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Use of peptide-based vaccines as therapeutics aims to elicit immune responses

through antigenic epitopes derived from tumor antigens. Peptide-based vaccines are

easily synthesized and lack significant side-effects when given in vivo. Peptide-

based vaccine therapy against several cancers including urological cancers has made

progress for several decades, but there is no worldwide approved peptide vaccine.

Peptide vaccines were also shown to induce a high frequency of immune response

in patients accompanied by clinical efficacy. These data are discussed in light of the

recent progression of immunotherapy caused by the addition of immune checkpoint

inhibitors thus providing a general picture of the potential therapeutic efficacy of

peptide-based vaccines and their combination with other biological agents. In this

review, we discuss the mechanism of the antitumor effect of peptide-based vaccine

therapy, development of our peptide vaccine, recent clinical trials using peptide vac-

cines for urological cancers, and perspectives of peptide-based vaccine therapy.
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1 | INTRODUCTION

Although immunotherapy for urological cancers is not a new treat-

ment,1 recent clinical advances have confirmed the value of

immunotherapy as a urological cancer treatment. Use of therapeutic

cancer vaccines for prostate cancer and ICI for RCC and UC is

providing evidence that immune-based treatments may drastically

improve survival or the antitumor effect for patients with advanced

urological cancers. In the field of cancer immunotherapy, increasing

attention has been focused on the use of cancer vaccines that acti-

vate T cells to treat growing tumors.2

The development of peptide-based vaccines has taken more than

20 years. A vaccine specific for tumor antigens may have wide appli-

cation and utility in the prevention of recurrence in numerous differ-

ent malignancies. Peptide-based vaccines are designed to elicit

specific T cells against antigens selectively expressed by tumor cells.3

Peptide-based vaccines might prolong overall survival rate and spare

normal tissue because of its low toxic effect. Table 1 shows more

recent clinical trials using peptide-based vaccine therapy in urological

cancers. Although peptide-based cancer vaccines have sometimes

shown survival advantages with few adverse side-effects, this
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immunotherapy as a monotherapy is considered to be insufficient to

elicit durable control of cancers and cures. Until now there is not

the peptide vaccine therapy which showed efficacy in Phase 3 trial

including urological cancers. Combination immunotherapy with pep-

tide-based cancer vaccines and immune-checkpoint blockade thera-

pies are designed concurrently to activate tumor-specific immune

responses.14

In this review, we introduce the mechanism of peptide-based

vaccine therapy, recent clinical trials for urological cancers using pep-

tide vaccines, and perspectives of peptide-based vaccine therapy.

2 | MECHANISM OF ANTITUMOR EFFECT
BY PEPTIDE-BASED VACCINES

Tumor-associated antigens are expressed in tumor cells and can be

recognized by T lymphocytes, resulting in activation of the immune

system.15 A TAA peptide vaccine, when injected into cancer patients,

binds with the restricted MHC molecule expressed in APC.16 The pep-

tide/MHC complex is then transported to the cell surface after intra-

cellular processing and is recognized by the TCR on the surface of T

cells, leading to activation of T lymphocytes.17 Therefore, a peptide

cancer vaccine may elicit a specific immune response against tumors.

Because CTL have the ability to recognize TAA-derived CTL epi-

tope peptides consisting of 8-10 amino acids (SP) in the context of

HLA class I molecules expressed on malignant cells and kill them, many

cancer immunotherapies have focused primarily on how to activate

the CTL to attack malignant cells. To develop effective CTL-mediated

cancer vaccines, many HLA class I-binding SP derived from various

TAA have been identified for clinical application as cancer vaccines.18-

20 Accumulating these clinical data of several SP-based cancer vacci-

nes has shown that SP given as cancer vaccines can indeed elicit

tumor-targeting immune responses of CTL in cancer patients. How-

ever, in spite of the detection of vaccine-induced T-cell responses,

these immune responses were rarely associated with antitumor effects

of cancer vaccines, and the effects of SP-based cancer vaccines have

been limited to a small fraction (<10%) of cancer patients.21,22 These

failures may be a result of many factors, including poor immunogenic-

ity of TAA, immune escape of tumor cells, and tumor heterogeneity.23

Vaccination with HLA class I-restricted SP alone does not always

elicit a sufficient immune response to induce effective antitumor

immunity.21 One of the causes for this ineffectiveness of SP-based

cancer vaccines is considered to be the induction of immunological

tolerance in CD8+ T cells. SP can induce tolerance or anergy of

CD8+ T cells when they are presented by HLA class I molecules

expressed on non-professional APC because of the lack of signaling

TABLE 1 Recent clinical trials using peptide-based vaccine therapy in urological cancer

