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River-bed armouring as a granular segregation
phenomenon
Behrooz Ferdowsi1,2,3, Carlos P. Ortiz2,4, Morgane Houssais5 & Douglas J. Jerolmack2

River bed-load transport is a kind of dense granular flow, and such flows are known to

segregate grains. While gravel-river beds typically have an “armoured” layer of coarse grains

on the surface, which acts to protect finer particles underneath from erosion, the contribution

of granular physics to river-bed armouring has not yet been investigated. Here we examine

these connections in a laboratory river with bimodal sediment size, by tracking the motion of

particles from the surface to deep inside the bed, and find that armour develops by two

distinct mechanisms. Bed-load transport in the near-surface layer drives rapid, shear rate-

dependent advective segregation. Creeping grains beneath the bed-load layer give rise to

slow but persistent diffusion-dominated segregation. We verify these findings with a con-

tinuum phenomenological model and discrete element method simulations. Our experiments

suggest that some river-bed armouring may be due to granular segregation from below—

rather than fluid-driven sorting from above—while also providing new insights on the

mechanics of segregation that are relevant to a wide range of granular flows.
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R iver-bed grain size controls the exchange of solutes,
nutrients and fine particulates across the sediment–fluid
interface1,2, and influences the flood magnitude required to

initiate motion3–5. Grain size, however, also evolves over a series
of floods as particles are sorted longitudinally and vertically
during transport3,6–8. A ubiquitous pattern observed in gravel-
bed rivers is armouring, in which the median grain size of the
surface is significantly larger than that of the subsurface.
Laboratory experiments designed to simulate gravel rivers—i.e.,
bed-load transport of heterogeneous grain sizes—reproduce the
phenomenon, but are unclear on its origins. Three potential
mechanisms have been proposed: kinetic sieving, in which
smaller particles migrate downward through the void spaces
between larger particles during motion9; “equal mobility”,
whereby the proportion of large and small surficial grains adjusts
to achieve a spatially constant entrainment stress6; and sediment
supply imbalance, in which the transport capacity of the flow
locally exceeds the upstream supply and results in surface coar-
sening7. All of them assume that gravel in transport only mixes
with the substrate over a small “active layer” that is one to several
grain diameters deep.

Recently, sediment transport experiments have revealed that
granular motion extends much deeper into the subsurface10,11. In
particular, grains transition continuously from rapid bed-load
motion at the surface to slow creeping motion far below the
surface11,12. Both kinds of motion also occur in dry granular
systems, where bed-load corresponds to a dense granular flow,
and creep is characteristic of quasi-static deformation of dis-
ordered granular packs11,12. The former is known to produce
robust vertical size segregation by kinetic sieving13–15. Phenom-
enological continuum models based on this premise15–18 produce
vertical segregation that is consistent with experimental obser-
vations16,19 and discrete element method (DEM) simulations20,21.
Segregation by creep is unexplored; while reports of slow coar-
sening do exist22, its connection to creep has not been
demonstrated.

The contribution of granular physics to river-bed armouring
has only begun to be examined. Frey and Church9 showed with
laboratory experiments that bed load drives segregation by kinetic
sieving that is qualitatively similar to dense granular flows. Here
we investigate granular segregation and quantify its contribution
to armouring using an idealized laboratory river experiment. Our
setup is designed to: eliminate the disruptive influence of flume
boundaries by using an annulus; image particle motion from the

sediment–fluid interface to deep in the subsurface, away from the
wall; isolate granular contributions by simplifying particles to
bimodal spheres and eliminating fluid turbulence with a viscous
fluid; and explore a range of transport conditions from near
threshold to vigorous bed load. These experiments demonstrate
how river-bed armour can develop due to bottom-up motion of
subsurface grains, while revealing new insight on granular seg-
regation mechanisms in a system where rapid and slow granular
flows co-exist. Results are compared with predictions from a
modified phenomenological segregation model, and with DEM
simulations of a dry-granular bed under shear.

Results
Experiments. Our experiments were conducted in a closed-top
annular flume (Fig. 1); details of the apparatus have been
described previously11,12. The channel walls are smooth to allow
slip between grains and the boundary, in order to approximate an
infinitely deep and wide channel. The flume is filled with a
bidisperse granular bed of acrylic spherical grains with small and
large diameters, ds= 1.5 mm and dl= 3.0 mm, respectively, and
density ρp= 1.19 gmL−1; the ratio of total small to large grain
volume in the channel is Vsmall/Vlarge= 2. At this grain-size ratio
dl/ds= 2, the ancillary phenomenon of spontaneous percolation
of fines into the deep, quasi-static bed is likely to be negligible23.
The grains are submerged in a fluid of viscosity η= 72.2 mPa s
and density ρ= 1.05 gmL−1. A fluid gap (clear fluid layer) is
sheared from above by rotating the lid of the flume to apply a
constant fluid–boundary shear stress, τ (Fig. 1c); it is reported
here as dimensionless Shields number for the small grains,
defined as τ�s ¼ τ

