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Cervical cancer as a common gynecological malignancy threatens the health and lives
of women. Resistance to radiotherapy is the primary cause of treatment failure and
is mainly related to difference in the inherent vulnerability of tumors after radiotherapy.
Here, we investigated signature genes associated with poor response to radiotherapy by
analyzing an independent cervical cancer dataset from the Gene Expression Omnibus,
including pre-irradiation and mid-irradiation information. A total of 316 differentially
expressed genes were significantly identified. The correlations between these genes
were investigated through the Pearson correlation analysis. Subsequently, random forest
model was used in determining cancer-related genes, and all genes were ranked by
random forest scoring. The top 30 candidate genes were selected for uncovering their
biological functions. Functional enrichment analysis revealed that the biological functions
chiefly enriched in tumor immune responses, such as cellular defense response,
negative regulation of immune system process, T cell activation, neutrophil activation
involved in immune response, regulation of antigen processing and presentation, and
peptidyl-tyrosine autophosphorylation. Finally, the top 30 genes were screened and
analyzed through literature verification. After validation, 10 genes (KLRK1, LCK, KIF20A,
CD247, FASLG, CD163, ZAP70, CD8B, ZNF683, and F10) were to our objective.
Overall, the present research confirmed that integrated bioinformatics methods can
contribute to the understanding of the molecular mechanisms and potential therapeutic
targets underlying radiotherapy resistance in cervical cancer.

Keywords: biomarkers, cervical cancer, radiotherapy resistance, bioinformatic, RNA sequencing data

INTRODUCTION

Cervical cancer is the fourth most common malignancy and the fourth leading cause of cancer-
related mortality in women globally (Barker et al., 2015; Doja et al., 2020; Sahu and Pattanayak,
2020). Among women between the ages of 20 and 39, cervical cancer is the second leading cause
of cancer deaths (Siegel et al., 2020). To date, approximately 80% of patients with cervical cancer
need radiotherapy in the process of treatment (Jemal et al., 2011). Radiotherapy resistance, also
known as radiosensitivity, remains a significant hurdle to cervical cancer therapeutics. Since 1999,
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the cisplatin-based concurrent chemoradiotherapy (CCRT) is
the standard of treatment for advanced cervical cancer (Rose
et al., 1999). Compared with radiotherapy alone, CCRT increases
patients’ local control rates and can improve prognosis. However,
cisplatin increases the incidence of acute hematological toxicity,
which may lead to the interruption of CCRT treatment and
poor prognosis in patients with cervical cancer (Green et al.,
2001; Dueñas-González et al., 2011; Bazan et al., 2013; Liu et al.,
2020). The 5 years survival rate for advanced cervical cancer
is still only 5–15% (Chopra et al., 2018). Therefore, exploring
the mechanisms underlying radiosensitivity at the molecular
level is the essential strategy for increasing long-term survival of
cervical cancer.

Resistance to radiotherapy can be intrinsic or acquired, but its
specific mechanism is not yet clear. As a promising predictive
application, bioinformatics has led to breakthroughs in the
field of medical research (Kanehisa and Bork, 2003; Wadlow
and Ramaswamy, 2005; Oliver et al., 2015; Tang et al., 2018;
Gauthier et al., 2019; Yang and Deng, 2020; Zhang, 2020; Zhang
et al., 2020b). For decades, many bioinformatics studies have
been performed to investigate radiotherapy resistance-related
mechanisms and detect molecular biomarkers (Zhang et al.,
2020c,d). However, in radiotherapy, a tumor may gradually adapt
to changes in physical and chemical environments and acquire
radiotherapy resistance (Baskar et al., 2012; Stapleton et al., 2017).
Reliable studies that focus on changes in gene expression during
radiotherapy treatment based on bioinformatics are few. Hence,
key genes for revealing molecular mechanisms to overcome
cervical cancer radiotherapy resistance according to genomic
changes should be identified.

