 in the presence of tin-naphthalene complexes
1–4. After 300 h of irradiation, the weight loss (%) for the blank PVC film was higher (0.523)
than those obtained in the presence of the complexes used (0.273–0.341). The lowest weight
loss (%) was seen for PVC + 1 (0.273) followed by PVC + 2 (0.297), PVC + 3 (0.341), and
PVC + 4 (0.367). It was clear that complex 1 was the most efficient PVC stabilizer due to its
high degree of aromaticity (three phenyl groups). Aromatic rings and heteroatoms (sulfur,
nitrogen, and oxygen) stabilized PVC through direct absorption of light or coordination
with polymeric chains.

2.5. IR Spectroscopy of PVC

Irradiation of PVC with UV light leads to the formation of free radicals (e.g., Cl,
–CH2–CH– radicals) [17,47]. These radicals are responsible for the formation of small
polymeric fragments that contain double bonds (alkene, –CH=CH–). In the presence
of oxygen, other fragments that contain carbonyl groups (e.g., ketone, –CH2–CO–) and
hydroxyl residues (e.g., alcohol, –CH2–CHOH–) are produced. The use of IR spectroscopy
can provide evidence about the growth in the intensity of peaks corresponding to the OH
(3500 cm−1), C=O (1722 cm−1), and C=C (1602 cm−1) functional groups [48–50]. Therefore,
the blank and blended PVC films were irradiated for different durations that ranged from
50 to 300 h. The IR spectra were recorded and the increase in the intensity of the peaks
corresponding to hydroxyl, carbonyl, and alkene groups was measured. The IR spectra of
pure PVC film before and after irradiation (300 h) are shown in Figure 2. The index for each
functional group (Is) was calculated from the absorption of its peak (As) and absorption
of a reference peak (Ar) using Equation (2) [51]. The reference peak corresponds to the
–CH– bond (1328 cm−1) in PVC. The intensity of such a peak does not change during the
irradiation process. The IOH, IC=O, and IC=C were calculated every 50 h, and the results
obtained are shown in Figures 3–5, respectively.

Is = As/Ar (2)



Molecules 2021, 26, 3629 6 of 17

Molecules 2021, 26, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. IR spectra of pure PVC film before and after irradiation. 

Figures 3–5 show a significant increase in the IOH, IC=O, and IC=C as irradiation 
time increased. The growth in functional group indices was very rapid in the first 50 h. 
The changes were smaller when PVC was blended with tin-naphthalene complexes 
compared with those obtained for the blank film. Again, the highly aromatic additive (i.e., 
complex 1) was the most efficient PVC stabilizer. For example, the IC=C for the blank PVC 
was 0.331 compared with 0.177 for the film containing 1 at the end of the irradiation process. 
Such a result indicated clearly that the used complexes acted as efficient stabilizers for PVC 
and significantly reduced the elimination of HCl. Similarly, the IOH and IC=CO for the blank 
PVC was 0.236 and 0.421, respectively, compared with 0.106 and 0.214 for the blend con-
taining 1. The IOH and IC=CO patterns indicated that tin-naphthalene complexes are also 
able to reduce the photooxidation of PVC films upon irradiation. 

Figure 2. IR spectra of pure PVC film before and after irradiation.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Effect of UV irradiation time on the IOH of PVC films. 

 
Figure 4. Effect of UV irradiation time on the IC=O of PVC films. 

Figure 3. Effect of UV irradiation time on the IOH of PVC films.



Molecules 2021, 26, 3629 7 of 17

Molecules 2021, 26, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Effect of UV irradiation time on the IOH of PVC films. 

 
Figure 4. Effect of UV irradiation time on the IC=O of PVC films. Figure 4. Effect of UV irradiation time on the IC=O of PVC films.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Effect of UV irradiation time on the IC=C of PVC films. 