ρp�ρð Þgds, where g is gravity. The associated Shields

stress for large grains as τ�l ¼ ds
dl
τ�s . For reference, Shields numbers

for each experiment are compared to the critical Shields number,
τ�c , that is classically used to identify the onset of sediment
transport. Our previously determined critical Shields number for
a monodisperse bed of small grains, τ�cs ’ 0:111, is used here as
the reference critical stress, recognizing that the actual value may
differ in this bidisperse system24. We determined empirically for
the present experiments that the range of Shields numbers τ�cs �
τ�s � 5τ�cs corresponds to bed-load transport: a thin surface layer
of moving grains in frequent contact with, and supported by, an
underlying granular bed that is creeping11. We report data from
experiments conducted at five Shields numbers,
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Fig. 1 Phenomenology and setup. a Bed sediment of the River Wharfe, U.K., that shows a pronounced surface armour. Photo courtesy D. Powell58. b Sketch
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τ�s ¼ 2:7; 3:8; 4:1; 4:4; 4:7½ �τ�cs. All flows were laminar (Reynolds
number≤ 4) and grain collisions were viscously damped (Stokes
number< 1) (see Methods, section experimental setup and
protocol).

The bed at the start of each experiment was composed of
sedimented particles forming an approximately flat granular bed
(see Methods). At the beginning of an experiment (t= 0 s) fluid
shear was initiated at the specified Shields stress, and applied for a
duration of 24 h or longer. We image a cross-section of particles
from the bed surface (zs) to the bottom of the channel through
time using refractive-index matched scanning25 (Fig. 1b; Supple-
mentary Fig. 2). Vertical profiles of streamwise particle velocity
(ux(z)) for experiments at all Shields stresses were determined
from averaging pixel strips in the streamwise direction over all
time, using image cross-correlation (Methods, section velocity
profiles). Velocity profiles confirm the existence of two distinct
regions of particle motion (Fig. 1c). Zone I corresponds to bed
load, where velocity decays rapidly with depth below the surface;
below this is zone II associated with creep, characterized by a
much slower decay11. All runs show a qualitatively similar
evolution of the bed through time: a coarse surface “armour”
layer develops as large grains are delivered from below; first more
rapidly by bed load, and then more slowly by creep (Fig. 1,
Supplementary Movies 1 and 2). This is explored in more detail
below.

In order to probe the size- and depth-dependent behavior of
grain motion, and its contribution to vertical segregation, we
construct trajectories of all imaged grains using the particle
tracking method11 (see Methods) for a representative experiment
at Shields stress τ�s ¼ 4:1τ�cs. Profiles of average vertical velocity
for large (uz,l) and small (uz,s) grains, computed from these
trajectories, show a striking pattern: they are anti-correlated in
the bed-load regime, with net upward (positive) velocity for large
grains and net downward (negative) velocity for small grains.
Although there are deviations in the near-surface (within 1ds of
zs) due to intermittent saltation, below this region the vertical
velocity of large grains decreases with depth and reaches
approximately zero at the transition from bed load to creep (zc)
(Fig. 2a). The decay rate of uz,l is roughly exponential, and
coincides with the decay of the bulk streamwise velocity ux
(Fig. 2a-inset). This suggests that the observed vertical advection

of larger grains is linked to horizontal granular shear in the bed-
load zone.

Grains in the creep zone have a small but detectable vertical
velocity. To determine the dominant modes of particle motion in
bed load and creep, we inspect the scaling of the mean-square
displacements (MSD) vs. time. For the same experiment at τ�s ¼
4:1τ�cs we compute the vertical MSD as a function of depth for the
large grains as MSDðΔtÞ � Δz2ðtÞ ¼ zðt þ ΔtÞ � zðtÞj j2� �

over a
duration of 20 min; the brackets indicate ensemble averaging over
grains and the reference time t, and z is the particle’s vertical
position (Fig. 2; see Methods). A distinction can be made between
grains above and below the depth associated with the transition
from bed load to creep. Grains in the bed-load zone exhibit MSD
growth at short times that approaches ballistic motion, and is
consistent with the advection described earlier (Fig. 2a). The
strength of the advection behavior diminishes at larger timescales
where it perhaps transitions to super-diffusive behavior. In
contrast, grains in the creep zone appear to exhibit caged
dynamics in which MSD grows slowly or not at all at short
timescales. Motion transitions toward diffusive and sometimes
super-diffusive dynamics at longer times. The crossover timescale
indicates the average lifetime of cages, and it increases with depth
into the creeping zone. This behavior is similar to what has been
observed in slow granular flows26–28, and indicates that particle
movement in creep is related to creation and destruction of the
granular contact network28,29.