In the current study, we acquired a cervical cancer-
associated gene expression dataset, comparing cervix cancer
tissue between pre-irradiation and mid-irradiation status to
investigate the phenomenon of changes in gene expression
during radiotherapy. Second, we performed gene expression
profile analysis and identification of differentially expressed
genes (DEGs). Correlations between these genes were discovered
through the Pearson correlation analysis. Subsequently, random
forest was used in optimizing risk genes. According to the
random forest scoring results, the top 30 genes were selected
as candidate genes for verification analysis. Finally, a total
of 10 signature genes were verified through comprehensive
literature searching as biomarkers for radiotherapy resistance in
cervical cancer.

MATERIALS AND METHODS

The whole designation was performed according to the flow
chart (Figure 1).

Microarray Data Collection and
Preprocessing
The gene expression profile was downloaded from the Gene
Expression Omnibus (GEO) database1 which includes a variety

1https://www.ncbi.nlm.nih.gov/gds/

FIGURE 1 | The overall workflow.

of gene expression status of public genomics data (Dueñas-
González et al., 2011). We retrieved the keyword “cervical cancer”
in this functional database to obtain relevant information about
radiotherapy resistance. The inclusion criteria were as follows:
(a) the sample was treated with CCRT and without neoadjuvant
chemotherapy; (b) number of samples were not less than 50; and
(c) sample data were reliable.

The raw GEO dataset of GSE3578 was downloaded as the
validation set. It had a total of 156 samples (78 pre-irradiation
and 78 mid-irradiation samples). The dataset was based on the
platform GPL2895, GE Healthcare/Amer sham Biosciences Code
Link Human Whole Genome Bio array. Next, we preprocessed
the data and converted each probe ID into a gene symbol. Probes
without corresponding or mapping to multiple gene symbols
were rejected to prevent ambiguity (Zhang et al., 2018).

Gene Expression Profile Analysis and
Identification of Differentially Expressed
Genes
The limma package was used in processing the downloaded
expression profile and converting and filtering unqualified data to
obtain DEGs (Ritchie et al., 2015; Liu et al., 2019b). The original
data were chip data, and thus the limma package was used for our
analysis. DEGs between the pre-irradiation and mid-irradiation
samples were identified, and a P value of <0.05 and | log2fold
change (FC)| of >0.5 were used as the cutoff thresholds.

Pearson Correlation Analysis
Pearson correlation analysis is a statistical method with powerful
functions for accurately analyzing gene or protein co-expression
correlations (Zhang et al., 2020a; Tang et al., 2021). In this study,
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it was used in assessing the relationships among the 316 DEGs
obtained. According to the results of the analysis, genes with
Pearson correlation coefficient threshold absolute values of >0.8
were selected as candidate genes.

Random Forest
Random forest is a generally acknowledged ensemble classifier
for machine learning and can exploit large data repositories for
the analysis of risk predictors and their intimate interactions and
advancement risk prediction capability (Yang et al., 2021). It was
used in evaluating cervical cancer candidate genes as the main
objects of our research (Nunn et al., 2012; Wang et al., 2018; Deng
et al., 2019b; Ru et al., 2019; Lv et al., 2020; Yang et al., 2020).
In the random forest setting, we divided the expression profile
data of 103 genes according to the properties of the samples
and considered the samples before radiotherapy as “good” and
the samples during radiotherapy “poor,” respectively. Then, 156
samples from GSE3578 were randomly divided into three groups.
One group (52 samples) was used as the training set, whereas the
other two groups (104 samples) were as the test sets. All samples
were used for random forest scoring (Rigatti, 2017; Wang and
Zhou, 2017).

Enrichment Analysis
Gene ontology (GO) enrichment was performed for the
annotation of the three types of functions of genes, namely,
biological process (BP), cytological component, and molecular
function (Peng et al., 2017; Deng et al., 2019a). The gene list
containing the top 30 scores in the random forest was regarded
as an input file and utilized for GO function enrichment in the R
package. On the basis of the reconstructed enrichment analysis,
the results of pathways on cervical cancer radiosensitivity
were further found.

