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ABSTRACT
How the gut microbiota is organized across space is postulated to influence microbial succession 
and its mutualistic relationships with the host. The lack of dynamic or perturbed abundance data 
poses considerable challenges for characterizing the spatial pattern of microbial interactions. We 
integrate allometric scaling theory, evolutionary game theory, and prey-predator theory into 
a unified framework under which quasi-dynamic microbial networks can be inferred from static 
abundance data. We illustrate that such networks can capture the full properties of microbial 
interactions, including causality, the sign of the causality, strength, and feedback loop, and are 
dynamically adaptive along spatial gradients, and context-specific, characterizing variability 
between individuals and within the same individual across time and space. We design and 
conduct a gut microbiota study to validate the model, characterizing key spatial determinants 
of the microbial differences between ulcerative colitis and healthy controls. Our model provides 
a sophisticated means of unraveling a complete atlas of how microbial interactions vary across 
space and quantifying causal relationships between such spatial variability and change in health 
state.
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Introduction

Microorganisms residing in the human gut have 
direct and indirect impacts on health and disease.1 

Disruptions to the community of gut microbes can 
contribute to the risk and severity of a number of 
medical conditions, such as obesity, cancer, and 
autism among others.2–5 While most studies focus 
on the determination of microbe-health relation-
ships using homogenized samples, such as stools,6– 

10 there is growing appreciation for how the influ-
ence of microbes on host physiology is driven by 
the spatial heterogeneity of microbiota along the 
length of the digestive tract.11–18

Microbiota data collected at a series of gut loca-
tions are the key to chart the organizational and 
functional atlas of the microbial community across 

space,18 but this will critically rely on how these 
spatial data are modeled and analyzed. Trillions of 
microbes populate a narrow gut, forming the most 
complex and densest ecosystem on Earth. It is unli-
kely that microbes exert their influences indepen-
dently of each other on host traits, rather they do 
so interactively through complex but well- 
orchestrated networks.19–23 More importantly, 
such interactions may occur among microorganisms 
not only at the same taxon level but also across 
taxonomic groups, given the co-occurrence of phy-
logenetically diverse microbes. As such, reconstruct-
ing large-scale microbial interaction networks across 
spatial gradients is a crucial choice to interrogate the 
elaborate crosstalk among gut microbes and between 
microbes and their hosts.
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Here, we implement a computational model for 
inferring space-specific microbial interaction net-
works. Existing approaches reconstruct an overall 
microbial network from a large number of 
samples,24 failing to characterize sample-specific 
topological differences. Correlation-based appro- 
aches can estimate the strength of microbe- 
microbe interaction, but cannot infer the direction 
of the interaction.25 Bayesian networks can identify 
causality, but lack a capacity to find feedback 
cycles.26 High-density longitudinal data are power-
ful for reconstructing informative networks filled 
with bidirectional, signed, and weighted interac-
tions, but such data are hardly available for the 
gut microbiota,27 especially at multiple locations 
of the gut. Our model that integrates elements of 
different disciplines can overcome all the above 
limitations to reconstruct informative, dynamic, 
omnidirectional, and personalized networks 
(idopNetwork) from static abundance data.28–30 

The idopNetwork can reveal the position- 
dependent change of microbial networks and infer 
its spatially causal relationships with health state. 
As a proof of concept, we validate the usefulness of 
idopNetwork by designing and conducting a spatial 
mapping study of the gut microbiota. We identify 

key biogeographically-varying microbial interac-
tions that distinguish diseased guts from healthy 
counterparts.

Results

Inferring ecologically functional microbial networks 
across gut space

We sample seven spatially different positions along 
and inside the guts from five patients infected with 
ulcerative colitis (UC) and one healthy control 
(HC) (Figure 1) and measure microbial abundance 
levels at different taxa from a total of 23 positions, 
i.e., habitats. The diagram in Figure 2 illustrates the 
workflow of how we reconstruct microbial net-
works from this spatial data. We identify the 16 
most abundant phyla and the remaining phyla 
(attributed to the other) and plot the abundance 
level (i.e., niche index) of each phylum against 
habitat index (HI), defined as the summed abun-
dance level of all microbes at a gut position. We 
find that niche index-HI change can be well fit by 
the power equation described in equation (1) 
(Figure 3). A majority of phyla increase their abun-
dance with habitat index in an exponential manner 

Figure 1. Sampling strategy of studying the spatial distribution of the gut microbiota. (a) Six sampled positions include rectum, 
sigmoid colon, descending colon, transverse colon, ileum, and cecum along the gut and lumen inside the gut. (b) Sample distribution 
of spatial microbiota from six guts, five infected by ulcerative colitis (UC) and one being a healthy control (HC), totalizing 23 
independent samples.
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(R2 = 0.80–0.90), although the slope of increase 
varies from phylum to phyla. Only two rich phyla, 
Firmicutes and Bacteroidetes, follow a reverse pat-
tern of change, i.e., decreasing exponentially with 
habitat index. We plot the niche index of each 
species against habitat index and find that their 
relationship can be similarly fitted by the power 
equation, but with the slope depending on species 
(Fig. S1). Taken together, the power equation can 
not only explain the part-whole relationship of 
individual microbes at various taxonomic levels 
with the total microbes, but also provides a means 
of modeling microbial diversity and interactions 
across spaces.

In the Materials and methods section, we 
describe the derivation of the idopNetwork model 
by building quasi-dynamic ordinary differential 
equations (qdODE) based on niche index-HI 

relationship (Figure 2). The qdODE decompose 
the observed abundance level of a microbe into its 
independent component due to its own capacity 
and dependent component resulting from the influ-
ence of other microbes, as shown by equations (2) 
and (7). We use the independent and dependent 
abundance components estimated by an optimiza-
tion technique to reconstruct spatially-varying 
idopNetworks at the phylum level for UC and HC 
groups (Figure 4). The topological organization of 
microbial networks displays both similarities and 
differences among gut positions. For example, 
Deferribacteres acts as a leader (i.e., those with 
more and stronger outgoing links than other 
microbes) that exerts influences on Cyanobacteria, 
Fusobacteria, Chloroflexi, Planctomycetes, and 
Acidobacteria in all networks, regardless of their 
gut positions and gut health states. There is also 

Figure 2. Workflow of idopNetwork reconstruction from spatial mapping data of the gut microbiota as collected from the study of 
Figure 1. Each gut can be viewed as an ecosystem in which different positions represent natural habitats of microbes. As a toy example, 
we assume four microbes residing at each gut position, whose abundance is monitored to form a data structure. By taking the sum of 
abundance of all microbes at each position, we calculate habitat index for this position. The power equation is used to model the 
allometric relationship between the abundance of individual microbes and habitat index, which establishes a foundation for 
converting static data into its quasi-dynamic representation crucial for the integration of evolutionary game theory and predator- 
prey theory into graph theory.
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gut position-dependent variability not only 
expressed in total microbial abundance and micro-
bial composition (Figure 3), but also in the topolo-
gical structure and organization of microbe- 
microbe interactions (Figure 4). Position- 
dependent networks of the UC group can be clearly 
classified into two types; one involving lumen, rec-
tum, transverse colon, ileum and cecum networks 
and the second including sigmoid colon and des-
cending colon networks. In the second type, 
Firmicutes and Deinococcus-Thermus bring strong 
amensalism to bear on Proteobacteria and 
Fusobacteria, respectively, whereas in the first 
type, the former is commensalistic toward the lat-
ter. Detailed position-dependent differences can be 
observed in network organization from the same 
type. In the first type, the strength of this commens-
alism decreases from the cecum and ileum net-
works to the transverse colon network to the 
rectum and lumen networks. Deferribacteres is 

commensalistic for Fusobacteria in the lumen, rec-
tum, transverse colon, and cecum networks, but 
this relationship changes as amensalism in the 
ileum network. In the second type, compared to 
the sigmoid colon network, the descending colon 
network is encoded by amensalism at a higher 
frequency.

Only three positions, transverse colon, ileum, 
and cecum, were sampled for the HC group, and 
these positions display distinct network topologies 
(Figure 4). Each of these three HC networks is 
tremendously different from the UC network at 
the same position. In general, the HC networks 
are well mixed by commensalism and amensalism, 
whereas the UC networks tend to be dominated by 
commensalism, suggesting that a healthy network 
can better balance different types of microbes than 
a diseased network. At the cecum and ileum posi-
tions, Firmicutes establishes a commensalistic rela-
tionship toward Proteobacteria in the UC 

Figure 3. The fit of the power equation to the relationship between the abundance of individual phyla (niche index) and the total 
abundance of all phyla (habitat index) across UC (red triangles) and HC samples (blue circle).
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networks, but an amensalistic relationship between 
these two phyla is detected in the HC networks. In 
the transverse colon network, although commens-
alism occurs from Firmicutes to Proteobacteria in 
both UC and HC groups, the strength of this inter-
action is larger in the former than in the latter. Also, 
Deinococcus-Thermus is commensalistic toward 
Fusobacteria in the UC networks, but this relation-
ship is amensalistic in the HC networks. Taken 
together, the strength, pattern and architecture of 
microbial interactions vary spatially across the bio-
geographic positions of the gut, with the degree of 
variation depending on healthy state. Network ana-
lysis on the three commonly measured positions 
suggests that healthy networks display a greater 
position-dependent variability than diseased 

networks. A series of spatially reconstructed net-
works can more precisely characterize key micro-
bial interactions that interrogate why and how 
a healthy state becomes unhealthy.