2.6. Surface Morphology of PVC 
The role played by tin-naphthalene complexes 1–4 as stabilizers for PVC was inves-

tigated by examining the surface morphology of the irradiated films using optical mi-
croscopy. Optical microscopic images show any irregularities and roughness within the 
surface of PVC due to the release of HCl [52]. Figure 6 shows the optical images for the 
surface of irradiated and non-irradiated PVC (blank), and Figure 7 shows the optical 
images for the surface of PVC blended with tin-naphthalene complexes after irradiation. 
The irradiated PVC films showed rigid surfaces that contain a high number of cracks, 
white spots, and holes. For the PVC blended with tin-naphthalene complexes, the dam-
age within the surface was less noticeable compared with that of the blank film. The 
tin-naphthalene complexes have the ability to act as scavengers for HCl and therefore 
reduce its negative effect on the PVC surface. 

 
Figure 6. Optical microscopic images of PVC (blank) film: (a) before irradiation and (b) after irradiation. 

Figure 5. Effect of UV irradiation time on the IC=C of PVC films.

Figures 3–5 show a significant increase in the IOH, IC=O, and IC=C as irradiation
time increased. The growth in functional group indices was very rapid in the first 50 h. The
changes were smaller when PVC was blended with tin-naphthalene complexes compared
with those obtained for the blank film. Again, the highly aromatic additive (i.e., complex 1)
was the most efficient PVC stabilizer. For example, the IC=C for the blank PVC was 0.331
compared with 0.177 for the film containing 1 at the end of the irradiation process. Such
a result indicated clearly that the used complexes acted as efficient stabilizers for PVC
and significantly reduced the elimination of HCl. Similarly, the IOH and IC=CO for the
blank PVC was 0.236 and 0.421, respectively, compared with 0.106 and 0.214 for the blend



Molecules 2021, 26, 3629 8 of 17

containing 1. The IOH and IC=CO patterns indicated that tin-naphthalene complexes are
also able to reduce the photooxidation of PVC films upon irradiation.

2.6. Surface Morphology of PVC

The role played by tin-naphthalene complexes 1–4 as stabilizers for PVC was in-
vestigated by examining the surface morphology of the irradiated films using optical
microscopy. Optical microscopic images show any irregularities and roughness within
the surface of PVC due to the release of HCl [52]. Figure 6 shows the optical images for
the surface of irradiated and non-irradiated PVC (blank), and Figure 7 shows the optical
images for the surface of PVC blended with tin-naphthalene complexes after irradiation.
The irradiated PVC films showed rigid surfaces that contain a high number of cracks, white
spots, and holes. For the PVC blended with tin-naphthalene complexes, the damage within
the surface was less noticeable compared with that of the blank film. The tin-naphthalene
complexes have the ability to act as scavengers for HCl and therefore reduce its negative
effect on the PVC surface.
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Scanning electron microscopy (SEM) was used to investigate the variations that oc-
curred within the surface of irradiated PVC [53]. The SEM images for the blank PVC films
before and after irradiation are shown in Figure 8, whereas those blended with complexes
1–4 are shown in Figure 9. The surface of the PVC films was badly damaged in the case
in which no additives were used. However, the surface defects were minimal within
the surface of the blended PVC films, which reflects the role played by tin complexes in
reducing photodegradation. The defects that appeared within the surface of the films are
mainly a result of the elimination of volatiles (e.g., HCl) and the cross-linking of chains.
The surface of the PVC + 1 (Figure 9) was more or less smooth and regular, with a small
number of cavities. The SEM images of the PVC films containing complexes 2–4 showed a
regular particle aggregation. The pores within the surface were hexagonal and appeared as
honeycomb like-structures, particularly in the presence of complex 4 (Figure 10). A similar
phenomenon was observed for the irradiated PVC blended with a dithiazole Schiff base in
the presence of nickel chloride [20]. The formation of the honeycomb structure could be
due the slow dehydrochlorination process and the coordination of the additives with the
polymeric chains [54]. By comparison, the irradiated PVC containing a melamine Schiff
base showed an ice-rock structure [35].
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The surface of the irradiated PVC blends was also investigated using atomic force
microscopy (AFM). The AFM images show the smoothness and homogeneity of the sur-
face without the need for a vacuum or electron beams [55]. Normally non-irradiated
materials showed a surface with a high smoothness and homogeneity when inspected
with AFM [56,57]. The AFM images (two- and three-dimensional) of the irradiated PVC
films (300 h) are shown in Figure 11. These images indicate that the surface of the PVC
blended with tin-naphthalene sulfonic acid complexes has a smoother and regular surface
in comparison to the PVC (blank) film.