Screening and Analysis of the Top 30
Genes
Medical literature retrieval is the basic and authoritative
verification method in the verification process. After obtaining
30 candidate genes, we extensively reviewed the literature to
determine whether the selected genes are indeed signature
genes for cervical cancer radiotherapy resistance. We retrieved
the name of the genes with the keywords “cervical cancer,”
“radiotherapy resistance,” “irradiation,” and “radiosensitivity” in
the databases to obtain relevant information about the top 30
genes. Ultimately, we obtained the signature genes for cervical
cancer radiotherapy resistance through comprehensive analysis.

RESULTS

Identification of Differentially Expressed
Genes
First, to investigate the radiosensitivity in cervical cancer, we
processed and converted the raw gene microarray expression
dataset GSE3578 associated with the cancer. We extracted 17,097
genes from the obtained microarray dataset. Significance analysis

with the limma package indicated that 316 DEGs were present in
the samples, of which 237 were obviously down-regulated and 79
were up-regulated.

Pearson Correlation Analysis of DEGs
Pearson correlation analysis was subsequently performed
between 316 differential genes for the assessment of the
association (Cheng et al., 2019). Genes with a correlation
coefficient threshold greater than 0.8 in absolute value were
selected on the basis of the results. The analysis results were
provided in Figure 2, and 103 genes met the threshold setting
requirements. All the small nodes were the differential genes we
calculated and each node represented a gene with a correlation
coefficient greater than 0.8. According to the Pearson correlation
coefficient, we obtained the correlations between genes, that
is, the greater the connectivity, the greater the node size of
the gene displayed.

Optimization of Candidate Genes With
Random Forest
Random forest classification is a universally accepted machine
learning procedure for regression tree classification and
regression and model prediction (Cheng et al., 2018; Sapir-
Pichhadze and Kaplan, 2020; Ubels et al., 2020; Zhao et al., 2020).
It was first proposed by Breiman in 2001. It takes advantage
of binary splits on predictor variables for value outcome
forecasts (Steffens et al., 2006). To achieve cervical cancer-related
candidate genes, we built a random forest model. We divided the
156 samples into three parts, of which one was the training set
(52 samples) and the other was the test set (104 samples). In the
test set, the “good group” contained 51 samples, meanwhile, the
“poor group” contained 56 samples. Regarding the differential
genes as features, the test set was classified by random forest
method. When the number of “ntrees” was 1,000, we obtained
the most ideal training result with a classification error rate of
9.62%, of which five cases were misclassified in the “good group”
and five cases were misclassified in the “poor group.” As the
results were obtained through the classification of the test set, we
regarded this classified procedure noble ideal.

Furthermore, we comprehensively utilized random forest
scoring on all samples to further verify the accuracy of our
data. The results revealed that the minimum error rate of the
classification results was only 1.92% and 78 samples were in
the “good group” and one was misclassified. The “poor group”
contained 78 samples, including two misclassified samples.
After several times of analysis, the error rate of random forest
classification results was less than 5%, indicating that the
differential genes as features can classify samples well. Therefore,
sample classification with the genes had a low error rate,
indicating that our classification results were of great significance
and had the potential as molecular markers of cervical cancer
radiotherapy resistance.

Mean decrease gini (MDG), one of importance measures in
random forest scoring, was employed to rank variables and for
variable selection. In this study, MDG marked the degree of
contributions of genes that could distinguish the characteristics
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FIGURE 2 | Results of Pearson correlation analysis. According to the Pearson correlation coefficient, we obtained the correlations between genes, that is, the
greater the connectivity, the greater the node size of the gene displayed.

of samples before and during radiotherapy. As a result, all genes
were sorted in descending order according to MDG, and the top
30 candidate genes for radiotherapy resistance in cervical cancer
were selected and shown in Figure 3.