Our qdODE model decomposes the observed 
abundance level of a microbe into its independent 
component (expressed when this microbe is socially 
in isolation) and dependent component (due to the 
accumulated (positive and negative) influence of 
other microbes on this microbe) at each gut posi-
tion. This decomposition is illustrated in Fig. S2, 
where the independent and dependent abundance 
of each phylum are characterized across samples. 
Figure 5 reveals the position-dependent total 
amounts of independent abundance, positive depen-
dent (promotion) abundance and negative 

Figure 4. Spatial microbial networks at the phylum level along and inside the gut. Arrow lines with warm and cold colors represent 
commensalism and amensalism, respectively, with the thickness of lines proportional to the strength of microbe-microbe interactions.
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dependent (inhibition) abundance over all microbes 
at the phylum level. For UC guts, lumen, cecum, 
ileum, sigmoid colon, and rectum has a similar 
amount of independent abundance, which is much 
lower than that at transverse colon and descending 
colon. Among three commonly measured positions, 
cecum and ileum are similar in independent abun-
dance between UC and HC guts, whereas the inde-
pendent abundance of transverse colon is strikingly 
larger in the UC than HC guts. This suggests that 
the intrinsic capacity of microbes to express them-
selves in transverse colon is a determinant of the 
health state of a gut. The amounts of positive depen-
dent abundance (via promotion) and negative 
dependent abundance (via inhibition) substantially 
vary among gut positions. Some positions, such as 
ileum, transverse colon, and rectum, have a large 
amount of positive dependent abundance, whereas 
some positions, like descending colon, are domi-
nated by negative dependent abundance (Figure 5). 
At transverse colon, both positive and negative 
dependent abundance are much richer for UC guts 
than HC guts, suggesting that the strength and 
pattern of microbial interaction at transverse colon 
are a determinant of gut health state. Taken 
together, when healthy guts get infected by 

ulcerative colitis, the capacity of microbes to be 
independently expressed increases at certain posi-
tions, i.e., transverse colon and descending colon. 
Also, the total strength of microbial interaction and 
the relative strength of cooperation and competition 
are associated with the shift of health state from 
healthy to diseased and vice versa.

Reconstructing multilayer and multiplex microbial 
networks

Microbial networks may occur and function at dif-
ferent taxonomic levels, with larger sizes at lower 
than higher levels. Modularity theory suggests that 
a robust and stable large-scale network would be 
divided into distinct network communities within 
which entities are more functionally correlated with 
each other than with those from other modules.31,31 

Thus, when we attempt to reconstruct a microbial 
network from a large number of microbes, we can 
break it down into sparsely interconnected network 
communities. Wu and Jiang30 proposed a bottom- 
up approach for identifying network communities 
by classifying all entities into different modules 
according to their similarity of sample-dependent 
variability. As shown by Figure 2, the abundance of 

Figure 5. Microbial abundance of all phyla at different gut positions, decomposed into the independent component (purple bar for UC, 
green bar for HC), positive dependent component (due to promotion, warm bar), and negative dependent component (due to 
inhibition, cold bar).
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a microbe changes with habitat index following the 
power law. We implement the power equation into 
Kim et al.31 functional clustering to detect different 
microbial modules (see the Method).

The mean values of abundance for all microbes 
within modules are used to reconstruct the coarse- 
grained module-module idopNetwork or the top- 
layer microbial network. Microbes within each 
module form multiple fine-grained microbial net-
works or bottom-layer microbial networks. The 
dimension reduction of data by clustering increases 
statistical and computational efficiency in inferring 
coarse- and fine-grained networks. However, if the 
number of microbes within a module is still too 
large to be used for network reconstruction, we can 
implement functional clustering to classify this 
module into distinct submodules and reconstruct 
cross-submodule networks. If needed, a submodule 
can be further classified into different sub- 

submodules and this process repeats until 
a trackable number of microbes is obtained. In the 
end, we reconstruct multilayer microbial networks 
at different levels of classification. If microbes at 
a higher classification level interact with those at 
a lower level, multiplex microbial networks can be 
reconstructed.

In our spatial mapping study, we identify 65 spe-
cies, which are classified into seven distinct modules 
M1-M7 by functional clustering (Fig. S3). Each mod-
ule contains a different number of species, forming 
a network community. We reconstruct a seven-node 
coarse-grained microbial network from modules and 
seven fine-grained microbial networks from species 
of the same modules, forming a 2-layer microbial 
network between and within modules (Figure 6). 
Such a 2-layer network is inferred for UC and HC 
groups, respectively. The first-layer network is struc-
turally similar but organizationally different between 

Figure 6. Two-layer microbial networks at the species level for HC and UC groups. At the top level of the network is the 7-node inter- 
module (coarse-grained) network and at the bottom level are seven interspecific (fine-grained) subnetworks, visualized by Voronio 
treemaps. Arrow lines with warm and cold colors represent commensalism and amensalism, respectively, with the thickness of lines 
proportional to the strength of microbe-microbe interactions.
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the two groups. Module M6, as a leader, exerts 
a strong commensalism to modules M1 and M5 in 
HC guts, but this relationship becomes amensalistic 
in UC guts.

M1 and M5 are highly abundant, but each is only 
composed of two species. In M1, Escherichia coli 
and those unidentified species establish 
a commensalistic relationship in both HC and UC 
groups, but in M5 Bacteroides plebelus prompts 
Suttereslla wadsw in the HC group, but the latter 
turns to inhibit the former in the UC group 
(Figure 6). Considerable differences in both struc-
ture and organization are observed for the second- 
layer networks of the other five modules. 
Compared to the UC group, the second-layer net-
works of M2, M3, and M7 contains more amensa-
listic links than those in the HC group, further 
suggesting that microbial competition may be 
a cause of ulcerative colitis. For example, in 
the second-layer network of M2, Bacteroides ovatus 
is a positive strong leader that promotes many 
other species in HC guts, but its leadership becomes 
negative at a reduced strength in UC guts. Also, 
Bacteroides caccae is activated in UC guts, exerting 
strong commensalism for Flavonifractor plautii and 
strong amensalism for Bifidobacterium bifidum and 
Bacteroides sterco.

More remarkably, the second-layer network of 
M3 produces structural and organizational changes 
from HC to UC groups (Figure 6). Lactobacillus 
coryniformis is a dominant leader that positively 
impact many other species in the HC group, but it 
turns to exert strong negative impacts on the same 
species in the UC group. Lactococcus piscium that 
coexists peacefully with its partners in HC guts 
becomes aggressive toward Firmicutes oral and 
phylum sp. Oral in UC guts. M4 and M6 are filled 
of commensalism in both HC and UC networks, 
but the strength of commensalism notably differs 
between two types of networks. Stronger commens-
alism exerted by particular species is observed in 
UC than HC groups. Taken together, multilayer 
microbial interaction networks provide a detailed 
roadmap of how each microbial species interacts 
with every other species through cooperation or 
competition to determine the change of guts from 
healthy to unhealthy states.

Spatial tracing of multilayer networks

We reconstruct multilayer networks at each position 
from which we can trace how coarse- and fine-grained 
networks vary along biogeographical gradients 
(Figures 7, 8). For the UC group, coarse-grained net-
works are structurally very similar over seven sampled 
positions, except for the link from modules M6 to M1, 
which is commensalistic at lumen, cecum, and ileum 
but amensalistic at transverse colon, descending 
colon, sigmoid colon, and rectum (Figure 7). Fine- 
grained networks also vary among gut positions, but 
with the degree of this difference depending on mod-
ules. Network communities for M4 and M6 exhibit 
a slight increase of commensalism strength from 
lumen to rectum, but those for M1, M2, M3, M5, 
and M7 differ dramatically among positions. In 
those network communities, some species-species 
links change from commensalism to amensalism. 
For example, in M5, Bacteroides plebeius and 
Sutterella wadsworthesis are mutualistic to each other 
at lumen, cecum, and ileum, but become increasingly 
parasitic from transverse colon to descending colon to 
sigmoid colon to rectum. Similarly, in M3, 
Lactobacillus coryniformis is commensalistic to 
Lactococcus garvieae at lumen and cecum, but this 
relationship becomes amensalistic with an increasing 
strength from ileum to transverse colon to descending 
colon to sigmoid colon to rectum.