The roughness factor (Rq) was very high (220) for the irradiated blank PVC film. The
PVC films blended with tin complexes have a much lower Rq compared with the blank
one after irradiation. The Rq was 3.7 for PVC + 1, 10.3 for PVC + 2, 11.4 for PVC + 3,
and 12.6 PVC + 4 films. Such a low Rq for the blended films indicated that tin complexes
significantly reduced the bond breaking [58] and dehydrochlorination [59] of PVC. The
use of complex 1 led to a reduction in the Rq by 59.5-fold, which is the highest ever
reported. For example, the fold-reduction in Rq of the irradiated PVC films was 5.2 over
tin-naproxen complexes [60], 6.2 over tin-2-(4-isobutylphenyl)propanoate complexes [61],
6.6 over tin-furosemide complexes [62], 9.4 over tin-telmisartan complexes [63], and 16.6
over tin-ciprofloxacin complexes [64]. The use of Schiff bases led to a reasonable reduction
(3.3–6.0) in the Rq [65–67], whereas polyphosphate containing benzidine caused a reduction
in Rq by 16.7-fold [68]. The reductions obtained in Rq (by fold) of irradiated PVC in the
presence of various photostabilizers are summarized in Table 4.
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Table 4. The effect of various additives on the Rq of PVC films.

PVC Additive Rq Reduction in Fold Reference

Tin-naphthalene sulfonic acid complexes 59.5 Current work
Tin-naproxen complexes 5.2 [57]

Tin-2-(4-isobutylphenyl)propanoate complexes 6.2 [58]
Tin-furosemide complexes 6.6 [59]
Tin-telmisartan complexes 9.4 [60]

Tin-ciprofloxacin complexes 16.6 [61]
Schiff bases of 1,2,3,4-triazole-3-thiol 3.3 [62]

Schiff bases of biphenyl-3,3′,4,4′-tetraamine 3.6 [63]
Schiff bases of melamine 6.0 [64]

Polyphosphate containing benzidine 16.7 [65]

2.7. Rate Constant of PVC Photodegradation

The efficiency of tin-naphthalene complexes 1–4 as PVC photostabilizers was tested
further through the determination of the rate constant of photodegradation (Kd).

As shown in Table 5, the Kd value was highest (9.80 × 10−3 s−1) for the blank PVC
film and lowest for the blend containing complex 1 (3.16 × 10−3 s−1). Clearly, the rate of
photodegradation for the blank PVC was three times higher compared with the film con-
taining 1. All other complexes showed a significant reduction in Kd (7.50–4.28 × 10−3 s−1)
compared with that for the blank film. These results are consistent with those obtained
from infrared, weight loss, specific functional groups’ formation, and surface morphology.
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Table 5. Rate constant of photodegradation (Kd) of PVC films.

PVC Film Rate Constant of PVC Photodegradation (Kd; s−1)