Enrichment Functional Analysis of
Candidate Genes
To further uncover the molecular biology functions regulated
by the genes, the top-ranked 30 genes according to the
random forest scoring results were subsequently employed
for the functional analysis of BP. As shown in Figure 4,
the results indicated that biological functions were chiefly
enriched in the corresponding tumor immune process pathways
with the high fold overexpression, including cellular defense
response, negative regulation of immune system process, T
cell activation, neutrophil activation involved in immune
response, regulation of antigen processing and presentation, and
peptidyl-tyrosine autophosphorylation. These immune biological
functions are significantly correlated with the examination
of radiotherapy resistance. Researches on the radiotherapy
resistance of cervical cancer from the perspective of the tumor
immune microenvironment is extensive (Barker et al., 2015),
showing that tumor radiotherapy has a certain impact on tumor
microenvironment (TME), and changes in the TME, such as
the generation of tumor-associated macrophages (TAMs) and
cancer-associated fibroblasts can in turn affect the sensitivity of

radiotherapy (Chu et al., 2014; Zhang et al., 2017; Choo et al.,
2018). This shows that our enrichment results are very valuable.
Given that the satisfying pathways were enriched, we used the
results for the follow-up verification of the signature genes.

Validation of Candidate Genes in
Literature Retrieval
Considering the specific functions of the candidate genes in the
sensitivity of cervical cancer radiotherapy, we comprehensively
conducted a systematic medical literature search based on the
top 30 genes. After verification in the literature, the candidate
genes ranked 1, 5, 7, 9, 11, 13, 14, 18, 24, and 29 were confirmed
with relevant experiments with cancers, demonstrating that
these genes were our signature genes for cervical cancer
radiotherapy sensitivity. In details, Killer cell lectin like receptor
K1 (KLRK1), lymphocyte protein tyrosine kinase (LCK), kinesin
family member 20A (KIF20A), CD247 molecule (CD247), Fas
ligand gene (FASLG), CD163 molecule (CD163), zeta-chain
associated protein 70 (ZAP70), CD8b molecule (CD8B), zinc
finger protein 683 (ZNF683), and coagulation factor X (F10) were
the top 10 genes. The scores of the 11th and 13th genes were
closely associated to cervical cancer radiotherapy resistance, the
7th, 24th, and 29th genes were associated with cervical cancer, the
first gene was correlated with cervical intraepithelial neoplasia,
the 5th, 14th, and 18th genes were related to radiosensitivity
for other cancers, and the 9th gene was associated to tumor
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FIGURE 3 | Top 30 genes in random forest scoring results. All genes were sorted in descending order according to Mean decrease gini (MDG), and the top 30
candidate genes for radiotherapy resistance in cervical cancer were selected.

immune microenvironment. In conclusion, this suggests that
signature genes are expected to be biomarkers for cervical cancer
radiotherapy resistance based on RNA sequencing data.

DISCUSSION

Although radiotherapy for cervical cancer has been widely used,
the emergence of radioresistance has deeply affected its treatment
effect (Kaidar-Person et al., 2012; Han et al., 2021). Consequently,
overcoming the radiotherapy resistance of cervical cancer and
finding related accurate biomarkers are essential and urgently
needed. Different gene expression characteristics may lead to
different types of tumors with varying degrees of sensitivity to
radiotherapy (Jiang et al., 2017; Prevo et al., 2017; Zhou et al.,
2017). With the development of bioinformatics, gene expression
microarrays have been widely used in studying cancer-related
genes and considered promising tools for molecular prediction
(Cheng et al., 2017; Liu et al., 2019a; Xing et al., 2020).