To visualize the resulting development of surface armour, we
examine the spatio-temporal concentration map of large grains;
ϕl represents the streamwise-averaged areal fraction at a given
depth and time (see Methods). The development of surface
armour is seen as a high-concentration surficial layer that
thickens through time (Fig. 3a; Supplementary Figs. 4–8). We
quantify the thickness of the armour layer (Fig. 3a) as zsa − zi,
where zsa and zi are the position of the top and bottom surfaces
that define the armour layer, respectively (Methods, section
determination of armour thickness) for all five Shields stress
experiments. The data suggest the existence of two stages in the
creation of armour, anticipated by the granular dynamics
described above (Fig. 4a). First is rapid segregation (duration of
102–103 s), as large grains are delivered up from the shallow
subsurface. The rate of segregation shows a strong dependence on
the driving Shields number, consistent with shear rate-dependent
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Fig. 2 Experimental particle and segregation dynamics. a Vertical velocity profile for small and large grains for the interval Δt= [0:20] min at the beginning
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segregation of bed load. Once the bed-load zone is depleted of
large grains, there follows a slow but persistent segregation that
continues for the duration of the run (~24 h). We interpret the
slow stage of segregation as creep driven. Interestingly, the rate of
segregation in this stage is insensitive to the driving Shields

number, suggesting that creep segregation does not depend
strongly on the driving shear rate.

Armour development in our experiments results from a
vertical flux (z direction) of coarse grains toward the bed surface.
We quantify this segregation flux, J, as the time derivative of the
number of large grains in the armored layer:

J ¼ A
d
dt

Z zs

zi

ϕldz ð1Þ

where A is the cross-sectional area of the armour interface in the
x−y plane. The variation of segregation flux density (J/A) with
time (Fig. 4b) clearly shows the existence of two stages of armour
formation. We introduce a dimensionless time t/tadv, where the
characteristic advection time tadv ¼ hbl

uz;lh i �
hbl
aUsf

; 〈uz,l〉, Usf and hbl

are the average large grain vertical velocity, the average surficial
grain velocity and the thickness of the bed-load layer, respectively,
and a ¼ uz;l

� �
=Usf � 10�3 is measured for the experiment at

τ�s ¼ 4:1τ�cs. We note however that this same value for a collapses
all data later in Fig. 4c, indicating that this empirical coefficient is
approximately constant for our experimental range. We also
define a dimensionless segregation flux J/J(0) where J(0) is the
initial value for J at the start of each experiment. Utilizing the
dimensionless time and flux variables produces a reasonable
collapse of the data (Fig. 4c). For all experiments J/J(0) decays to a
value of 1/e at a characteristic dimensionless time of O(1).

Advection-diffusion segregation model. Sediment transport
produces armouring that appears similar to reported granular
segregation experiments13,16, implying that the presence of a
viscous fluid has little influence beyond determining the shear
rate of surficial grains. In particular, some previous experiments
in dry granular flows suggested that segregation rate depends on
the granular shear rate30,31, consistent with our findings for bed
load (although another study found otherwise19). In addition, a
recent study found that particle diffusion was shear rate-
dependent for rapid granular flows but independent of shear
rate for creep32, similar to our experiments. Because the exact
mechanism of segregation is still a subject of debate18,21,33, there
is no universally agreed upon continuum theory. Nonetheless,
one-dimensional (1D) continuum models generally describe the
vertical evolution of concentrations of binary mixtures through
time with a phenomenological advection-diffusion equation16,20.
Here we develop and apply a modified version of one such model,
the Gray–Thornton model15,16. The model requires specification
of: vertical advection and diffusion coefficients, usually assumed
to be constant15; the vertical granular velocity profile; and the
initial concentration profile. It then solves for the temporal seg-
regation of large and small grains subject to mass conservation
constraints. Two new ingredients must be included to account for
the granular dynamics observed in our experiments: (i) for the
bed-load regime, both advection and diffusion depend on shear
rate; and (ii) for the creep regime there is no advection, and
diffusion is independent of shear rate32. Our modified advection-
diffusion segregation model, written in terms of the evolution of
the large-grain concentration ϕl, becomes:

∂ϕl

∂̂t
þ ∂
∂ẑ

Srn ẑð ÞF ϕlð Þð Þ ¼ ∂
∂ẑ

Drn ẑð Þ ∂ϕl

∂ẑ

� �
: ð2Þ

Equation (2) is written in terms of dimensionless elevation
ẑ ¼ z=H and time t̂ ¼ tUsf =L, where H and L are the height of
the granular pack and the length of the centerline of the annular
flume. The flux function F(ϕl) determines the dependence of the
segregation flux (SrF(ϕl)) on ϕl. Although there are ongoing
debates on the mathematical form of the flux function16,34, we
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implement the simplest choice: a quadratic function F(ϕl)= ϕl(1
− ϕl) that is symmetric about ϕl= 0.5, which assumes that small
and large grains behave identically but in opposite directions. The
original Gray-Thornton model assumed a non-dimensional
advective segregation velocity Sr that is independent of shear
rate. We introduce a depth-dependent parameter, Srn, in order to
redistribute the non-dimensional advective segregation velocity,
Sr, according to the depth-dependent grain velocity, uxðẑÞ,
normalized by the vertical average of grain velocities, ux ẑð Þh i
(Eq. (3)).