PVC (blank) 9.80 × 10−3

PVC + 1 3.16 × 10−3

PVC + 2 4.28 × 10−3

PVC + 3 6.30 × 10−3

PVC + 4 7.50 × 10−3

2.8. Suggested Mechanisms for PVC Photostabilization

Tin-naphthalene complexes 1–4 provided protection for PVC and reduced its photoox-
idation and photodegradation, in which 1 provided the greatest effect. Several mechanisms
are proposed to highlight the role played by the complexes (particularly 1) as stabilizers for
PVC (Figures 12–14). Complexes 1–4 contain an acidic center (tin atom) and therefore act
as HCl scavengers (Figure 12) to produce substituted tin chloride along with the liberation
of the ligand. The PVC photostabilization mechanisms are speculative based on scientific
logic and previous reports [17,36]. However, it should be noted that the action of these
additives within macromolecules or polymeric networks might be complex, and thus not
simple or straightforward.
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The additives used, and in particular complex 1, act through scavenging peroxide
radicals (Figure 13), which are produced due to degradation of PVC in the presence of
oxygen. The excited state containing additives and peroxide radicals (chromophore) is
highly stable due to resonance. Additionally, the coordination between additives and PVC
can stabilize the polymeric chain (Figure 14).
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3. Materials and Methods
3.1. Materials and Instrumentation

Chemicals and solvents were purchased from Merck (Schnelldorf, Germany). PVC
with an average molecular weight of approximately 250,000 was purchased from Petkim
Petrokimya (Istanbul, Turkey). A Vario EL III elemental analyzer (Elementar Americas
Inc., Ronkonkoma, NY, USA) was used to determine the contents of carbon, hydrogen,
nitrogen, and sulfur in the complexes. An FTIR-4200 spectrometer (Jasco, Tokyo, Japan)
was used for recording the infrared spectra using a potassium bromide disc. The 1 H and
119 Sn NMR spectra were recorded on a Bruker DRX500 spectrometer (Zürich, Switzerland)
in dimethyl sulfoxide (deuterated) at 500 and 149 MHz, respectively. The weathering tests
were performed at room temperature on a Q-Panel tester (Homestead, FL, USA) and the
surface morphology was examined using Inspect S50 (FEI Company, Czech Republic),
KYKY-EM3200 (Ontario, CA, USA), and Meiji Techno (Tokyo, Japan) microscopes.

3.2. Synthesis of Trisubstituted Tin-Naphthalene Sulfonic acid Complexes 1 and 2

A stirred mixture of 4-amino-3-hydroxynaphthalene-1-sulfonic acid (1.20 g, 5 mmol)
and triphenyltin chloride (1.93 g, 5 mmol) or tributyltin chloride (1.63 g, 5 mmol) in MeOH
(60 mL) was refluxed for 4 h. The mixture was left at room temperature to cool down, and
the solid produced was filtered, washed with MeOH, and dried to give complex 1 or 2
(Scheme 1) with a 75% or 70% yield respectively (Table 1).

3.3. Synthesis of Disubstituted Tin-Naphthalene Sulfonic acid Complexes 3 and 4

A stirred mixture of 4-amino-3-hydroxynaphthalene-1-sulfonic acid (1.43 g, 6 mmol)
and dibutyltin dichloride (091 g, 2.5 mmol) or dimethyltin dichloride (0.66 g, 3 mmol) in
MeOH (40 mL) was refluxed for 4 h. The mixture was left at room temperature to cool
down and the solid produced was filtered, washed with MeOH, and dried to produce
complex 3 or 4 (Scheme 2) with a 95% or 89% yield respectively (Table 1).

3.4. Preparation of PVC Films

The PVC films were prepared using the casting solution technique. To a stirred
solution of PVC (5 g) in tetrahydrofuran (THF; 100 mL), tin complex (25 mg) was added.
The solution was stirred for three hours then poured into a glass plate that contained
15 holes with a thickness of approximately 40 µm. The produced films were left to dry
for a day at room temperature followed by eight hours at a reduced pressure using a
vacuum oven.
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3.5. Exposure to UV Light

The PVC films were exposed to UV light (365 nm) with a light intensity of 6.2 × 10−9

ein dm−3 s−1 nm for a period of time that ranged from 50 to 300 h at room temperature.