In the present study, the data from GSE3578 were used
in identifying 316 DEGs, which we regarded as the origins.
The relationships among these genes were considered, and
Pearson correlation analysis was employed. A total of 103 genes
with correlation coefficient thresholds >0.8 in absolute value
were used for subsequent gene optimization. Identifying cancer-
related candidate genes through the random forest method

is important. The expression profile data of 103 genes were
classified according to the properties of the samples. Then, the
156 samples in GSE3578 were randomly divided into a training
set and two test sets, and all the samples were used for random
forest scoring. The error rate of sample classification based
on these genes was sufficiently small, which can help us to
distinguish between normal and disease samples.

Gene ontology term enrichment analysis was conducted using
the top 30 genes for the recognition of the roles of DEGs
in radiotherapy initiation and progression in cervical cancer.
The BP enrichment results were closely related to radiotherapy
resistance in cervical carcinoma, suggesting that cervical cancer
radiotherapy and immune system are mutually influential. That
is, these results showed the specific molecular mechanisms of
radiosensitivity in cervical cancer to a certain degree. According
to the enriched GO terms, these genes were selected for
subsequent verification and analysis. After thoroughly verifying
the above genes in the literature, we observed that 10 genes were
significant. These genes were selected as our signature genes for
cervical cancer radiotherapy sensitivity.

Many studies have been carried out on the 10 candidate genes,
and the ranking of the 11th and 13th genes were the most
meaningful for our purpose. First, the genes related to cervical
cancer or radiotherapy sensitivity were explored. FASLG, a type
II membrane protein in the tumor necrosis factor superfamily
of death receptors, can combine with and trimerize the death
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receptor Fas on cell surfaces and thereby activate authoritative
extrinsic pathways for apoptosis (Nagata, 1997; Fulda and
Debatin, 2006). Cervical cancer is sensitive to radiotherapy
because this gene has different levels of expression. Di et al. stated
that the proportion of the pro-apoptotic protein FASLG is up-
regulated by the radiotherapy sensitizer diallyl disulfide, which
induce the activation of the apoptotic pathway in HeLa cells; they
also showed that FASLG plays a direct role in the study of human
cervical cancer cell apoptosis induced by radiosensitizers (Fulda
and Debatin, 2006). In addition, radiotherapy plays an important
role in the adjuvant treatment of glioma cancer; Huang et al.
(2019) showed that the radiosensitivity of human glioma cells
increases through the FASLG expression-associated signaling
pathway. FASLG may be a candidate signature for the mechanism
of radiotherapy response in cervical cancer.

Changes in the TME are closely related to the biological
effects of radiation and are important factors that affect the
sensitivity of tumor cells to radiotherapy (Barker et al., 2015).
CD163, one of the immune cell markers for macrophages in the
TME, is often used in determining M1 and M2 macrophages
(de Vos van Steenwijk et al., 2013). The biological behavior of
FASLG is closely correlated with the radiosensitivity of cervical
cancer. Lippens et al. (2020) found that patients with reducing
CD163 scores showed more pathological complete response,
besides, patients with high levels of CD163 cells before treatment
that were decreased after therapy had better prognosis. Another
study focused on impacts on TME subjected to radiotherapy
against head and neck squamous cell carcinoma and pointed
out the up-regulation of M2 macrophage-related genes (CD163
and CD206) in irradiated tumors (Moreira et al., 2021). M2
phenotype TAMs are associated with decrease in disease-free
survival in advanced breast cancer, and the M2-shifted subgroup
is unsuitable for partial breast irradiation (Schnellhardt et al.,
2020). Radiation therapy, in addition to killing cancer cells, affects
the TME, particularly contributing to tumor blood vessel damage
and immunosuppressive pathway activation (Jarosz-Biej et al.,
2019). The accumulation of cells can lead to the suppression of
radioactive response specifically in TAMs with the M2 phenotype,
which facilitates the survival of cancer cells (Fridman et al., 2017).
Previous reports and our results have pointed out that CD163
may have a key role in exploring the effectiveness of radiotherapy
in cervical cancer radiotherapy.