The three gut positions sampled for the HC group 
also exhibit differences in both coarse- and fine- 
grained networks, although the extent of such differ-
ences is module-dependent (Figure 8). In the coarse- 
grained network, leader M6ʹs commensalism toward 
M1 and M5 at cecum and ileum becomes amensal-
ism at transverse colon, but the internal workings 
within M6, M1, and M5 little vary among three 
positions. Pronounced differences in the sign and 
strength of certain interspecific interaction are 
observed in fine-grained networks of M2, M3, and 
M7. For example, in M2, Bacteroides caccae exerts 
commensalism at cecum and ileum but amensalism 
at transverse colon for Bacteroides stercoris and 
Bifidobacterium bifidum. In M7, Bacteroides unifor-
mis is commensalistic toward Flavisolibacter ginsen-
gisoli at cecum, but this commensalism changes as 
amensalism at ileum and transverse colon.
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The two-layer networks provide a detailed atlas 
of interspecific interactions that determine differ-
ences between UC and HC groups (Figure 7 vs. 
Figure 8). Although most pairwise interactions are 
consistent in sign between the two groups, there are 

a few certain interactions that change their sign 
from HC to UC guts. In general, UC networks 
contain more amensalistic interactions than the 
HC networks, suggesting that microbes tend to 
turn to be competitive when the guts are infected 

Figure 7. Two-layer microbial networks at the species level over different gut positions for the UC group. For each position, at the top 
level of the network is the 7-node inter-module (coarse-grained) network and at the bottom level are seven interspecific (fine-grained) 
subnetworks, visualized by Voronio treemaps. Arrow lines with warm and cold colors represent commensalism and amensalism, 
respectively, with the thickness of lines proportional to the strength of microbe-microbe interactions.
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Figure 8. Two-layer microbial networks at the species level over three different gut positions for the HC group. For each position, at the 
top level of the network is the 7-node inter-module (coarse-grained) network and at the bottom level are seven interspecific (fine- 
grained) subnetworks, visualized by Voronio treemaps. Arrow lines with warm and cold colors represent commensalism and 
amensalism, respectively, with the thickness of lines proportional to the strength of microbe-microbe interactions.
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by ulcerative colitis. For example, in M7, 
Bacteroides uniformis at cecum is commensalistic 
toward Flavisolibacter ginsengisoli in the HC group, 
but becomes amensalistic toward the same species 
in the UC group. In addition, for some pairs of 
species, the strength of their interactions may 
change from HC to UC at the same position. All 
suggest that certain interspecific interactions may 
be used as a biomarker to assess health risk.

Discussion

The network model described in this article adds 
a previously neglected dimension to fully capture 
the topology of the vast complexity of the gut 
microbiota. This additional dimension is the spatial 
distribution of microbes among physically, chemi-
cally and immunologically distinct niches in the 
gut.12,32, The biogeography of bacteria in the gut 
is regulated by nutrient selection and immune acti-
vation and, meanwhile, it determines the microbial 
compositions and heterogeneity along the longitu-
dinal axis of the intestines. However, a precise char-
acterization of microbial interaction networks 
along gut positions is challenged by unavailability 
of high-density dynamic or perturbed abundance 
data collected at each position. In this article, we 
present a spatial model to disentangle this challenge 
by extracting dynamic snapshots from static data.

The capacity of the new model to dynamize net-
works in space with no need of dynamic data results 
from the seamless integration of multiple disci-
plines through the implementation of high- 
dimensional statistical theory. From a dynamic per-
spective, evolutionary game theory explains the 
overall abundance of a microbe to be due to its 
independent component (reflecting how much 
a microbe can grow in isolation due to its intrinsic 
capacity) and dependent component (describing 
the amount of microbial growth due to influence 
by other co-existing members). The dynamic for-
mulation of evolutionary game theory using static 
data is achieved by converting them into their 
quasi-dynamic representation via allometric scaling 
theory. By introducing predator-prey theory, we 
construct a system of qdODE to quantify the inde-
pendent and dependent components for each 
microbe.28,29,30 The estimated independent and 
dependent components by an optimization 

technique are coded into graphs, producing one of 
the most advanced networks – idopNetwork. As 
compared to the most commonly used Dynamic 
Bayesian Networks (DBNs) which can identify the 
causality of interactions from evenly-spaced 
dynamic data, idopNetwork can extract and cap-
ture full properties of microbial interaction net-
works (including bidirectionality, sign, weight, 
and feedback loop) from any data domain with 
any measurement schedule. Through extensive 
computer simulation studies, idopNetworks were 
found to perform much better than DBNs in 
terms of the power and false positive rate of inter-
action detection.32 In particular, idopNetworks 
provide a visualized platform to trace how micro-
bial interaction architecture changes from one loca-
tion to the next and how these changes impact the 
reciprocal shift between healthy state to diseased 
state.

As a proof of concept, we apply idopNetwork 
to reveal how microbial network structure and 
organization vary along biogeographical gradients 
of the gut using the gut microbiota data from 
a spatial mapping study including ulcerative coli-
tis-infected patients and healthy controls. 
idopNetwork characterize a dramatic change in 
network organization (the sign and strength of 
interactions) from one position to next along 
and inside the gut (Figures 3, 5, 7, 8). Such an 
organizational change is much more pronounced 
in guts inflected by ulcerative colitis than healthy 
guts, suggesting that the position-dependent 
change of interaction strength and sign may be 
a driver of gut shift from a healthy state to an 
unhealthy state.

An increasing number of studies have showed 
a great potential to control many diseases by chan-
ging the ecological equilibrium of microbes in the 
gut,33,34,35 but existing approaches can only treat 
the whole gut as a mixture, without taking into 
account position-dependent variability in the gut 
microbiota. The idopNetwork model can discern 
spatial changes of microbial interactions and iden-
tify the precise gut positions at which microbial 
functions are most tightly associated with the dis-
ease. Spatial data analysis shows that difference 
between ulcerative colitis guts and healthy guts 
lies in the shift of ecological interactions between 
specific microbes from commensalism-dominated 
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cooperation to amensalism-dominant competition 
at certain gut positions. Phylum Planctomycetes 
exerts strong commensalism for phylum 
Verrucomicrobia at transverse colon and cecum 
in healthy guts, but this commensalism becomes 
strong amensalism when the guts are inflected by 
ulcerative colitis. In clinical practice, by shifting 
Planctomycetes-Verrucomicrobia amensalism 
back to Planctomycetes-Verrucomicrobia com-
mensalism at these gut positions via medical inter-
ventions, ulcerative colitis may be controlled and 
eliminated.

The idopNetworks can be reconstructed at any 
phylogenetic level, including a web of crosstalk 
among bacteria, fungi, and viruses and networks 
at any taxonomic level for the same type of 
microbes. While microbial networks at a higher 
level of taxon, such as phylum, can generalize 
a general rule of thumb behind microbial commu-
nity assembly, those at a lower level, such as species, 
strain, or even genotype, can precisely characterize 
the detailed roadmap of how individual microbes 
interact with each other spatially to determine host 
health. However, a low taxonomic level may 
include an enormous number of operational taxo-
nomic units (OTU), which makes it computation-
ally infeasible to reconstruct a large-scale network. 
To circumvent this issue, we implement power 
equation-functional clustering to classify all OTUs 
into distinct size-reduced modules according to 
developmental modularity theory. In network 
science, this procedure is a bottom-up approach 
that breaks down any large-scale network into dis-
tinct network communities or subnetworks.30 We 
use this approach to classify 65 species into seven 
modules and reconstruct a two-layer network 
involving all species, at a higher layer of which is 
a 7-node module-module network and a lower 
layer of which are seven species-species networks 
within modules. Two-layer networks display gut 
position-dependent variability, healthy state- 
dependent variability, and position-state interac-
tion variability in topological organization. The 
shift of commensalism to amensalism between 
Bacteroides uniformis and Flavisolibacter ginsengi-
soli at cecum (within the subnetworks of module 
M7) could be a driver of healthy guts that turn to 
ulcerative colitis-infected (Figure 7 vs. Figure 8). 
Yet, at ileum and transverse colon, these two 

species consistently maintain an amensalistic rela-
tionship, regardless of health state. Thus, 
Bacteroides uniformis-Flavisolibacter ginsengisoli 
interaction at these two positions cannot be used 
to distinguish between healthy guts and ulcerative 
colitis-infected guts.

Although idopNetworks have many advantages, 
the above results from our spatial mapping study of 
the gut microbiota should be interpreted with cau-
tion. First, the sample size (23 positions) used may 
be insufficient to make a rigorous inference. 
Computer simulation shows that at least 20 samples 
are required to obtain reasonable power for inter-
action detection, but increasing sample sizes, such 
as 50 to 100, are necessary if the measurements of 
microbial abundance contain a certain level of 
noises.28,30 Second, as a proof of concept, our data 
only contain one healthy control. At least three 
biological replicates for the control are required to 
reasonably infer about microbial differences 
between diseased and health groups. Third, the 
impact of the gut microbiota on host health is 
determined by genetic, demographic, and environ-
mental factors.36 The utility of idopNetwork can be 
best justified only after it is implemented into 
a genome-wide association studies aimed at char-
acterizing the combined effects of various genetic 
and environmental factors on the microbiota- 
health interplay. Despite these limitations, the 
application of idopNetwork in this study provides 
a starting point for deciphering how ecological 
interactions transit along biogeographical locations 
to shape the resilience, stability and diversity of 
microbial ecosystems and human health from 
a large-scale data domain. Furthermore, 
idopNetwork can be brought into play to unleash 
a broader microbial community assembly including 
oral cavity, esophagus, and vaginal microhabitats.