SrnðẑÞ ¼ Sr
β expðβẑÞ
expðβÞ�1 : ẑ � ẑc

0 : ẑ<ẑc

(
ð3Þ

The form of the normalized velocity is determined by a fit to the
bed-load velocity profile such that:

uxðẑÞ
uxðẑÞh i ¼

_γxzðẑÞ
_γxzðẑÞh i ¼

β expðβẑÞ
expðβÞ � 1

ð4Þ

where _γxz is the shear rate in x − z plane for the bed-load layer,
and β is the exponential decay constant of the bed-load velocity
profile. The values of β vary with shear stress τ* (see
Supplementary Table 1), consistent with the local rheology of
sediment transport10–12. For our analysis, we define the
parameter Sr ¼ L

H uxðẑÞh i q, where q is the maximum bulk advective
segregation velocity, i.e., that associated with the start of the
experiment (t= 0; see Methods section implementation of
continuum model; Supplementary Fig. 3). Similarly, we introduce
a dimensionless and vertically-varying diffusivity Drn that has the
same exponential decay as the velocity profile characterized by β
(Eq. (5)). The parameter Dr ¼ DL

H2 uxðẑÞh i is a non-dimensional
diffusive-remixing constant, where D is the dimensional diffu-
sivity:

DrnðẑÞ ¼
Dr

expðβẑÞ
expðβÞ�1 : ẑ � ẑc

Dr
exp βẑcð Þ
expðβÞ�1 : ẑ<ẑc

8<
: ð5Þ

To apply the new model Eq. (2) to our experiments requires
specification of several parameters, determined from each
experimental run (see Methods and Supplementary Figures).
The input velocity profile ux(z) is determined by fitting two
exponential functions to the time-averaged velocity profiles of the
bed-load and creep zones, respectively (see Methods; Supple-
mentary Fig. 6). The input value for q is computed as the upward
migration velocity of the center of mass for the large particles at

the start of each experiment (see Methods). Note that the
advective segregation term in Eq. (3) decays with decreasing
velocity (and depth) in the bed-load zone, and is set to zero in the
creep zone (z< zc). The diffusivity also decays with velocity (and
depth) in the bed-load zone, and is constant for creep
(Supplementary Fig. 6e). We take the dimensionless diffusion
constant Dr as a fitting parameter. In particular, the ratio Sr/Dr is
estimated by fitting the position of the armour interface through
time for each experiment. We find that a constant ratio of
Srn=Drn � 318 for the bed-load zone and Srn/Drn= 0 for the creep
zone is sufficient to describe the development of armour for all
Shields numbers. We use the profile of ϕl at the start of our
experiments (t= 0) as the initial concentration profile for the
continuum model (Supplementary Fig. 6f).

A visual comparison of armour development for the example
condition τ�s ¼ 4:1τ�cs shows that the modified advection-diffusion
segregation model (Eq. (2)) captures the experimental behavior
well (Fig. 3b). We further run a model with constant advection-
diffusion coefficient (same ratio Srn=Drn � 318) (Fig. 3c), and a
model with depth-varying advection but a constant diffusion
profile (Fig. 3d). Neither of the latter two models can reproduce
the experimental observations. Our data are consistent with
simulations by Fan et al.32, who found that the diffusion
coefficient in the dense-rapid granular flow regime is shear
rate-dependent and becomes shear rate-independent in the creep
regime. A more quantitative comparison of the thickness of the
armored layer through time indicates that the model with rate-
dependent advection-diffusion coefficients has superior predictive
power (Fig. 3e), and matches the data well for the entire range of
Shields stresses (Fig. 4a). Importantly, the model correctly
captures the initial fast and subsequent slow stages of segregation.
The large ratio Srn=Drn � 318 for z> zc confirms the idea that the
rapid stage of armour development is driven by shear rate-
dependent advection associated with bed load. The fact that the
ratio Srn/Drn remains constant for all experiments suggests that
the model results are robust. The bulk kinetics can be related to
particle-scale advection and diffusion by noting that
Srn=Drn ¼ Sr

Dr
β ¼ Pe Hd β, where the particle-scale ratio of advec-

tion to diffusion is given by the Peclet number Pe= uzdl/Dz. For
the experiment with τ�s ¼ 4:1τ�cs we determined from measure-
ments that uz= 1.51 mm s−1 and Dz= 3.38 mm2 s−1, which leads
to Pe= 1.3 and Srn/Drn= 140; the latter is the same order of
magnitude as the ratio used in the continuum simulations. The
creeping zone is characterized by a constant value for Dr, and a
lack of advection (Sr= 0), for z< zc. This supports the notion that
the slow stage of armouring results from diffusion by creeping
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grains that is independent of local shear rate. Caution should be
exercised in generalizing these results, however, as we have only
performed experiments with a single bi-disperse and constant-
density grain mixture in a single fluid.