Four of the 10 candidate genes have been studied in
cervical cancer, but their correlations with cervical cancer
radiotherapy is unclear (Verhey and Hammond, 2009). KIF20A
has a microtubule-dependent force, participating in different
cellular processes, such as the formation of the biological
behavior of spindle structures and chromosome composition.
Overexpressed KIF20A increases the risk of cervical cancer.
Through bioinformatics methods and meta-analysis, KIF20A
expression was found to significantly vary among 363 normal
tissues and cervical cancer tissues and thus considered correlated
with cervical cancer development (Wu et al., 2018). He et al.
(2020) detected the gene and protein expression levels of
KIF20A and found that the up-regulation of KIF20A expression
is positively associated with the proliferation and invasion of
cervical cancer cells. KIF20A affects the proliferation, migration,

and invasion of cervical cancer by participating in a new type
of circ_0005576/miR-153-3p/KIF20A axis (Ma et al., 2019),
and KIF20A expression is involved in HPV infection, clinical
stage, tumor recurrence, pelvic lymph node metastasis, and
poor outcomes in early-stage cervical squamous cell cancer
(Zhang et al., 2016). Thus, aberrant KIF20A expression is a
potential independent prognostic factor for cervical cancer and
is correlated with other cancers; for instance, radiation resistance
may be enhanced partly by inducing the expression of KIF20A
(Xiu et al., 2018). Irradiation-induced IF20A overexpression is
associated with liver fibrosis, and KIF20A is associated with
advanced pancreatic cancer (Taniuchi et al., 2005). Therefore,
KIF20A-targeted treatment may be of great significance and may
serve as a potential method for cervical cancer or its radiotherapy.

ZNF683, as a transcription factor, disrupts transcriptional
processes in tissue-resident memory T and natural killer T
cells, supplying immune protection when the body is re-infected
(Van Gisbergen et al., 2012; Mackay et al., 2016). Liu et al.
(2018) conducted analysis to clarify the potential mechanism
of biological behavior factors that cause cervical cancer. Their
results elucidated that the ZNF683 mRNAs are linked to the
GO term “adaptive immune response.” This result is consistent
with ours. In our study, based on the gene list of the top 30
scores in the random forest model, GO function enrichment
was constructed using the R package for the prediction of
pathways on cervical cancer radiosensitivity and pathways related
to immune response. ZNF683 probably mediated the regulation
of immune response in malignant cervical cancer. F10 gene may
lead to the malignant transformation of the hydatidiform mole
and occurrence of gynecological malignancies (Zhang and Pang,
2017). In patients with F10 overexpression, poorly differentiated
cervical cancer tissues are higher in proportion compared with
well-differentiated cancer tissues, and the negative correlation
may be related to the occurrence and development of cervical
cancer. KLRK1 encodes NKG2D, serving as an activating
receptor expressed by NK cells and T cell subsets (Raulet, 2003).
KLRK1 was thought to promote cervical cancer and CIN lesion
susceptibility in 195 patients from southern Brazil.

Although not related to cervical cancer, most of the other
parts of the genes we obtained through bioinformatics analysis
were found to be related to radiosensitivity for other cancers.
LCK was verified as a member of the Src family of non-receptor
tyrosine kinases (Veillette et al., 1991). In Chinese hamster V79
cells, the expression of LCK gene is a key response to ionizing
radiation-induced apoptosis and increases with radiation dose
and incubation period. The Src-like tyrosine kinase p56/Lck
is involved in the regulation of apoptosis caused by ionizing
radiation. Similarly, in radioresistant B-lymphoma cells, p56/Lck
promotes radiation-associated cell apoptosis (Waddick et al.,
1993; Belka et al., 1999). The B-cell receptor-associated Src-like
kinase Btk exhibits this function in B cells (Uckun et al., 1996).