Conclusions

The spatial variation of microbes determines how the 
gut microbiota impacts human health. This impact 
can be better revealed by inferring spatially dynamic 
interaction networks. In this article, we develop 
a model for tracing network dynamics along space 
with no need of dynamic data. Statistical analysis of 
microbial data according to this model includes four 
steps: (i) fitting of the power equation to the 
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abundance of individual microbes over habitat index, 
(ii) LASSO-based variable selection implemented to 
choose a small set of the most significant microbes that 
are linked with a focal microbe, (iii) network recon-
struction based on qdODE, and (iv) functional clus-
tering of all microbes into distinct modules based on 
their pattern of microbial abundance. The last step 
allows large-scale multilayer sparse microbial interac-
tome networks across gut space to be reconstructed. 
Our model can discern interaction changes of any 
microbes from healthy to unhealthy guts to gain new 
insight into microbial impact on human health and 
disease.

Materials and methods

Allometric scaling law

Consider a spatial mapping study of the gut 
microbiota involving multiple subjects. For each 
subject, the abundance of microbes at different 
taxa is monitored at seven distinct positions, i.e., 
cecum, ileum, transverse colon, descending colon, 
sigmoid colon, and rectum along the gut, and 
lumen inside the gut (Figure 1). If a gut is viewed 
as an ecosystem, different spatial positions inside 
and along the gut form multiple ecological habi-
tats. Let yjkv denote the abundance of microbe j at 
position k from gut v. Note that a microbe con-
sidered here may represent an OTU at any given 
level, such as individual, strain, species, genus, 
family, order, class, or phylum. For habitat 
k from gut v, the total amount of abundance of 
all colonizing microbes (say m), i.e., Hkv ¼

Pm

j¼1
yjkv, 

reflects its overall capacity to carry and feed the 
microbes with essential resources for their survival 
and propagation, which is defined as the habitat 
index. From an ecological perspective, the habitat 
index is determined by a mixture of factors includ-
ing host genes, diet types and life style,36,37 

a concept similar to the environmental index 
coined to describe the overall quality of site in 
terms of the accumulative growth of all 
plants.38,39 How much a given microbe within 
a habitat is expressed is the confounding conse-
quence of its intrinsic capacity and its interactions 
with all possible biotic and abiotic factors. We thus 
define the abundance of a microbe in a habitat as 
the niche index.37,

A habitat forms a microbial community within 
the gut, with habitat index (Hkv) describing the 
whole community behavior and niche indices 
(yjkv) describing components of the community. 
From a physical perspective, habitat index and 
niche index establish a part-whole relationship, 
which can be described by the power function 
according to allometric scaling theory.40 Let 
n denote the total number of habitats from all 
subjects (guts). Thus, for a given habitat 
i (i = 1, . . ., n), this part-whole relationship can be 
mathematically expressed as 

yji ¼ αjH
βj
i (1) 

where βj is the scaling exponent and αj is an inter-
cept constant of microbe j, which together deter-
mine the scaling shape of individual microbes with 
habitat index. Previous studies have shown that this 
power equation fits microbial abundance at any 
taxonomic levels across habitats.30

Quasi-dynamic evolutionary game theory

Game theory states that a rational player strives to 
maximize its payoff by choosing an optimal strategy 
in response to the strategies of other players until the 
Nash equilibrium is reached.41,42 As can be seen, 
such a strategy choice is not arbitrary, but rather 
includes a rational judgment based on a player’s 
accrued knowledge of the environment affected by 
other players. However, it seems unreasonable to 
assume the rationality of microbes in making their 
decision. We introduce evolutionary game theory, 
the combined theory of game theory and evolution-
ary biology,43, which uses the concept of an evolu-
tionarily stable strategy (ESS) to refine the Nash 
equilibrium. In an evolving population, any strategy 
used by a player to maximize its payoff would be 
constrained by strategies of other players that also 
strive to maximize their own payoffs and, ultimately, 
this process through natural selection would opti-
mize the structure and organization of the popula-
tion, making it reach the maxima of its overall 
payoff.44, The dynamic modeling of evolutionary 
game theory does not specify any individual ESS, 
but it bears all of the ESS that change in the 
population,45,46 in which case the rationality 
assumption is relaxed.
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Although there is no time dimension in our 
microbiota mapping study, allometric scaling law, 
described by equation (1), provides a bridge to 
dynamically model evolutionary game theory by 
deriving a system of generalized nonlinear preda-
tor-prey qdODE with the time derivative replaced 
by the habitat index derivative.28,29,30 Each qdODE 
specifies the overall abundance of a microbe that is 
determined by its own “strategy” and the “strate-
gies” of its interacting counterparts. The qdODE 
that quantify the nLV system are expressed as 

dyji

dHi
¼ Qj yji Hið Þ; Θj

� �
þ
Xm

j0¼1;j0�j
Qjj0 yj0i Hið Þ; Θjj0
� �

; i

¼ 1; . . . ; n; j ¼ 1; . . . ;m
(2) 

where the abundance of any microbe j expressed at 
habitat i is decomposed into the independent com-
ponent (Qj �ð Þ) and dependent components (Qjj0 �ð Þ). 
The independent component of microbe j is deter-
mined by its intrinsic capacity, which can be fully 
expressed when it is in isolation, whereas the depen-
dent component of microbe j is the aggregated effect 
of influences on it by all other microbe j′ (j′ = 1, . . ., 
j – 1, j + 1, . . ., m). Functions, Qj �ð Þ and Qjj0 �ð Þ, may 
not have explicit forms, but they can be smoothened 
by a nonparametric approach, such as B-spline or 
Legendre orthogonal polynomials (LOP),47,48 where 
Θj and Θjj0 are the unknown parameters that specify 
the nonparametric curves. We code the estimates of 
Qj �ð Þ and Qjj0 �ð Þ as nodes and edges, respectively, 
into quantitative networks as a tool to characterize 
the structure and organization of microbial commu-
nity assembly along the gut.

Sparse microbial networks

In practice, the number of microbes for network 
reconstruction may be very large, thus if the abun-
dance of each microbe involves the effects of all 
other microbes, ODEs (2) will quickly become 
intractable. In biology, it is unlikely that each 
microbe performs an interaction with every other 
microbe in the community because a fully con-
nected network is not helpful for the organism to 
maintain its robustness and stability in response to 
random perturbations.49,50,51 Therefore, even if 
there are a number of microbes within a habitat, 

interaction networks they constitute are likely to be 
sparse. Sparsely connected networks are consistent 
with Dunbar’s laws. In modeling social networks of 
non-human primates, Dunbar52, found that there is 
a limit to the number of relationships within 
a network an individual can stably maintain because 
of a limited size of its neocortex. Dunbar’s finding 
on the limit of social relationships, now known as 
Dunbar’s law, has been considered as a general 
argument for network reconstruction in a wide 
range of physical and life sciences.53,

To choose a subset of the most significant 
microbes that interact with a given microbe, we 
formulate a multiple regression model that 
regresses the abundance of the microbe (response) 
on the abundance of all other microbes (predictors) 
across habitats. A regularization-based variable 
selection approach, such as LASSO54, and its 
variants,55,56,57 is implemented to shrink the 
dimension of links possibly owned by a microbe.

Regression model. We consider each gut posi-
tion from each individual (healthy or unhealthy) as 
a sample. A sample represents a microbial commu-
nity assembly that contain m microbes. Let yj = (yj 
(W1), . . ., yj(Wn)) denote a vector of observed 
abundance values for microbe j (j = 1, . . ., m) in 
n samples. Based on the structure of qdODE in 
equation (2), this microbe’s habitat index-varying 
abundance level can be described by a multiple 
regression model, expressed as 

yj Wið Þ ¼ Gj yj Wið Þ : Θj
� �

þ
Xm

j0¼1;j0�j

Gjj0 yj0i Wið Þ : Θjj0
� �

þ ej Wið Þ

(3) 

¼ aj Wið Þ þ XT
j bj Wið Þ þ ej Wið Þ: (4) 

In equation (3), and Gjj0 ðÞ are the habitat index- 
varying independent and dependent abundance of 
microbe j, whose derivatives are QjðÞ and Qjj0 ðÞ of 
equation (1), respectively, and ej Wið Þ in equation (4) 
is the residual error of microbe j at sample i, obey-
ing a multivariate normal distribution with mean 
vector 0 and sample-dependent covariance matrix 
for microbe j. We assume that the residual errors of 
microbial abundance are independent among sam-
ples so that 

P
j is structured as 

P
jσ2

j In where σ2
j is 
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the residual variance of microbe j at the same sam-
ple and In is the identity matrix. In equation (4), we 

have aj Wið Þ ¼ GðÞ and XT
j bj Wið Þ ¼

Pm

j0¼1;j0�j
Gjj0 ðÞ, 

where XT
j is the vector containing m – 1 ones and bj 

(Wi) = (bj1(Wi), . . ., bjm(Wi)) is a vector of the 
dependent value of microbe j determined by all 
microbes, except for j.