Disease status Setting Peptide Phase HLA genotype
Total no.
patients

Immunological
response OS G3-4 AE References

Advanced CRPC Resistant to

docetaxel

chemotherapy

CDCA1 PI A24 12 66.7 11 0 4

Advanced CRPC Resistant to

docetaxel

chemotherapy

PPV PII A2/A24/

A3sup/A26

42 44 17.8 0 5

Advanced CRPC Pre-docetaxel

chemotherapy

PPV PII A2/A24 57 64 22.4 0 6

Early CRPC Pre-docetaxel

chemotherapy

PPV PII A2/A24/A3sup 37 Unknown 73.9 0 7

Metastatic RCC Resistant to

cytokine or TKI

HIG2 PI A2 9 88.9 25.8 0 8

Metastatic RCC Resistant to

cytokine or TKI

VEGFR1 PI A2/A24 18 83.3 21 0 9

Metastatic RCC First line IMA901

(+ sunitinib)

PIII A2 204 Unknown 33.17 55% 10

Advanced UC Resistant to

platinum-based

chemotherapy

PPV PI A2/A24 10 80 24 0 11

Advanced UC Resistant to

platinum-based

chemotherapy

S-288310 PI/II A24 38 88.9 9.4 G3 9.4% 12

Advanced UC Resistant to

platinum-based

chemotherapy

PPV PII A2/A3/A11/

A24/A26/

A31/A33

39 45 7.9 G3 17% 13

CDCA1, cell division associated 1; CRPC, castration resistant prostate cancer; G3, grade 3; G3-4 AE, grade 3-4 adverse event; HIG2, hypoxia-inducible

protein 2; HLA, human leukocyte antigen; OS, overall survival; PPV, personalized peptide vaccine; RCC, renal cell carcinoma; TKI, tyrosine kinase inhibi-

tor; UC, urothelial cancer; VEGFR1, vascular endothelial growth factor receptor 1.

OBARA ET AL. | 551



from costimulatory molecules,21,24 whereas an extended LP encom-

passing several epitopes recognized by both CTL and T-helper cells

may overcome this problem because LP cannot bind directly to HLA

class I molecules expressed on non-professional APC because of

their long amino acid sequence. After injection of an LP, professional

APC, such as DC, take up the LP, process it, then present CTL and

T-helper cell epitopes in the context of HLA class I and HLA class II

molecules, respectively.21

3 | DEVELOPMENT OF PEPTIDE VACCINE
THERAPY USING ONCOANTIGEN

Figure 1 shows the development of peptide vaccine therapy for sev-

eral urological cancers. We reported a genome-wide expression pro-

file analysis of urological cancers using cDNA microarray, and

identified several TAA.25-28 These TAA have been shown to be fre-

quently overexpressed in various cancer tissues including urological

cancer. We defined these TAA as oncoantigens, which are shown to

be essential for tumor growth/survival. Hence, cancer cells are unable

to escape from the immune attack from CTL because the loss of their

expression leads to the death of cancer cells. As a result of these rea-

sons described above, vaccines we developed are expected to show

better clinical efficacy than previously used antigens. In order to iden-

tify the epitope peptide corresponding to oncoantigens, we apply the

“BIMAS” program for prediction of possible peptide fragments that

would bind to the HLA-A molecule. According to the prediction pro-

gram, we synthesized many oncoantigen-derived candidate peptides.

Through experiments using human lymphocytes, we identified that

specific peptides could induce potent CD8+ T-cell responses, and

established oncoantigen-derived peptide-specific CTL clones. To fur-

ther examine CTL responses to the HLA-A matched cells that express

oncoantigens, we constructed plasmid clones designed to express

HLA-A matched oncoantigens, and transfected into COS7 cells. The

oncoantigen-specific CTL clones produced a substantial amount of

IFN-c. Moreover, IFN-c production was observed when oncoantigen-

specific-CTL clones were mixed with HLA-A-positive cancer cells with

endogenous expression of oncoantigens. These results strongly indi-

cated that vaccination with oncoantigen-derived peptides can induce

specific CTL potently cytotoxic to HLA-A matched cancer cells

expressing oncoantigen. Thus, we identified several oncoantigen-

derived epitope peptides by measuring the induction of activation of

specific CTL.29-31 We have also tested these peptides in clinical inves-

tigations against several urological cancers.