Discrete element modeling. The analysis presented thus far
shows how explicit accounting for the kinematics of granular
motion in bed load and creep can produce a reasonable con-
tinuum description of armour development. In order to
demonstrate that the observed armouring in experiments is
entirely a consequence of granular physics, we now turn to DEM
simulations in which the velocity profile and segregation
dynamics arise spontaneously from grain-grain interactions.
Simulations are performed with LIGGGHTS, an open-source
granular modeling package based on LAMMPS (http://lammps.
sandia.gov). Details of model implementation are available in
Methods and Supplementary Information. In accord with the low
Stokes number of our laboratory experiments, the restitution
coefficient is chosen to be very small (en= 0.01 for Stokes num-
ber< 1, ref. 35) such that collisions are highly damped (Supple-
mentary Table 2). Otherwise, there is no treatment of the viscous
fluid in DEM simulations.

The model domain is constructed to have a geometry, grain
size and size-volume ratio that are the same as the experimental
setup (Fig. 5a). The system is driven by a layer of large grains
deposited at the surface and moving at constant velocity utop in
the x direction. Simulations are run for a duration that is
equivalent to 1160 s and show behavior that is qualitatively
comparable to the fluid-driven experiments of armouring,
confirming the existence of two stages of segregation (Fig. 5).
First is fast segregation within the rapid granular flow regime
(first few grain diameters from the surface). Then, once grains are
depleted from this “bed load” zone (Fig. 5c), armouring
transitions to a slow stage driven by creep from deeper layers.

For a more direct comparison, we examine the growth of
armour thickness through time (see Methods) for the previous
simulation and an additional run with utop= 0.05(m s−1) which
corresponds to τ�s ¼ 2:7τ�cs. For both runs the agreement of DEM
simulations with the experiments is reasonably good (Fig. 5d).
This agreement is especially encouraging given that: simulations
neglect fluid flow entirely; the initial concentration of large grains
in the experiments was difficult to control and not uniform; and
there was no tuning or calibration done for the DEM runs,
beyond adjusting the velocity of surface grains to match
experiments.

Using DEM simulations, we can also explore the influence of
changes in boundary roughness and submerged grain density—
factors that may influence the dynamics we observe, but that are
difficult to modify in the physical experiment. A rough channel
bottom is simulated by attaching a fixed layer of hexagonally
packed grains to the base. Results are not qualitatively different,
in that we still observe a dense-granular flow regime that
transitions with depth to a creeping regime; however, the rough
boundary layer acts to slow the creeping velocity of grains near
the bed (Supplementary Fig. 10). In addition, results of
simulations with different grain density are qualitatively similar,
indicating that bed-load and creep dynamics are robust
(Supplementary Fig. 11).

Discussion
Even though our flows were laminar, experiments and theory
have shown that laminar bed load is similar to its turbulent
counterpart in many respects24,36–39. Our results show armouring
dynamics that are qualitatively similar to previous experi-
ments40,41 conducted under conditions more representative of

gravel rivers—i.e., poly-disperse and natural-shaped particles
(average grain diameter d ~ 1 cm) in turbulent flows with driving
stress τ� 	 2τ�c . Those studies40,41 found a Shields-stress depen-
dent armouring rate with a relatively rapid initial stage (a few
hours) followed by slower stage. While data on particle motions
were not reported, we can perform a scale analysis of the expected
bed-load armouring timescale due to granular segregation,
tadv � hbl

aUsf
, by assuming: hbl= (3 − 5)d42; Usf � 1 cm s�143,44; and

our experimentally determined value a ~ 10−3. This analysis

Periodic boundary
condition

t = 0 s

z y

x

t = 5 s

t = 50 s

2d

c

b

a

1.5

1

0.5

0
101

DEM, utop = 0.08 m/s

DEM, utop = 0.05 m/s

Expt., Ts = 4.1 TCS
*

Expt., Ts = 2.7 TCS
*

102

Time (s)

A
rm

or
 th

ic
kn

es
s 

(d
l)