Group LASSO. LASSO is particularly powerful 
for the penalty regression analysis of a response on 
an extremely large number of predictors across 
a much smaller size of samples. Considering 
a focal microbe j as a response, we use nonpara-
metric independent parameters aj to fit its GjðÞ. As 
predictors, (m – 1) microbes contribute to microbe 
j’s dependent component through unknown non-
parametric dependent parameters βj = (βj1, . . ., βj 

(j–1), βi(j+1), . . ., βjm). Thus, we have m – 1 groups of 
dependent parameters that reflects the influence of 
other microbes on the focal microbe. We imple-
mented group LASSO55 to select those nonzero 
groups. The group LASSO estimators of dependent 
parameters, denoted as = (βj1, . . ., βj(j–1), βj(j+1), . . ., 

β
jdi

), where dj m is the number of the most significant 
microbes that interact with microbe j. It can be 
obtained by minimizing the following penalized 
weighted least-square criterion, 

L1ðβ
j

; λjÞ ¼ yj � aj � XT
j bj

� �T
Zj yj � aj � XT

j bj

� �

þ λ1j
Xm

j0¼1;j0�j

k βjjj0 k2;

(5) 

where yj = (yj(W1), . . ., yj(Wn)), μj = (μj(W1), . . ., μj 
(Wn)), and bj = (bj(W1), . . ., bj(Wn)) determined by βj 
through a nonparametric link; λ1i is a penalty para-
meter determined by BIC or extended BIC; and Zj  
= diag{zj(W1), . . ., zj(Wn)} where zj(Wi) is a prescribed 
nonnegative weight function on [W1, Wn] with 
boundary conditions zj(W1) = zj(WN) = 0. This weight 
function is used to speed up the rate of convergence.

Adaptive group LASSO: In group LASSO, 
penalty parameters of each group are treated 
equally, without considering the relative impor-
tance of different groups. It has been recognized 
from traditional linear regression analysis that 

the over-penalization of parameters for some 
predictors may reduce the efficiency of para-
meter estimation and the continuity of variable 
selection.55 To overcome this limit of group 
LASSO, Wang and Leng56 integrated it with 
adaptive LASSO to create adaptive group 
LASSO. This integrative approach selects signifi-
cant groups by weighted penalty parameters. 
Weight wj|j′ is obtained as βjjj0

� 1
2 

if βjjj02 
> 0 and 

∞, otherwise. The adaptive group LASSO esti-
mators of dependent parameters are obtained by 
minimizing the penalized weighted least-square 
criterion as follow: 

L2ðβ
�

; λjÞ ¼ Yj � aj � XT
j bj

� �T
Zj Yj � aj � XT

j bj

� �

þ λ2j
Xm

j0¼1;j0�j
wjjj0 0 0

k βjjj0 0 0 k2

(6) 

where λ2j is a penalty parameter determined by BIC 
or extended BIC.

After the most significant links (say dj ≪ m) for 
each microbe j are detected, we substitute them into 
nLV qdODE in equation (2) to formulate a sparse 
representation of the full model. The sparse qdODE 
are written as 

dyji

dHi
¼ Qj yji Hið Þ; Θj

� �
þ

Xdj

j0¼1;j0�j

Qjj0 yj0i Hið Þ; Θjj0
� �

; i

¼ 1; . . . ; n; j ¼ 1; . . . ;m
(7) 

where the notation of the independent and 
dependent component terms is the same as 
described in equation (2). By solving equation 
(7) in which the number of incoming links for 
a microbe j is changed from m to dj through 
variable selection, we can reconstruct an m-node 
sparse microbial network.

Reconstructing microbial networks via maximum 
likelihood

A number of approaches, including non-linear 
least-squares and maximum likelihood, can be 
implemented to solve the shrunk qdODE from 
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equation (2). Since we argue that microbial com-
munity assembly tends to reach its maximum over-
all payoff guided by evolutionary game theory, 
a maximum likelihood approach that is founded 
on the most probable existence of all microbes is 
chosen for our qdODE solving. Let ϕ ¼ μ;

P
ð Þ

denote the parameters that explain the regression 
model. The likelihood function of ϕ given the 
abundance data is written as 

L μ;
X� �

¼ f y1; . . . ; ymjμ1; . . . ; μm

X� �
(8) 

where f(⋅) is the n-dimensional m-variate normal 
distribution for m microbes across n samples with 
mean vector μ and covariance matrix 

P
. 

Specifically, we model the mean vector by 
equation (7) subject to variable selection, i.e., 

μ ¼ μ1; . . . ; μm
� �

¼ μ1 W1ð Þ; . . . ; μ1 Wnð Þ; . . . ;
�

μm W1ð Þ; . . . ; μm Wnð ÞÞ

¼ G1 y1 Wnð Þ : Θ1ð Þ þ
Xd1

j0¼2
G1j0 yj0 Wnð Þ : Θ1j0
� �

; . . . ;

 

Gm ym W1ð Þ : Θmð Þ þ
Xdm

j0¼1
Gmj0 yj0 W1ð Þ : Θmj0

� �
; . . . ;

Gm ym Wnð Þ : Θmð Þ þ
Xdm

j0¼1;j0
Gmj0 yj0 Wnð Þ : Θmj0

� �
!

(9) 

Now, we implement a power equation-based LOP 
nonparametric approach to fit GjðÞ by parameters 
Θj and fit Gjj0 ðÞ by parameters Θjj0 . We use 
a statistically robust approach for modeling the 
covariance matrix, 

X
¼

P
1 � � �

P
1m

..

. . .
. ..

.

P
m1 � � �

P
m

0

B
@

1

C
A (10) 

where 
P

j is the sample-dependent covariance 
matrix of microbe j, and 

P
j1j2 

is the sample- 
dependent covariance matrix between microbes j1 
and j2. 

P
j1j2 

is structured as 
P

j1j2
σj1j2 In, where σj1j2 

is the residual covariance of microbes j1 and j2 at 
the same sample. If there is a mix of static and 
temporal data involved, we may implement the 
first-order autoregressive (AR(1)) model to model 
autocorrelative structure of the covariance.

Under mean-covariance structure modeling 
by equations (9) and (10), model parameters ϕ ¼
μ;
P

ð Þ become model parameters ϕ
0

¼

Θj;Θjj0 j ¼ 1; . . . ;m; j0 ¼ 1; . . . ; j � 1; jþ 1; . . . ; djÞ;
��

σ2
j ; σj1j2 j1�j2 ¼ 1; . . . ;mð Þ�, whose optimal solution 

can be obtained, by maximizing the likelihood (8), as 

bϕ0 2 arg max
ϕ02Φ0
L ϕ0
� �

� �

(11) 

Intuitively, this maximization implies an optimal 
topological structure and organization by which 
microbes interact with each other to maximize the 
overall abundance of microbial community assem-
ble as a whole. The convex optimization formula-
tion under equation (11) ensures the stability and 
sparsity of the network reconstructed from qdODE 
of equation (7). Since no constraints are given on 
the number of outgoing links, the resulting network 
can be high-dimensional and of a large-scale size.

Topological dissection of microbial networks

Inferred microbial networks via maximizing the 
likelihood function (8) meet three essential 
properties of networks, i.e., causality (derived 
from directed qdODE), sparsity (due to variable 
selection), and stability (assured under optimi-
zation). Apart from the methodological advan-
tages, these networks have many biological 
merits. First, they are informative because they 
can capture the full properties of microbial 
interactions, including bidirectionality, sign, 
weight, and feedback loop.28 Second, they are 
dynamically visualizable by reconstructing 
a series of quasi-dynamic networks along HI 
gradient from the instantaneous estimates of 
independent and dependent components for 
each sample.

Third, the networks reconstructed by qdODE 
can omnidirectionally capture ecological inter-
actions that occur among microbes. It can cover 
all possible types of microbial interactions, 
including mutualism (two microbes promote 
each other by producing factors that are bene-
ficial for both interacting parties), antagonism 
(two microbes inhibit each other), commensal-
ism (one microbe promotes its partner whereas 
the latter does not affect the former), 
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amensalism (one microbe inhibits the other and 
the other is neutral), and parasitism (one 
microbe inhibits the other but the latter pro-
motes the former). The opposite to parasitism 
is altruism (one microbe promotes the other 
but the latter inhibits the former).25,49,52 

A microbe may actively manipulate other 
microbes (by promoting or inhibiting the latter) 
and, meanwhile, it may be passively manipu-
lated by other microbes. In an idopNetwork, 
one can identify the numbers of such active 
links and passive links for each microbe. If 
a microbe has more active links than passive 
links, it is regarded as a leader microbe. If 
a microbe’s active links are more than the aver-
age of all microbes (i.e., connectivity), then this 
microbe is a mighty hub or keystone microbe 
that is believed to play a pivotal role in main-
taining microbial communities. If a microbe has 
less links, including active and passive, than the 
average, it is a solitary microbe. The ecological 
interpretation of these strategies will stimulate 
researchers to explore the mass, energetic, or 
signal basis of microbial interactions.53

Fourth, taking the means of the estimates of 
independent and dependent components for 
a subject from qdODE of equation (7), we can 
identify a network specifically for this subject. 
Such personalized microbial networks may pro-
vide unique information for designing persona-
lized medicine based on the gut microbiota. 
Taken together, the qdODE-based networks 
are informative, dynamic, omnidirectional, and 
personalized, thus call ideopNetwporks.28

Inferring context-specific microbial networks

In general, gut-microbial studies are designed 
in a case-control cohort fashion, which allows 
microbial interactions to be compared between 
a diseased group and healthy group. This can 
be achieved by reconstructing context-specific 
networks. Consider a panel of subjects who 
are classified into C groups or contexts (such 
as different races, sexes, use vs. no use of 
a drug, etc.). Here, we formulate a likelihood 
function which is the same as equation (8), but 
the mean vector is now modeled as 

μ ¼ μ1; . . . ; μm
� �

¼ μ1 W1ð Þ; . . . ; μ1 Wnð Þ; . . . ; μm W1ð Þ; . . . ; μm Wnð Þ
� �

¼
XC

c¼1
G1 y1 Wnð Þ : Θc

1
� �

þ
Xd1

j0¼2
G1j0 yj0 Wnð Þ : Θc

1j0

� �
" #

; . . .