4 | PROSTATE CANCER

A greater understanding of basic immunological principles and

advances in immunological and molecular techniques led to the

development of therapeutic cancer vaccines for prostate cancer. Sip-

uleucel-T (Provenge) was the first cancer vaccine approved by the

FDA for the treatment of CRPC in 2010.32 This agent is designed to

work, at least in part, by generating or augmenting an antitumor

immune response. Sipuleucel-T, an autologous cellular therapy,

showed an OS benefit of 4.1 months in patients with asymptomatic

or minimally symptomatic CRPC (25.8 vs 21.7 months for placebo).

Recently, a subsequent analysis suggested that patients in the pla-

cebo group who were later given cryopreserved immune cells as part

of a planned crossover may have performed better clinically than

would have been expected.33 Therefore, the results of the phase III

study may have underestimated the actual therapeutic benefit. There

has been remarkable progress in cancer immunotherapy using anti-

CTLA4 antibody for prostate cancer. However, a phase III trial using

anti-CTLA4 antibody (ipilimumab) for CRPC patients showed no sig-

nificant difference between the ipilimumab group and the placebo

group in terms of overall survival.34

Fenoglio et al35 confirmed the safety and immunological

response against prostate cancers by using a multipeptide, dual-adju-

vant telomerase vaccine called GX301, which is composed of four

telomerase peptides (peptide 540-548, peptide 611-626, peptide

672-686, and peptide 766-780) and two adjuvants, MontanideISA-

51 and Imiquimod. Another approach is a PPV, which uses multiple

tumor-associated antigens based on the pre-existing host immunity.

Two phase II studies have been reported in patients post-docetaxel,6

with one showing a longer OS time.5 Recently, another phase II

study showed a delay in PFS of PSA in patients with chemotherapy

na€ıve CRPC.7 Thirty-seven patients received peptide vaccinations

and 35 received dexamethasone alone. PSA PFS was significantly

longer in the vaccination group than in the dexamethasone group

(22.0 vs 7.0 months; P = .0076). Median OS was also significantly

longer in the vaccination group (73.9 vs 34.9 months; P = .00084).

F IGURE 1 Overview of developed peptide vaccine treatment by
our strategy. We constructed a genome-wide expression profile of
bladder cancer using cDNA microarray, and identified several
oncoantigens. We subsequently detected that stimulation using
human leukocyte antigen (HLA)-A-restricted oncoantigen-derived
epitope peptides induces specific CTL. We conducted a clinical study
using these novel peptide vaccines for patients with urological
cancer. CDCA1, cell division associated 1; DEPDC1, DEP domain-
containing 1; HIG2, hypoxia-inducible protein 2; MPHOSPH1,
M-phase phosphoprotein 1
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The researchers suggested that early-stage CRPC with PS of 0 or 1

and PSA <10 ng/mL may receive preferable clinical benefits from

peptide vaccine treatment. A randomized phase III study is now pro-

gressing for patients with early-stage CRPC.

We previously identified CDCA1, which was also overexpressed

in various cancers including prostate cancer.25 We screened and

identified an HLA-A*2402-restricted epitope peptide, CDCA1-A24-

56-64, that has a high antigenic activity to induce CTL.29 Recently,

we reported a phase I clinical trial for patients with CRPC using a

CDCA1 peptide vaccination.4 Twelve patients having HLA-A*2402

with CRPC after failure of docetaxel chemotherapy were enrolled.

They received s.c. administration of the CDCA1 peptide as an emul-

sion with Montanide ISA 51 VG once a week in a dose-escalation

method (doses of 1.0 or 3.0 mg/body, 6 patients received each

dose). Primary endpoint was safety, and secondary endpoints were

immunological and clinical responses. Vaccination with CDCA1 pep-

tide was well tolerated without any serious adverse events (AE).