ZAP70 is involved in T cell receptor signal transduction. The
ability of T lymphocytes to convert signals to the nucleus is
essential to the initiation and preservation of immune response,
and the stimulation of T-cell receptors requires ligands to
stimulate events in cells organized by ZAP70 and other proteins
(Mozaffari et al., 2007). According to our results, ZAP70 plays

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 August 2021 | Volume 9 | Article 724172

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-724172 July 28, 2021 Time: 13:48 # 7

Feng et al. Biomarkers for Cervical Cancer Radiotherapy

FIGURE 4 | Enrichment analysis results of biological process (BP) was constructed by R package. The biological functions chiefly enriched in tumor immune
responses.

an important role in radiotherapy-related immune response
pathway. Similarly, a longitudinal study focused on immunologic
system effects of adjuvant chemotherapy and radiotherapy in
breast cancer showed that regulatory T cells and ZAP70 remain
in their low grade forms after adjuvant chemoradiotherapy.
In radiotherapy for colorectal cancer, through RNA extraction
and following bioinformatic analysis, overexpressed ZAP70 was
found to influence prognostic factors, such as tumor size
and lymph node metastasis and differentiation; this finding
showed that ZAP70 gene may act as a sensitivity biomarker
for radiotherapy in colorectal cancer (Huang et al., 2011). Most
of our information about PD-1 signaling was obtained through
the exploration of activated T cells. In addition, the inhibition
of ZAP70 impedes the activation of transcription factors in
PD-1 signaling transduction during the stimulation of T cells
(Wu et al., 2019).

As for CD247 and CD8B, related reports have been published.
Mori et al. (2021) performed univariate experiments and
analysis and found that reduction in PD-L1 mRNA/CD8B
mRNA in tumor tissues may be a specific prognostic factor for
salvage surgery for local recurrence after definitive concurrent
radiotherapy and chemotherapy. CD247, also called CD3z-chain
or TCR-Z, is a 16 kDa molecule participating in the TCR complex
(Germain and Stefanová, 1999). Abnormal CD247 causes the
irregular stimulation of T cells upon appointment with the
TCR. CD247 down-regulation in TILs and peripheral blood
lymphocytes is related to several types of cancers, including
gastric carcinoma, head and neck cancer, and ovarian cancer,

suggesting that CD247 is a therapeutic target for these cancer
types (Ishigami et al., 2002; Ye et al., 2019). However, the
relationships of the four genes with cervical cancer are rarely
investigated despite that they may play vital role in cervical
cancer. Additional tests are needed to verify the mechanism of
these genes in the radiosensitivity of cervical cancer.

We employed Pearson correlation analysis to assess the
meaningful relationships among the DEGs. Random forest was
used in revealing the error rate of classifying samples. The results
are satisfying and suitable for distinguishing cervical cancer-
related genes from the samples. The results of the top 30 gene
enrichment pathways have been verified by medical literature
search to confirm their correlation with the sensitivity of cervical
cancer radiotherapy, indicating that our results are precise.
Notably, the medical literature search further confirmed that the
expression levels of the 10 risk genes are associated with cervical
cancer radiotherapy response or different types of tumors to a
certain degree. Hence, the results suggested that our analytical
application is of great value in identifying radiotherapy resistant
molecular biomarkers for cervical cancer.

However, our current study has limitations and drawbacks.
In this research, we verified the top 30 genes through literature
searching because this method is highly comprehensive and can
be easily conducted. In subsequent studies, we will perform
accurate experimental techniques in pre-irradiation and mid-
irradiation cervical cancer cell lines to validate the mRNA and
protein expression levels of the 10 signature genes in cervical
cancer. According to the results of BP analyses, we concluded
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that our candidate genes were mainly abundant in the immune
responses of tumors, which is a new perspective for our further
study of the mechanisms. We will preserve on valuable researches
of cervical cancer radiotherapy resistance to explore the potential
therapeutic targets for it.
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