 

;
XC

c¼1
Gm ym W1ð Þ : Θc

m
� �

þ
Xdm

j0¼1
Gmj0 yj0 W1ð Þ : Θc

mj0

� �
" #

; . . . ;

XC

c¼1
Gm ym Wnð Þ : Θc

m
� �

þ
Xdm

j0¼1
Gmj0 yj0 Wnð Þ : Θc

mj0

� �
" #!

(12) 

and the covariance matrix modeled similarly as above.
By plugging in the MLEs of mean vectors (9) and 

(12) into likelihood (8), we obtain the likelihood 
values L1 (assuming that there is no difference 
among C contexts) and L2 (assuming that there 
are differences among C contexts), respectively. 
We further estimate the log-likelihood ratio (LR), 

LR ¼ � 2log L0=L1ð Þ (13) 

as a statistic used to test if n samples should be 
sorted into C contexts. By reshuffling n samples 
randomly into C groups, we calculate the LR 
value. If this permutation procedure is repeated 
1,000 times, we obtain the 95th percentile from 
1,000 LR values and use it as a critical threshold.

Spatial mapping design

Patient recruitment and ethics
Six volunteers were recruited for the study at the 
Department of Gastroenterology and Hepatology of 
Tianjin Medical University General Hospital. Disease 
severity in five patients infected with UC was assessed 
by the modified Mayo endoscopic score. One patient 
with colonic polyp was marked as a non-UC control 
(HC). Ethics approval was received from the Tianjin 
Medical University General Hospital Clinical 
Research Ethics Committee. All patients signed the 
informed consent form prior to their operation, and 
they received polyethylene glycol-based bowel pre-
paration for colonoscopy. Demographic data and clin-
ical characteristics of the UC and non-UC patients are 
shown in Table 1.

Sample collection and brush sampling
Intestinal sampling involves the lumen and six posi-
tions long the gut, ileum, cecum, transverse colon, 
descending colon, sigmoid colon, and rectum 
(Table 1). The specimens were sampled from three 
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to four positions in each patient. A total of 23 speci-
mens were collected from four UC patients and 
one HC.

DNA extraction and amplicon sequencing
The QIAamp DNA Mini Kit (Qiagen, Inc, Hilden, 
Germany) was used to extract DNA from biopsies 
and brush specimens, according to the manufacturer’s 
instructions. Primers 515 F and 806 R, each with 
a barcode and adaptor sequences for high- 
throughput sequencing, were utilized to amplify the 
bacterial 16S rRNA gene V4 region; 16S 
rRNA sequencing was then performed on the 
Illumina HiSeq2500 platform by Novogene (Beijing, 
China).

Bioinformatics analysis
After removing the barcodes and primers, we 
merged the reads of each sample using FLASH 
(version 1.2.7) software to obtain the raw 
reads.58 According to the raw read quality con-
trol process of Quantitative Insights Into 
Microbial Ecology (QIIME, version 1.7.0),59 

merged raw reads were qualified to generate 

clean reads: raw reads were cut off at the first 
base of three or more continuous low-quality 
bases (the default quality threshold was 19); 
reads with continuous high-quality bases less 
than 75% were further filtered out. Chimeras 
were identified and removed through the 
UCHIME Algorithm against the Gold database 
to generate effective reads.60 Uparse was used to 
cluster all effective reads into OTUs with 97% 
identity;61 the highest frequency sequence in 
each OTU was selected as the representative 
sequence. The taxonomies were assigned using 
the Ribosomal Database Project (RDP) 
classifier62 against the Greengenes database (the 
confidence threshold was 80%), then taxonomic 
information was obtained and the community 
composition of each sample was summarized at 
each level.63 The sequences of all samples were 
normalized based on the sample with the lowest 
number of sequences (47,986 sequences). The 
absolute abundance levels of microbes at differ-
ent taxonomic levels were inferred by taking the 
product of relative abundance (assessed by 16S 
rRNA gene amplicon sequencing) and bacterial 

Table 1. Disease status and sampling information of UC and non-UC patients.
Patient No. Sex Age UC Stage Sampling Site Sampling Approach

1 F 47 Moderate Cecum 
Rectum 
Transverse colon 
Lumen

BF,DSB,PSB 
BF,DSB,PSB 
BF,DSB,PSB

2 M 32 Severe Cecum 
Ileum 
Transverse colon 
Descending colon

BF,DSB,PSB BF,DSB,PSB 
BF,DSB,PSB BF,DSB,PSB

3 F 30 Moderate Rectum 
Cecum 
Transverse colon 
Sigmoid colon 
Lumen

DSB,PSB 
DSB,PSB 
DSB,PSB 
BF,DSB,PSB

4 F 60 Severe Cecum 
Rectum 
Ileum 
Transverse colon 
Lumen

BF 
BF,DSB,PSB 
BF,DSB,PSB 
BF,DSB,PSB

5 M 62 Moderate Rectum 
Lumen

DSB,PSB

6 F 47 Non-UC Cecum 
Ileum 
Transverse colon

BF,DSB,PSB 
BF,DSB,PSB 
BF,DSB,PSB

BF: biopsy forceps; DSB: disposable specimen brush; PSB: protected specimen brush 
DSB used clinically has no plugging structure and is easily disturbed by body fluids or tissues. To address the defects of the existing technology, we developed 

a PSB as a contrast, which set up a closed plugging device at the end of the DSB seeker using polyethylene glycol. The plugging portion can be tightly 
integrated with the inner wall of the sheath. The brush was enclosed in the sheath, introduced through the colonoscope channel, and exposed to the external 
environment when the brush was sent out to the front of the colonoscope. Specific sampling parts were rubbed and rotated around bristles to obtain 
superficial microbes. After sampling, the brush was retracted into the sheath, then slowly extracted from the colonoscope channel. Samples were immediately 
placed on liquid nitrogen and stored at – 80°C until DNA extraction.
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load at each position (measured by broad-range 
16S rRNA gene qPCR).64,

Acknowledgments

We specially thank our colleague Jing Feng from the 
Department of Respiratory and Critical Care Medicine for 
his important advice. We appreciate Jun He from Jiangsu 
Vedkang Medical Science & Technology Co., Ltd for tech-
nology support. We are grateful to our colleagues Li Liang, 
Lin Fang, Fengying Tian, Lu Xiao, Ying Li, Yan Wang, 
Ting Li, Xuele Lu, Qi Zhang, Xinyao Zhao (Department of 
Gastroenterology and Hepatology Endoscopy Center) and 
Wenjing Song (Department of Pathology), Xin Zhao 
(Department of Radiology) for their professional help. 
We sincerely thank the patients and their family for their 
support and dedication.

Data and code availability statement

The original nucleotide sequences of this study were depos-
ited to the NCBI Sequence Read Archive under accession 
number SRP128619. The computer code used in this study 
can be downloaded at https://github.com/CCBBeijing/ 
GutMicrobe or requested from the corresponding author.

Disclosure statement

There is no potential conflict of interest by the authors.

Funding

This work was supported by grants from National Key 
Research and Development Project (No. 2019YFA0905600), 
Science and Technology Program of Tianjin, China 
(No. 19YFSLQY00110), and the National Natural Science 
Foundation of China (82070559).

Author contributions

X.C. initiated the project and supervised sample and data 
collection. A.D. and S. W. performed statistical modeling 
and wrote computer code. G.K., H.H., X.W., L.D., H.H., T. 
Z. and X.L. collected samples and data. R.W. conceived of 
the study and wrote the manuscript, with inputs from X.C., 
H.H., and X.L.

References

1. Fan Y, Pedersen O. Gut microbiota in human metabolic 
health and disease. Nat Rev Microbiol. 2021;19 
(1):55–71. doi:10.1038/s41579-020-0433-9.

2. Li Y, Luo ZY, Hu YY, Bi YW, Yang JM, Zou WJ, YL 
Song, S Li, T Shen, SJ Li, et al. The gut microbiota 
regulates autism-like behavior by mediating vitamin 
B6 homeostasis in EphB6-deficient mice. Microbiome. 
2020;8:120. doi:10.1186/s40168-020-00884-z.

3. Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, 
Barrea L, Savastano S, Colao, A. Gut microbiota: a new 
path to treat obesity. Intl J Obes Supp. 2019;9:10–19. 
doi:10.1038/s41367-019-0011-7.

4. Qin N, Yang FL, Li A, Prifti E, Chen YF, Shao L, Guo J, 
Emmanuelle C, Yao J, LJ Wu, et al. Alterations of the 
human gut microbiome in liver cirr-hosis. Nature. 
2014;513:59–64. doi:10.1038/nature13568.

5. Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, 
Merad M, Kroemer, G . Cancer and the gut microbiota: 
an unexpected link. Sci Transl Med. 2015;7:271. doi:10. 
1126/scitranslmed.3010473.