Peptide-specific CTL responses using ELISPOT assay and dextramer

assay were observed in three patients receiving the 1.0 mg dose and

in five patients receiving the 3.0 mg dose (Figure 2). Median overall

survival was 11.0 months and specific CTL reacting to CDCA1 pep-

tide were recognized in long-surviving patients. CDCA1-derived pep-

tide vaccine treatment was tolerable and might effectively induce

peptide-specific CTL for CRPC patients. This oncoantigen-derived

peptide vaccine therapy might also provide clinical benefit by

extending survival and maintaining the quality of life of CRPC

patients. In future, a randomized, controlled clinical trial will be

essential to show the clinical benefits.

5 | RENAL CELL CARCINOMA

Renal cell carcinoma is an immunologically sensitive tumor. Cytokine

therapy, as IFN-a and IL-2, was the main treatment of metastatic

F IGURE 2 Representative cell division associated 1 (CDCA1) peptide-specific CTL responses. (A) Cultured lymphocytes were subjected to
Enzyme-Linked ImmunoSpot (ELISPOT) assay after depletion of CD4-positive cells by magnetic beads. (B) TISI cells were incubated with
responder cells in the presence of CDCA1 peptide or HIV peptide as an irrelevant control, and the spot counts were quantified. (C) Cultured
lymphocytes were analyzed with human leukocyte antigen (HLA)-A2402/HIV-dextramer prevaccination (left) or HLA-A2402/CDCA1-dextramer
(right) combined with anti-CD8 and -CD3 mAbs by flow cytometry. Value of dextramer (+)/CD8(+) cells among CD3(+) cells is shown. R/S,
responder/stimulator
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RCC until approval of molecular-targeted medicines. Recently, nivo-

lumab (anti-PD-1) showed an OS benefit in patients previously trea-

ted with TKI for metastatic RCC, which led to approval.36

Several RCC-associated antigens as well as HLA class I-restricted

epitope peptides have previously been reported.37 However, only a

limited number of clinical studies using the peptide-based vaccine

for RCC have been reported,9,38-43 and the clinical benefit of vaccine

therapy for RCC is likely to be limited to a small subset of patients.

More recently, Minami et al44 reported that HIF-1a-derived peptides

can induce RCC-reactive CTL from HLA-A24+ RCC patients. Among

five peptides derived from HIF-1a, a HIF-1a278-287 peptide

induced peptide-specific CTL from peripheral blood mononuclear

cells of HLA-A24+ RCC patients most effectively.

We previously reported HIG2 as an oncofetal protein that was

highly expressed in RCC and fetal kidney as determined by genome-

wide expression profile analysis.26 Because HIG2 expression was

specific to RCC and had an expression that was hardly detectable in

normal organs, we considered HIG2 to be a good candidate for the

development of molecular-targeted therapies against RCC. We

screened and identified a human leukocyte antigen (HLA)-A*0201/

0206-restricted epitope peptide, named HIG2-9-4 peptide, that

could have a high antigenic activity to induce CTL.30 Recently, we

reported a phase I clinical trial using the HIG2-9-4 peptide for

patients with advanced RCC.8 Nine patients having HLA-A*02 with

metastatic or unresectable RCC after failure of the cytokine and/or

TKI therapies were enrolled in this study. The patients received s.c.

administration of the peptide as an emulsion form with Montanide

once a week in a dose-escalation method. HIG-2 derived peptide

vaccine therapy was well tolerated without severe AE. Peptide-spe-

cific CTL responses were detected in eight of the nine patients.

Doses of 1.0 or 3.0 mg/bodyweight seemed to induce a CTL

response better than did a dose of 0.5 mg/bodyweight. Disease con-

trol rate was 77.8%, and median PFS was 10.3 months (Figure 3).

HIG2-9-4 peptide vaccine treatment was tolerable and effectively

induced peptide-specific CTL in RCC patients. This novel peptide

vaccine therapy for RCC seems to be promising.

6 | UROTHELIAL CANCER

Intravesical BCG therapy against bladder cancer, which has been

used for a long time, is a non-specific immunotherapy and is known

F IGURE 3 Hypoxia-inducible protein 2 (HIG2) peptide vaccine therapy for advanced renal cell carcinoma. (A) Chest computed tomography
shows multiple lung metastases as indicated by arrows before the vaccine treatment. After 2 and 12 courses of peptide vaccine treatment,
sizes of multiple lung metastases were unchanged. (B) HIG2-9-4-specific CTL response after one course of vaccine treatment. MST; median
survival time, R/S ratio; responder/stimulator ratio. Kaplan-Meier estimates of (C) progression-free survival and overall (D) survival on HIG2
peptide vaccine therapy
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to activate a cellular immune response. More recently, atezolizumab