103

L
x  = 0.2 m

L
z  =

 0.027 m

Ly = 0.025 m

Fig. 5 DEM simulation of a dry sheared granular bed with utop= 0.08m s−1

equivalent to the fluid-driven sheared granular bed at τ�s ¼ 4:1τ�cs. The top
layer of large grains that drives particles underneath is shown in
Supplementary Fig. 9. a Model domain and initial conditions. Granular pack
shown after b 5 s and c 50 s of shearing. Note rapid segregation, and
depletion of the near-surface zone of large grains, as a consequence of bed
load. d Evolution of armour thickness for the DEM model and experiments
at two equivalent driving stresses indicated in the legend
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yields tadv ~ (1–2) h, within the observed range of experi-
ments40,41, and may be a reasonable bed-load armouring time-
scale for natural gravel rivers. Translation to the field, however,
may need to account for the presence of bed and bar forms that
can influence armour formation45. Whether bars act primarily to
increase the rate of vertical mixing, or introduce qualitatively new
dynamics to segregation, is currently unknown.

Authors of previous experiments7,40,41 attributed armour
development to a lack of sediment supply to the channel, which
they hypothesize resulted in winnowing of fines and concentra-
tion of coarse grains—in other words, sediment-supply imbal-
ance. Our experiments, however, showed no significant size-
selective transport at the surface and, more importantly, there
were no supply limitations because the flume is annular. We can
thus rule out sediment-supply imbalance for our experiments.
Our results support the kinetic sieving model, on which the
phenomenological Gray–Thornton equation is based. An
important new finding, however, is that segregation does not
occur only in the “active layer”. If the bed-load zone corresponds
to the active layer, then the associated sorting is important but
occurs rapidly. Creep delivers grains from far below the bed-load
zone to the surface, contributing to persistent armour develop-
ment that was not previously recognized. The agreement of DEM
simulations and experiments confirm the contention of Frey and
Church frey9 river that river-bed armouring may be considered to
be a granular segregation phenomenon—at least in our idealized
experiments. Results suggest minimal influence of the fluid
beyond determining the surface grain velocity. We point out that
sediment-supply imbalance may still be important for armouring
in natural rivers; in particular, under sediment limitations such as
downstream of dams where river beds experience net erosion that
may preferentially remove finer grains7. We believe that the
granular segregation dynamics revealed here, however, likely
operate in all environments regardless of sediment supply and
may therefore be more prevalent. Future experiments with more
“natural” flow and particle conditions, that control for sediment
supply while also examining precise granular motion from the
surface to the bottom of the granular pack, would be helpful for
assessing the relative importance of these different mechanisms.
A potential field confirmation of the armouring mechanism
proposed here would be the observation of a zone underneath the
armour layer that is depleted of large grains (Fig. 3a, d). Size-
selective surficial transport would not be expected to influence the
concentration of coarse grains beneath the armour layer.

In our extended Gray-Thornton model, depth-dependent
advection-diffusion parameters (Srn(z) and Drn(z)) follow the
variation of grain velocity in the granular bed with depth. It is
noteworthy that parameter β is not a calibration coefficient here,
but it is the exponential decay constant of the fit to the variation
of grain velocity with depth in each experimental run. Velocity in
both bed load and creep regimes decays exponentially, but with
different rate constants. Our model is based on the premise that
advection and diffusion coefficients follow the same functional
form and power of the velocity profile with depth in each
experiment; therefore, the model inherently has a shear rate-
dependency. In addition, since the derivative of an exponential
function is the same exponential function, we can write Srn(z) and
Drn(z) explicitly based on shear rate (rather than velocity). Doing
so results in only a small change in constants Dr and Sr, since the
constant denominator in Eqs. (3) and (4), i.e., (exp(β) − 1), must
be incorporated into the values of Dr and Sr. The ratio Srn/Drn

remains the same for all stresses.
Our work sheds new light on the mechanics of granular seg-

regation. Experiments clearly show that vertical advection of large
grains is shear rate-dependent. Explicit accounting of this
dependence, and also of shear rate-dependent diffusion, is needed

in order to explain observed segregation rates for the rapid
granular flow regime (i.e., bed load). Moreover, data and models
demonstrate that creep contributes to segregation, and that its
mechanism is distinct from rapid granular flows. Large grains in
the creep zone show no preference for upward- or downward-
directed motion. Their long-time motion may be modeled as
vertically isotropic and constant diffusion. Short-time dynamics
show that creeping grains are caged, and indicate that their
motion is likely induced by long-range transmission of forces
through the granular contact network46,47. This may be why
creep motion is independent of shear rate, at least for the range of
Shields stresses examined here. It is intriguing that isotropic
diffusion in creep can give rise to a net upward flux of large
grains. Based on our results, we hypothesize that this flux arises
because large grains that cross the boundary into bed load are
then advected to the surface. If correct, this implies that a purely
creeping granular pack (no bed load) should not produce
armouring.