6. Christian LM, Galley JD, Hade EM, Schoppe-Sullivan S, 
Dush KC, Bailey MT. Gut microbiome composition is 
associated with temperament during early childhood. 
Brain Behav Immun. 2015;45:118–127. doi:10.1016/j.bbi. 
2014.10.018.

7. Clemente JC, Ursell LK, Parfrey LW, Knight R. The 
impact of the gut microbiota on human health: an 
integrative view. Cell. 2012;148:1258–1270. doi:10. 
1016/j.cell.2012.01.035.

8. Deines P, Bosch TC. Transitioning from microbiome 
composition to microbial community interactions: the 
potential of the etaorganism Hydra as an experimental 
model. Front Microbiol. 2016;7:1610. doi:10.3389/ 
fmicb.2016.01610.

9. Johnson KV. Gut microbiome composition and diversity 
are related to human personality traits. Human 
Microbiome J. 2020;15:100069. doi:10.1016/j.humic.2019. 
100069.

10. Manor O, Dai CL, Kornilov SA, Smith B, Price ND, 
Lovejoy JC, Gibbons SM, Magis AT. Health and disease 
markers correlate with gut microbiome composition 
across thousands of people. Nat Commun. 2020;11 
(1):5206. doi:10.1038/s41467-020-18871-1.

11. Donaldson GP, Chou W-C, Manson AL, Rogov P, 
Abeel T, Bochicchio J, Ciulla D, Melnikov A, 
Ernst PB, Chu H, et al. Spatially distinct physiology of 
Bacteroides fragilis within the proximal colon of gnoto-
biotic mice. Nat Microbiol. 2020;5(5):746–756. doi:10. 
1038/s41564-020-0683-3.

12. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeogra-
phy of the bacterial microbiota. Nat Rev Microbiol. 2016;14 
(1):20–32. doi:10.1038/nrmicro3552.

13. Engevik M, Versalovic J. Taking a closer look at the 
biogeography of the human gastrointestinal 
microbiome. Gastroenterology. 2019;157:927–929.

14. Mark Welch JL, Hasegawa Y, McNulty NP, Gordon JI, 
Borisy GG. Spatial organization of a model 15-member 
human gut microbiota established in gnotobiotic mice. 
Proc Natl Acad Sci USA. 2017;114:9105–9114. doi:10. 
1073/pnas.1711596114.

GUT MICROBES e2106103-19

https://github.com/CCBBeijing/GutMicrobe
https://github.com/CCBBeijing/GutMicrobe
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.1186/s40168-020-00884-z
https://doi.org/10.1038/s41367-019-0011-7
https://doi.org/10.1038/nature13568
https://doi.org/10.1126/scitranslmed.3010473
https://doi.org/10.1126/scitranslmed.3010473
https://doi.org/10.1016/j.bbi.2014.10.018
https://doi.org/10.1016/j.bbi.2014.10.018
https://doi.org/10.1016/j.cell.2012.01.035
https://doi.org/10.1016/j.cell.2012.01.035
https://doi.org/10.3389/fmicb.2016.01610
https://doi.org/10.3389/fmicb.2016.01610
https://doi.org/10.1016/j.humic.2019.100069
https://doi.org/10.1016/j.humic.2019.100069
https://doi.org/10.1038/s41467-020-18871-1
https://doi.org/10.1038/s41564-020-0683-3
https://doi.org/10.1038/s41564-020-0683-3
https://doi.org/10.1038/nrmicro3552
https://doi.org/10.1073/pnas.1711596114
https://doi.org/10.1073/pnas.1711596114


15. Riva A, Kuzyk O, Forsberg E, Siuzdak G, Pfann C, 
Herbold C, Daims H, Loy A, Warth B, Berry D. A 
fiber-deprived diet disturbs the fine-scale spatial archi-
tecture of the murine colon microbiome. Nat Commun. 
2019;10:4366. doi:10.1038/s41467-019-12413-0.

16. Shi H, Shi Q, Grodner B, Lenz JS, Zipfel WR, Brito IL, 
Vlaminck ID. Highly multiplexed spatial mapping of 
microbial communities. Nature. 2020;588:676–681. 
doi:10.1038/s41586-020-2983-4.

17. Stearns J, Lynch M, Senadheera D, Tenenbaum HC, 
Goldberg MB, Cvitkovitch DG, Croitoru K, Hagelsieb 
GM, Neufeld JD . Bacterial biogeography of the human 
digestive tract. Sci Rep. 2011;1:170. doi:10.1038/ 
srep00170.

18. Tropini C, Earle KA, Huang KC, Sonnenburg JL. The 
Gut Microbiome: connecting Spatial Organization to 
Function. Cell Host Microbe. 2017;21:433–442. doi:10. 
1016/j.chom.2017.03.010.

19. Chen L, Collij V, Jaeger M, Munckhof ICL, Vila AV, 
Kurilshikov A, Gacesa R, Sinha T, Oosting M, Joosten 
LAB, et al. Gut microbial co-abundance networks show 
specificity in inflammatory bowel disease and obesity. Nat 
Commun. 2020;11:4018. doi:10.1038/s41467-020-17840-y.

20. Hall CV, Lord A, Betzel R, Zakrzewski M, 
Simms LA, Zalesky A, Smith GR, Cocchi L. Co- 
existence of network architectures supporting the 
human gut microbiome. iScience. 2019;22:380–391. 
doi:10.1016/j.isci.2019.11.032.

21. Jiang LB, Liu XJ, He XQ, Jin Y, Cao YG, Zhan X, 
Griffin GH, Gragnoli C, Wu RL. A behavioral model 
for mapping the genetic architecture of 
gut-microbiota networks. Gut Microbes. 2020;1–15. 
doi:10.1080/19490976.2020.1820847.

22. Layeghifard M, Li H, Wang PW, Donaldson SL, Coburn B, 
Clark ST, Caballero JD, Zhang Y, Tullis DE, Yau YCW, 
et al. Microbiome networks and change-point analysis 
reveal key community changes associated with cystic fibro-
sis pulmonary exacerbations. npj Biofilms Microbiomes. 
2019;5:4. doi:10.1038/s41522-018-0077-y.

23. Riera JL. Baldo L.microbial co-occurrence networks of gut 
microbiota reveal community conservation and 
diet-associated shifts in cichlid fishes. Anim Microbiome. 
2020;2:36. doi:10.1186/s42523-020-00054-4.

24. Dohlman AB, Shen X. Mapping the microbial interac-
tome: statistical and experimental approaches for 
microbiome network inference. Exp Biol Med. 
2019;244:445–458. doi:10.1177/1535370219836771.

25. Coenen AR, Weitz JS. Limitations of correlation-based 
inference in complex virus-microbe communities. 
mSystems. 2018;3:e00084–18. doi:10.1128/mSystems. 
00084-18.

26. Sazal M, Mathee K, Ruiz-Perez D, Cickovski T, 
Narasimhan G. Inferring directional relationships in 
microbial communities using signed Bayesian 
networks. BMC Genomics. 2020;21:663. doi:10.1186/ 
s12864-020-07065-0.

27. Xiao Y, Angulo MT, Friedman J, Waldor MK, Weiss ST, 
Liu YY. Mapping the ecological networks of microbial 
communities. Nat Commun. 2017;8:2042. doi:10.1038/ 
s41467-017-02090-2.

28. Chen CX, Jiang LB, Fu GF, Wang M, Wang YQ, 
Shen BY, Liu ZQ, Wang ZH, Hou W, Berceli SA, 
et al. An omnidirectional visualization model of per-
sonalized gene regulatory networks. npj. Syst Biol 
Appl. 2019;5:38.

29. Griffin CH, Jiang LB, Wu RL. Analysis of 
quasi-dynamic ordinary differential equations and the 
quasi-dynamic replicator. Physica A: Stat Mech Its 
Appl. 2020;555:124422.

30. Wu RL, Jiang LB. Recovering dynamic networks in big 
static datasets. Phys Rep. 2021;912:1–57. doi:10.1016/j. 
physrep.2021.01.003.

31. Kim BR, Zhang L, Berg, A, Fan, J, and Wu, RL. A 
computational approach to the functional clustering of 
periodic gene-expression profiles. Genetics. 2008;180 2 
:821–834. doi:10.1534/genetics.108.093690.

32. Nadell CD, Drescher K, Foster KR. Spatial structure, coop-
eration and competition in biofilms. Nat Rev Microbiol. 
2016;14:589–600. doi:10.1038/nrmicro.2016.84.

33. Durack J, Lynch SV. The gut microbiome: relationships 
with disease and opportunities for therapy. J Exp Med. 
2019;216:20–40. doi:10.1084/jem.20180448.

34. Ford SA, King KC. Harnessing the power of defensive 
microbes: evolutionary implications in nature and dis-
ease control. PLoS Pathog. 2016;12:e1005465. doi:10. 
1371/journal.ppat.1005465.

35. Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo HS, 
Villaruz AE, Glose KA, Fisher EL, Hunt RL, Li B, et al. 
Pathogen elimination by probiotic Bacillus via signal-
ling interference. Nature. 2018;562:532–537. doi:10. 
1038/s41586-018-0616-y.

36. Scepanovic P, Hodel F, Mondot S, Partula V, Byrd A, 
Hammer C, Alanio C, Bergstedt J, Patin E, Touvier M, 
et al. A comprehensive assessment of demographic, envir-
onmental, and host genetic associations with gut micro-
biome diversity in healthy individuals. Microbiome. 
2019;7:130. doi:10.1186/s40168-019-0747-x.