(anti-PD-L1) and nivolumab (anti-PD-1) in patients with mUC who

had progressed on platinum-based chemotherapy showed a high

response rate and longer survival effect. Based on these trials, FDA

approved these immune checkpoint inhibitors for the treatment of

mUC progressing after platinum-based chemotherapy.45,46

As for peptide vaccine therapy, Matsumoto et al reported a phase

I study of PPV for advanced urothelial carcinoma patients who failed

treatment with MVAC. Ten patients with MVAC-refractory advanced

or metastatic UC were treated with weekly PPV 12 times using posi-

tive peptides chosen from 14 and 16 peptides in patients with HLA

A24 and A2, respectively. The peptide vaccination was safe and well

tolerated with no major adverse effects. Increased CTL response and

antipeptide IgG titer were seen in post-vaccination sera in eight

patients.11 More recently, Noguchi et al13 reported a randomized

phase II trial of PPV in patients with bladder cancer that progressed

after platinum-based chemotherapy. Eighty patients were randomly

assigned to receive either PPV plus BSC (n = 39) or BSC only

(n = 41). No significant improvement in PFS was noted. For the

secondary endpoints, PPV plus BSC significantly prolonged OS com-

pared with BSC only, with median OS of 7.9 months in the PPV plus

BSC group and 4.1 months in the BSC-only group. PPV treatment

was well tolerated, without serious adverse drug reactions.

We have previously reported two novel oncoantigens, DEP

domain-containing 1 (DEPDC1) and M-phase phosphoprotein 1

(MPHOSPH1), through expression profile analysis of bladder can-

cers.27,28 HLA-A*24:02-restricted epitope peptides from these anti-

gens have been shown to induce strong CTL, which were able to

kill tumor cells expressing these antigens in a HLA-restricted way.31

More recently, we reported a phase I/II study using these peptide

vaccines in advanced UC patients who were resistant to cisplatin-

based chemotherapy, as a sponsored initiated clinical trial (Fig-

ure 4).12 S-288310, a cancer peptide vaccine composed of two

HLA-A*24:02-restricted peptides derived from two oncoantigens

was investigated. Thirty-eight HLA-A*24:02-positive patients with

progressive UC were enrolled in this study. In the phase I part of

the study, three patients each were treated with S-288310 at 1 mg

or 2 mg/peptide s.c. once a week to evaluate safety and tolerability.

F IGURE 4 M-phase phosphoprotein 1 (MPHOSPH1) and DEP domain-containing 1 (DEPDC1)-derived peptide vaccine therapy for
advanced bladder cancer. (A) Time-dependent dynamics of CTL induction rate in patients showing positive CTL activity to either one of the
two peptides. (B) Chest computed tomography images show durable tumor shrinkage of multiple lung metastases until 28 wk. (C) Subgroup
analysis, Kaplan-Meier curve for survival by number of lines of prior chemotherapy. (D) Landmark analysis, Kaplan-Meier curve for survival by
number of peptides with CTL induction. Double positive means patients in whom CTL induction to both peptides was observed; Single
positive, those showing CTL induction to one peptide; Negative, patients showing no CTL induction
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In the phase II part, 32 patients were randomized to receive either

1 mg or 2 mg to evaluate the difference in CTL induction and

safety. S-288310 was safe and well tolerated. There was no differ-

ence in CTL induction rate between the 1-mg (100%) and the 2-mg

(80.0%) groups. Of the 32 patients receiving S-288310 in the phase

II part, the most frequent drug-related AE was an injection site reac-

tion that was observed in 29 patients (90.6%), but none of the

patients discontinued treatment as a result of these reactions and

no dose relationship in the frequency and severity was observed.

Objective response rate of the 32 patients was 6.3% and disease

control rate was 56.3%. Median OS rates for patients vaccinated

with S-288310 after one regimen of chemotherapy, two regimens,

or three or more were 14.4, 9.1 and 3.7 months, respectively, and

32.2% of patients post first-line treatment were alive at 2 years. OS

of patients who showed CTL induction to both peptides was longer

than that of those with CTL induction to no or one peptide. We

concluded that S-288310 was well tolerated and effectively induced

peptide-specific CTL, which were correlated with longer survival for

patients with UC of the bladder. Our findings support the concept

of cancer peptide vaccine to prime antitumor responses and warrant

further clinical trials.