The experimental and modeling results presented here are a
first step in assessing the contribution of fast and slow particle
motion to vertical segregation. Our sediment mixture was bi-
disperse in order to establish connections between granular shear
segregation and river-bed armouring, but many systems of
interest (including rivers) have a polydisperse grain size dis-
tribution that may exhibit different behavior. Such a distribution
would challenge the application of continuum models, but is
amenable to further experiments. River-bed armouring in our
experiments and models was found to be driven by bottom-up
granular segregation, rather than top-down surficial sorting dri-
ven by the fluid. Our findings show how information from the
surface, in terms of fluid-driven shear, is transmitted deep into
the subsurface through grain-grain interactions that are typically
neglected in sediment transport models. Granular motion in the
subsurface transmits information back to the surface through the
delivery of coarse grains, linking surface dynamics to subsurface
structure. By examining the river bed as a discrete medium, we
were able to link the macroscopic pattern of armour development
to the physics of sheared granular systems. Our results add to a
growing body of evidence that sediment transport systems belong
to a broader class of granular flows9,11,12,48, and show how
examining geophysical flows through the lens of granular physics
can reveal novel insights for both fields. Extending our results to
field settings, however, requires further work on the unexplored
influences of fluid turbulence, bed and bar forms, and wider grain
size distributions on the granular segregation mechanisms iden-
tified here.

Methods
Experimental setup and protocol. Two dimensional (2D) images of our 3D
experimental system were generated using index-matched PMMA particles (ds=
1.5 mm, dl= 3.0 mm, Engineering Laboratories) with a mixture of viscous oils (85%
of PM550 and 15% of PM556 from Dow Corning). We dispersed dye (Exciton,
pyrromethene 597) in the oil and excited it with a green laser sheet (517 nm,
50 mW) of thickness ’ d=10. All experiments were conducted on a vibration-
damping optical table and we used a damping coupler to connect the driving motor
to the flume.

The bed preparation protocol was inspired by Golick and Daniels30. Grains
were initially deposited in an inverse-segregated state, with large grains at the
bottom, and then subject to a driving stress equivalent to τ�s ¼ 20τ�cs for ~1 min to
fully suspend and mix the large and small populations. Fluid shear was halted and
the suspension left for ~30 min to allow sedimentation, relaxation and compaction
of the granular bed to reach completion (Supplementary Fig. 1). A second phase of
slow relaxation and compaction starts once the actual shear experiment begins49.
The duration of this phase in our previous monodisperse system study (which used
a similar range of shear stresses) was found to be a few hours12. We cannot ignore
the few first hours of the experiments that might be affected by this compaction,
because segregation commences as soon as shear is applied. We cannot quantify
the effects of compaction on the shear response of the granular bed and the rate of
segregation, but we believe that the shear suspension preparation protocol
decreases these effects. Moreover, we point out that the continuum model does not
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include any influence of compaction, yet the fitted advection and diffusion values
are comparable to those derived from grain-scale observations in the experiment.
Supplementary Fig. 1 provides further information about the preparation protocol.
The final random packed layer at the end of the preparation protocol had a
thickness ~15.5ds for all experiments. After this first step, a constant rotation Ω is
applied to drive the system for the entire duration of the experiments. This
duration was not constant; each lasted long enough (24 h or longer) for all particles
present in the recorded frames to exhibit some significant displacement during the
run. We computed the fluid-flow depth hf=Hf − zs, where Hf is the total depth of
the flume and zs is the elevation of the surface as described below. We computed
the fluid-flow velocity at the top plate in the channel center as Uf=Ω2πR, where R
= 17 cm is the radial distance to the channel center. The fluid boundary-shear
stress is then calculated as τ= ηUf/hf. We assume in our entire analyses that the
fluid flow is laminar and unidirectional in the azimuthal direction of the annular
flume. We can justify the laminar assumption by showing that the Reynolds
number associated with the fluid channel above the bed is small compared to
turbulence flow limit. We estimate this Reynolds number as Re ¼ ρUplatehf

η , which is
≈4 for the largest Ω in our experiments reported here. The unidirectional
assumption can be justified justified from the small ratio of radial viscous stress to
the azimuthal viscous stress for our experimental conditions:

Radial stress
Azimuthal stress

¼ cRe
hf
R

¼ 0:4% ð6Þ

where hf ’ 3ds, R is the flume radius. In the equation above, c ’ 0:06 is an
estimated coefficient36 that is only weakly dependent on the flow aspect ratio.

Detection of the bed surface. To detect the surface position, we first have cal-
culated the concentration profile C(z) for a given configuration of particles from a
processed binary image. This binary image is valued at zero outside of particles and
one inside of particles. The concentration is calculated next at each elevation z
pixel, as the pixel-wise average in the x direction. As a result, this concentration
profile can work as the one-dimensional analogue of packing fraction, which is the
fraction of space occupied by the particles. The surface is defined from this con-
centration profile as the position zs where the concentration crosses fifty percent of
its saturated value11,50. A a fixed threshold of 0.35 is used here to define the surface
position. The saturated value does not vary significantly in our set of experiments
reported here. We define zs after averaging the concentration for a Δt= 100 s at the
beginning of each experiment. This time duration is sufficiently long for the flux
convergence time as observed in our earlier study11. Slow granular compaction49,51

and slow dilation due to segregation29 approximately counterbalance such that the
surface position remains almost constant as the armouring experiments progress.
The bed surface position is used for calculating the Shields stress at each
experiment.