4. Conclusions

Four new tin-naphthalene sulfonic acid complexes were synthesized in good yields
and their structures were elucidated. The tin complexes were added to PVC as additives
and thin films were made. The tin complexes acted as photostabilizers for PVC upon the
exposure to ultraviolet light for a long period of time. Various tools such as infrared analysis,
weight loss, specific functional groups’ formation, surface morphology, and rate constant
of photodegradation were used to test the effectiveness of the additives as photostabilizers.
The complexes significantly reduced photodegradation and photooxidation of PVC by
acting as peroxide decomposers, hydrogen chloride scavengers, and energy absorbers.
In addition, the roughness factor of the surface for the irradiated films containing tin
complexes was very low. The highly aromatic complex, which contains three phenyl
substituents, showed the most stabilizing effect through efficient absorption of light energy.
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52. Valko, L.; Klein, E.; Kovařík, P.; Bleha, T.; Šimon, P. Kinetic study of thermal dehydrochlorination of poly(vinyl chloride) in the
presence of oxygen: III. Statistical thermodynamic interpretation of the oxygen catalytic activity. Eur. Polym. J. 2001, 37, 1123–1132.
[CrossRef]

53. Mehmood, N.; Andreasson, E.; Kao-Walter, S. SEM observations of a metal foil laminated with a polymer film. Procedia Mater. Sci.
2014, 3, 1435–1440. [CrossRef]

54. Huh, M.; Gauthier, M.; Yun, S. Honeycomb structured porous films prepared from arborescent graft polystyrenes via the breath
figures method. Polymer 2016, 107, 273–281. [CrossRef]

55. Kara, F.; Aksoy, E.A.; Yuksekdag, Z.; Hasirci, N.; Aksoy, S. Synthesis and surface modification of polyurethanes with chitosan for
antibacterial properties. Carbohydr. Polym. 2014, 112, 39–47. [CrossRef]

56. Yousif, E.; Ahmed, D.S.; El-Hiti, G.A.; Alotaibi, M.H.; Hashim, H.; Hameed, A.S.; Ahmed, A. Fabrication of novel ball-like
polystyrene films containing Schiff base microspheres as photostabilizers. Polymers 2018, 10, 1185. [CrossRef]

57. Alotaibi, M.H.; El-Hiti, G.A.; Yousif, E.; Ahmed, D.S.; Hashim, H.; Hameed, A.S.; Ahmed, A. Evaluation of the use of polyphos-
phates as photostabilizers and in the formation of ball-like polystyrene materials. J. Polym. Res. 2019, 26, 161. [CrossRef]

58. Zheng, X.-G.; Tang, L.-H.; Zhang, N.; Gao, Q.-H.; Zhang, C.-F.; Zhu, Z.-B. Dehydrochlorination of PVC materials at high
temperature. Energy Fuels 2003, 17, 896–900. [CrossRef]

59. Shi, W.; Zhang, J.; Shi, X.-M.; Jiang, G.-D. Different photodegradation processes of PVC with different average degrees of
polymerization. J. Appl. Polym. Sci. 2008, 107, 528–540. [CrossRef]

60. Hadi, A.G.; Yousif, E.; El-Hiti, G.A.; Ahmed, D.S.; Jawad, K.; Alotaibi, M.H.; Hashim, H. Long-term effect of ultraviolet irradiation
on poly(vinyl chloride) films containing naproxen diorganotin(IV) complexes. Molecules 2019, 24, 2396. [CrossRef]

61. Mohammed, R.; El-Hiti, G.A.; Ahmed, A.; Yousif, E. Poly(vinyl chloride) doped by 2-(4-isobutylphenyl)propanoate metal
complexes: Enhanced resistance to UV irradiation. Arab. J. Sci. Eng. 2017, 42, 4307–4315. [CrossRef]

62. Ali, M.M.; El-Hiti, G.A.; Yousif, E. Photostabilizing efficiency of poly(vinyl chloride) in the presence of organotin(IV) complexes
as photostabilizers. Molecules 2016, 21, 1151. [CrossRef]

63. Hadi, A.G.; Jawad, K.; El-Hiti, G.A.; Alotaibi, M.H.; Ahmed, A.A.; Ahmed, D.S.; Yousif, E. Photostabilization of poly(vinyl
chloride) by organotin(IV) compounds against photodegradation. Molecules 2019, 24, 3557. [CrossRef] [PubMed]