7 | COMBINATION THERAPY USING
PEPTIDE-BASED VACCINE

The best combination appears to be that involving immunomodula-

tory agents47 which can amplify T-cell expansion over time and

increase the duration of the effect of vaccination.48 In fact, the only

peptide-based successful phase III trial included a combination of the

gp100 peptide and a high dose of IL-2 in metastatic melanoma

patients49 that was crucial for the in vivo maintenance and expan-

sion of T cells induced by the peptide. These immunotherapeutic

combinations are being tested in several phase I-II trials by different

groups of researchers worldwide in the hope of increasing the clini-

cal efficacy of cancer vaccination.

A new and promising area of studies is the combination of pep-

tide vaccines with other biotherapeutics such as immunomodulating

or antivascular antibodies,48,50 and even radio/chemotherapy.51

IMA901 is a therapeutic vaccine consisting of nine different HLA

class I-binding tumor-associated peptides and one HLA class II-bind-

ing tumor-associated peptide.52 Genes targeted by peptides con-

tained in IMA901 were chosen on the basis of their strong

overexpression on renal tumor cells compared with normal cells.53

As IMA901 contains ten different tumor-associated peptides, it is

intended to induce expansion of multiple T cells with different anti-

gen specificities. These T-cell responses are expected to circumvent

the ability of tumors to adapt to and evade a cytotoxic T-cell

response. Furthermore, co-application of immunological adjuvants

with tumor-associated peptides is crucial to elicit a strong and sus-

tained immune response against tumor cells. GM-CSF indirectly stim-

ulates T-cell responses against these tumor-associated peptides by

attracting and stimulating DC in skin loaded with tumor-associated

peptides upon vaccination. Results from several clinical trials54 of

multipeptide vaccine for resected stage II melanoma, mostly with

known melanoma peptides, showed that the addition of GM-CSF

resulted in better T-cell responses than the peptide alone or in com-

bination with other immunomodulators. Additionally, evidence from

clinical studies55,56 suggests that low-dose cyclophosphamide given

before vaccination is of benefit to patients with cancer, most likely

through inhibition of regulatory T cells and subsequent enhanced

immune responses, or clinical response to vaccination, or both. In

the past decade, results from in vitro experiments and animal studies

showed positive immunomodulatory effects of cyclophosphamide on

DC, APC, tumor-infiltrating cells, and myeloid-derived suppressor

cells.10

Recently, a phase III open-label trial in metastatic RCC patients

that used IMA901 vaccine was reported.10 Before the start of this

trial, findings from in vitro and in vivo models57,58 showed that suni-

tinib concentrations similar to those measured in the serum of suni-

tinib-treated patients do not interfere with the capacity of APC to

induce potent T-cell responses and to stimulate T-cell proliferation.

Moreover, levels of immunosuppressive regulatory T cells in the

blood are reduced after treatment with sunitinib in mice and in the

peripheral blood of patients with RCC.58 Thus, sunitinib was consid-

ered a suitable candidate for immunotherapeutic combinations on

the basis of its established antitumor effect in RCC and potentially

favorable immune modulatory properties. As a first-line setting fol-

lowing one cycle of sunitinib, patients were randomized 3:2 for up

to 10 intradermal vaccinations of IMA901, a peptide vaccine, plus

75 lg GM-CSF plus sunitinib versus sunitinib alone. Patients in the

vaccination arm were given a single infusion of cyclophosphamide

before the first vaccination to reduce regulatory T cells. Three hun-

dred and thirty-nine patients were randomized to treatment of

sunitinib plus IMA901 (n = 204) or sunitinib monotherapy (n = 135).

Mean number of vaccinations received was 9.3, and 162 (80%) of

202 patients in the safety population received all 10 scheduled vac-

cinations with IMA901 and GM-CSF. Unfortunately, median OS did

not differ significantly between the groups (33.17 months in the

sunitinib plus IMA901 group vs not reached in the suni-

tinib monotherapy group; P = .087). Similarly, data for PFS

(15.22 months vs 15.12 months), objective tumor response (36% vs

42%), and safety did not show relevant differences between the

groups. IMA901 has an acceptable safety profile overall, and fre-

quencies of treatment-emergent AE were similar in both groups.