37. Pereira FC, Berry D. Microbial nutrient niches in the 
gut. Environ Microbiol. 2017;19:1366–1378. doi:10. 
1111/1462-2920.13659.

38. Finlay KW, Wilkinson GN. The analysis of adaptation 
in a plant breeding program. Aust J Agr Res. 
1963;14:742–754. doi:10.1071/AR9630742.

39. Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, 
Rejesus RM, Hammer GL. Greater sensitivity to drought 
accompanies maize yield increase in the U.S. Midwest 
Science. 2014;344:516–519. doi:10.1126/science.1251423.

40. Shingleton A. Allometry: the study of biological scaling. 
Nat Ed Knowl. 2000;3:2.

41. Nash JF. Equilibrium points in n-person games. Proc 
Natl Acad Sci. 1950;36:48–49. https://doi.org/10.1073/ 
pnas.36.1.48 

e2106103-20 X. CAO ET AL.

https://doi.org/10.1038/s41467-019-12413-0
https://doi.org/10.1038/s41586-020-2983-4
https://doi.org/10.1038/srep00170
https://doi.org/10.1038/srep00170
https://doi.org/10.1016/j.chom.2017.03.010
https://doi.org/10.1016/j.chom.2017.03.010
https://doi.org/10.1038/s41467-020-17840-y
https://doi.org/10.1016/j.isci.2019.11.032
https://doi.org/10.1080/19490976.2020.1820847
https://doi.org/10.1038/s41522-018-0077-y
https://doi.org/10.1186/s42523-020-00054-4
https://doi.org/10.1177/1535370219836771
https://doi.org/10.1128/mSystems.00084-18
https://doi.org/10.1128/mSystems.00084-18
https://doi.org/10.1186/s12864-020-07065-0
https://doi.org/10.1186/s12864-020-07065-0
https://doi.org/10.1038/s41467-017-02090-2
https://doi.org/10.1038/s41467-017-02090-2
https://doi.org/10.1016/j.physrep.2021.01.003
https://doi.org/10.1016/j.physrep.2021.01.003
https://doi.org/10.1534/genetics.108.093690
https://doi.org/10.1038/nrmicro.2016.84
https://doi.org/10.1084/jem.20180448
https://doi.org/10.1371/journal.ppat.1005465
https://doi.org/10.1371/journal.ppat.1005465
https://doi.org/10.1038/s41586-018-0616-y
https://doi.org/10.1038/s41586-018-0616-y
https://doi.org/10.1186/s40168-019-0747-x
https://doi.org/10.1111/1462-2920.13659
https://doi.org/10.1111/1462-2920.13659
https://doi.org/10.1071/AR9630742
https://doi.org/10.1126/science.1251423
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1073/pnas.36.1.48


42. Von Neumann J, Morgenstern S. Theory of games and 
economic behavior. Princeton: Princeton University 
Press; 1944.

43. Smith JM, Price GR. Logic of animal conflict. Nature. 
1973;246:15–18. doi:10.1038/246015a0.

44. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The 
evolution of the host microbiome as an ecosystem on a 
leash. Nature. 2017;548:43–51.

45. Hofbauer J, WH S. Stable games and their dynamics. 
J Econ Theor. 2009;144:93–1665. doi:10.1016/j.jet.2009. 
01.007.

46. Liao D, Tlsty TD. Evolutionary game theory for physical 
and biological scientists. II. Population dynamics equa-
tions can be associated with interpretations. Interface 
Focus. 2014;4:20140038. doi:10.1098/rsfs.2014.0038.

47. Das K, Li J, Wang Z, Tong CF, Fu GF, Li Y, Xu M, Ahn 
K, Mauger D, Li RZ, et al. A dynamic model for 
genome-wide association studies. Hum Genet. 
2011;129:629–639. doi:10.1007/s00439-011-0960-6.

48. Jiang LB, Liu JY, Zhu XL, Ye MX, Sun LD, Lacaze X, Wu 
RL. 2HiGWAS: a unifying high-dimensional platform to 
infer the global genetic architecture of trait development. 
Brief Bioinform. 2015;16:905–911. doi:10.1093/bib/ 
bbv002.

49. May RM. Will a large complex system be stable? Nature. 
1972;238:413–414. doi:10.1038/238413a0.

50. Allesina S, Tang S. Stability criteria for complex 
ecosystems. Nature. 2012;483:205–208. doi:10.1038/ 
nature10832.

51. Busiello DM, Suweis S, Hidalgo J, Maritan A. Explorability 
and the origin of network sparsity in living systems. Sci. 
Rep. 2017;7:12323. doi:10.1038/s41598-017-12521-1.

52. Dunbar RIM. Neocortex size as a constraint on group 
size in primates. J Hum Evol. 1992;22:469–493. doi:10. 
1016/0047-2484(92)90081-J.

53. Harre M, Prokopenko M. The Social Brain: scale-invariant 
layering of Erdos-Renyi networks in small-scale human 
societies. J Roy Soc Interf. 2016;13:1–6. doi:10.1098/rsif. 
2016.0044.

54. Tibshirani R. Regression shrinkage and selection via the 
Lasso. J Roy Stat Soc. 1996;58:267–288. doi:10.1111/j. 
2517-6161.1996.tb02080.x.

55. Yuan M, Lin Y. Model selection and estimation in regres-
sion with grouped variables. J Roy Stat Soc B. 
2006;68:49–67. doi:10.1111/j.1467-9868.2005.00532.x.

56. Wang H, Leng C. A note on the adaptive group Lasso. 
Comput Stat Data Analy. 2008;52:5277–5286. doi:10. 
1016/j.csda.2008.05.006.

57. Zou H. The adaptive Lasso and its oracle properties. 
J Am Stat Assoc. 2006;101:1418–1429. doi:10.1198/ 
016214506000000735.

58. Magoc T and Salzberg S L. (2011). FLASH: fast length 
adjustment of short reads to improve genome assem-
blies. Bioinformatics, 27(21), 2957–2963. 10.1093/bioin 
formatics/btr507

59. Caporaso JG, Kuczynski J, Stombaugh J, 
Bittinger K, Bushman FD, Costello EK, Fierer N, 
Peña AG, Goodrich JK, Gordon JI, et al. QIIME 
allows analysis of high-throughput community 
sequencing data. Nat Methods. 2010;7:335–336. 
doi:10.1038/nmeth.f.303.

60. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 
UCHIME improves sensitivity and speed of chimera 
detection. Bioinformatics. 2011;27:2194–2200. doi:10. 
1093/bioinformatics/btr381.

61. Edgar RC. UPARSE: highly accurate OTU sequences 
from microbial amplicon reads. Nat Methods. 
2013;10:996–998. doi:10.1038/nmeth.2604.

62. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian 
classifier for rapid assignment of rRNA sequences into the 
new bacterial taxonomy. Appl Environ Microbiol. 
2007;73:5261–5267. doi:10.1128/AEM.00062-07.

63. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, 
Brodie EL, Keller K, Huber T, Dalevi D, Hu P, 
Andersen GL. Greengenes, a chimera-checked 16S 
rRNA gene database and workbench compatible with 
ARB. Appl Environ Microbiol. 2006;72:5069–5072. 
doi:10.1128/AEM.03006-05.

64. Tettamanti Boshier FA, Srinivasan S, Lopez A, 
Hoffman NG, Proll S, Fredricks DN, and Schiffer JT. 
Complementing 16S rRNA gene amplicon sequencing 
with total bacterial load to infer absolute species concen-
trations in the vaginal microbiome. mSystems. 2020;5: 
e00777–19. doi:10.1128/mSystems.00777-19.

GUT MICROBES e2106103-21

https://doi.org/10.1038/246015a0
https://doi.org/10.1016/j.jet.2009.01.007
https://doi.org/10.1016/j.jet.2009.01.007
https://doi.org/10.1098/rsfs.2014.0038
https://doi.org/10.1007/s00439-011-0960-6
https://doi.org/10.1093/bib/bbv002
https://doi.org/10.1093/bib/bbv002
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/s41598-017-12521-1
https://doi.org/10.1016/0047-2484(92)90081-J
https://doi.org/10.1016/0047-2484(92)90081-J
https://doi.org/10.1098/rsif.2016.0044
https://doi.org/10.1098/rsif.2016.0044
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1016/j.csda.2008.05.006
https://doi.org/10.1016/j.csda.2008.05.006
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/mSystems.00777-19

	Abstract
	Introduction
	Results
	Inferring ecologically functional microbial networks across gut space
	Reconstructing multilayer and multiplex microbial networks
	Spatial tracing of multilayer networks

	Discussion
	Conclusions
	Materials and methods
	Allometric scaling law
	Quasi-dynamic evolutionary game theory
	Sparse microbial networks
	Reconstructing microbial networks via maximum likelihood
	Topological dissection of microbial networks
	Inferring context-specific microbial networks
	Spatial mapping design
	Patient recruitment and ethics
	Sample collection and brush sampling
	DNA extraction and amplicon sequencing
	Bioinformatics analysis


	Acknowledgments
	Data and code availability statement
	Disclosure statement
	Funding
	Author contributions
	References