64. Ghazi, D.; El-Hiti, G.A.; Yousif, E.; Ahmed, D.S.; Alotaibi, M.H. The effect of ultraviolet irradiation on the physicochemical
properties of poly(vinyl chloride) films containing organotin(IV) complexes as photostabilizers. Molecules 2018, 23, 254. [CrossRef]
[PubMed]

65. Yousif, E.; Hasan, A.; El-Hiti, G.A. Spectroscopic, physical and topography of photochemical process of PVC films in the presence
of Schiff base metal complexes. Polymers 2016, 8, 204. [CrossRef] [PubMed]

66. Ahmed, D.S.; El-Hiti, G.A.; Hameed, A.S.; Yousif, E.; Ahmed, A. New tetra-Schiff bases as efficient photostabilizers for poly(vinyl
chloride). Molecules 2017, 22, 1506. [CrossRef]

67. El-Hiti, G.A.; Alotaibi, M.H.; Ahmed, A.A.; Hamad, B.A.; Ahmed, D.S.; Ahmed, A.; Hashim, H.; Yousif, E. The morphology and
performance of poly(vinyl chloride) containing melamine Schiff bases against ultraviolet light. Molecules 2019, 24, 803. [CrossRef]

68. Ahmed, D.S.; El-Hiti, G.A.; Yousif, E.; Hameed, A.S. Polyphosphates as inhibitors for poly(vinyl chloride) photodegradation.
Molecules 2017, 22, 1849. [CrossRef]

http://doi.org/10.1081/SIM-120023490
http://doi.org/10.1002/jccs.200500034
http://doi.org/10.1016/0142-9612(96)85755-3
http://doi.org/10.1155/2009/753835
http://doi.org/10.5155/eurjchem.6.3.242-247.1165
http://doi.org/10.1021/ma00196a005
http://doi.org/10.1515/epoly-2020-0041
http://doi.org/10.1002/pol.1975.170130602
http://doi.org/10.1177/0892705714566293
http://doi.org/10.1002/app.38989
http://doi.org/10.1016/S0014-3057(00)00239-1
http://doi.org/10.1016/j.mspro.2014.06.232
http://doi.org/10.1016/j.polymer.2016.11.032
http://doi.org/10.1016/j.carbpol.2014.05.019
http://doi.org/10.3390/polym10111185
http://doi.org/10.1007/s10965-019-1829-y
http://doi.org/10.1021/ef020131g
http://doi.org/10.1002/app.25389
http://doi.org/10.3390/molecules24132396
http://doi.org/10.1007/s13369-016-2323-z
http://doi.org/10.3390/molecules21091151
http://doi.org/10.3390/molecules24193557
http://www.ncbi.nlm.nih.gov/pubmed/31581427
http://doi.org/10.3390/molecules23020254
http://www.ncbi.nlm.nih.gov/pubmed/29382088
http://doi.org/10.3390/polym8060204
http://www.ncbi.nlm.nih.gov/pubmed/30979299
http://doi.org/10.3390/molecules22091506
http://doi.org/10.3390/molecules24040803
http://doi.org/10.3390/molecules22111849

	Introduction 
	Results and Discussion 
	Synthesis of Tin-Naphthalene Sulfonic Acid Complexes 1–4 
	IR Spectroscopy of Tin-Naphthalene Sulfonic Acid Complexes 1–4 
	NMR Spectroscopy of Tin-Naphthalene Sulfonic Acid Complexes 1–4 
	Weight Loss of PVC 
	IR Spectroscopy of PVC 
	Surface Morphology of PVC 
	Rate Constant of PVC Photodegradation 
	Suggested Mechanisms for PVC Photostabilization 

	Materials and Methods 
	Materials and Instrumentation 
	Synthesis of Trisubstituted Tin-Naphthalene Sulfonic acid Complexes 1 and 2 
	Synthesis of Disubstituted Tin-Naphthalene Sulfonic acid Complexes 3 and 4 
	Preparation of PVC Films 
	Exposure to UV Light 

	Conclusions 
	References