Transient injection site reactions (eg erythema and pruritus) were

the most frequent AE related to IMA901. No significant differences

in any AE with a frequency of greater than 5% were seen between

the groups. IMA901-specific CD8-positive T-cell responses were

reduced threefold in magnitude compared with data from phase I-II

trials of the same vaccine in metastatic RCC and other solid

tumors.52,59 Moreover, by contrast with the previous phase II meta-

static RCC trial, we did not find a clear association of T-cell

responses with clinical outcome. Finally, a significant decrease in

monocytes after the first treatment cycle with sunitinib was

observed. The numerically shorter overall survival in the sunitinib
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plus IMA901 group than in the sunitinib group might indicate a

potentially harmful effect of vaccination; however, the more likely

explanation is the exceptionally good outcome in the sunitinib

monotherapy group, especially in intermediate-risk patients, com-

pared with historical controls. Absence of a harmful effect of vacci-

nation is also supported by the similar overall survival results in

patients who did and did not develop a T-cell response to IMA901

vaccination.

8 | PERSPECTIVES OF PEPTIDE-BASED
VACCINE THERAPY

Currently, neoantigens are certainly more cancer-specific than tumor

antigen-derived peptides. Effective antitumor immunity in humans

has been associated with the presence of T cells directed at cancer

neoantigens,60 a class of HLA-bound peptides that arise from tumor-

specific mutations. They are highly immunogenic because they are

not present in normal tissues and hence bypass central thymic toler-

ance. Although neoantigens were long-envisioned as optimal targets

for an antitumor immune response,61 their systematic discovery and

evaluation only became feasible with the recent availability of mas-

sively parallel sequencing for detection of all coding mutations within

tumors, and of machine-learning approaches to reliably predict those

mutated peptides with high-affinity binding of autologous HLA mole-

cules. Novel technologies provide opportunities for in-depth knowl-

edge on relevant tumor epitopes, obtaining knowledge about specific

tumor antigens forming epitopes recognized by individual T cells.62

The importance of stringent neoantigen prediction and immunogenic-

ity of neoantigen-based vaccines for advanced melanoma patients

has been reported by Carreno et al63 They vaccinated three patients

with advanced-stage melanoma with seven peptides predicted to be

immunogenic based on mutation analysis and peptide-binding experi-

ments, and reported T-cell responses specific for three peptides post-

vaccination. Two of these responses were not detected before vacci-

nation in these patients. This study shows that mutation-derived sub-

dominant epitopes can trigger cancer-specific immune responses

through vaccination. More recently, Ott et al64 showed the feasibility,

safety, and immunogenicity of a vaccine that targets up to 20 pre-

dicted personal tumor neoantigens. Vaccine-induced polyfunctional

CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%) of the 97

unique neoantigens used across patients, respectively. Of six vacci-

nated patients, four had no recurrence at 25 months after vaccina-

tion, whereas two with recurrent disease were subsequently treated

with anti-PD-1 therapy and experienced complete tumor regression,

with expansion of the repertoire of neoantigen-specific T cells.

Although neoantigen-based vaccine therapy is extremely promis-

ing, we still do not know which induces a higher level of antitumor

immune responses in patients with urological cancer. In addition, it is

also certain that HLA-restricted cancer peptide vaccines derived

from oncoantigens can be more widely applicable to a larger subset

of cancer patients than individualized neoantigens. We suspect that

combination therapies with peptide-based cancer vaccines including

oncoantigen and neoantigen-targeting cancer vaccines, and immune

checkpoint blockade therapies or other immunotherapies are

expected to be good candidates for more effective cancer

immunotherapy which could enhance clinical benefits. Furthermore,

the recent technical progress of genetic analysis enables us to easily

evaluate the immunogenicity of tumor cells and the immune status

of the tumor microenvironment in individual cancer patients.65 This

information is expected to lead to the discovery of predictive

biomarkers to select patients for treatment with cancer immunother-

apy and the development of personalized peptide-based cancer vac-

cines that may improve the efficacy of this immunotherapy.

9 | CONCLUSIONS

Peptide-based vaccines have been used in the past with limited clini-

cal success. However, during the last few years, new knowledge on

the biological characteristics of the peptides and their interaction

with the immune system to be used clinically has been provided.

New protocols have allowed significant immune and clinical

responses in patients vaccinated with multiple peptides, particularly

by combining the peptides with a variety of other biological thera-

peutics. This situation is now even more promising than before and

we predict that such new peptide-based trials will provide other clin-

ical successes in urological cancers.
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