Imaging technique and particle detection/tracking. We used a Nikon DSLR
5100 digital camera to record the real-time positions of single particles by acquiring
the fluorescence intensity from a laser dye (concentration≈ 1 μM) dispersed in the
fluid. The configuration is suitable for long data acquisition without significant
photobleaching. The images were acquired continuously at 24 Hz for 10–20 min at
the beginning of experiments and in order to sample fast dynamics near the
surface. For this fast dynamics, the relevant timescale is the settling time of particles
over their own diameter d/vsed= 0.68 s. We acquire single images at a rate of one
every 15 s for 24 h or longer and in order to sample slow dynamics in the system.
Supplementary Fig. 2a shows a sample raw image at the start of an experiment. To
detect the positions of the particles with subpixel accuracy, we find particle posi-
tions to pixel accuracy by peak-finding above a threshold. The details of the
background correction process and further image processing are described in the
Supplementary Materials of our previous publication11 on monodisperse systems.
A snapshot of detected particles with this method is superimposed on a gray-scale
raw image and is shown in Supplementary Fig. 2b. The same detected particles are
also shown in binary format in Supplementary Fig. 2c. A fixed diameter threshold
of d= 1.38 mm is used for separating large and small particles in all experiments as
shown in Supplementary Fig. 2d. Finally, a snapshot of identified large and small
particles using this threshold is shown in Supplementary Fig. 2e. The local con-
centration of large grains is defined as ϕlðzÞ ¼ Alh ix

AlþAsh ix , where Al and As are large
and small grains’ projected areas in the imaged cross-section, respectively, and 〈⋅〉x
indicates pixel-wise streamwise integration.

Velocity profiles. For each experiment, a 6 min video capture with frame rate
24 fps at the start of the experiments is converted and processed into consecutive
binary images following the procedure described in the imaging section above. The
consecutive binary images, I(t) and I(t +Δt) are then used as the input of pixel-wise
cross-correlation analysis along the x direction at each pixel elevation z. The
position of the central peak in the cross-correlation between I(t) and I(t +Δt)
corresponds to the average streamwise distance traveled by grains at elevation z
during Δt without regard to small and large particle species, i.e. for all particles.
The result is averaged over the full duration of the video capture. This technique
yields a time-averaged streamwise velocity profile ux(z) for all particles. Note, large
particles are weighted more heavily than small particles. The results are in

agreement with velocity profiles determined from the particle-tracking method for
all experiments. For the case of Fig. 2a, the velocity profile of large grains is
computed using the particle tracking method described in the imaging technique
section above.

Determination of armour thickness. The top surface of the armour layer, zsa, is
characterized as the position where the streamwise averaged concentration of large
grains equals ϕl= 0.9. The interface (bottom) of the armour layer with the rest of
the granular bed, zi, is calculated as the location where the gradient of ϕl reaches a
minimum below the surface. The surface and interface positions time-series are
smoothed using a running average of temporal window size 8.33 s for images
obtained from video capture conversions and temporal window size 833 s for image
captures. These are shown with dashed lines in Fig. 2c. The thickness of the
armored layer is defined as zsa − zi.

Implementation of continuum model. The variables used to compute the
advection and diffusion parameters for each experiment are reported in Supple-
mentary Table 1. The maximum bulk segregation velocity, q, for each experiment is
measured from relative displacement of the vertical z component of the center of
mass position of large particles ZCM,l relative to small particles ZCM,s. The data for
the relative ZCM displacement for all five stresses is presented in Supplementary
Fig. 3. The initial concentration profile of large particles ϕl(0) is determined from
the first 10 s of each experimental run; a simplified version of it is used as another
input to the PDE model (Supplementary Figs. 4–8). The time-averaged streamwise
velocity profiles for each experiment are reported in Supplementary Figs. 4–8 and
are used to estimate the value of β. We use a numerical implementation of the
method of lines solution to solve the PDE equations and use Nts= 10,000 time steps
for the full experimental time (~105 s). Comparisons of the concentration maps for
the PDE model and experiments, for the four additional driving stresses, are
presented in the Supplementary Materials (Supplementary Figs. 4–8).

Implementation of DEM model. The DEM model consists of a shear cell with
sizes 0.027 × 0.025 m2 in the y × z directions, and has a length 0.2 m in the x
direction where periodic boundary conditions are applied. The lateral sides in the x
−z plane and the lower boundary in the x−y plane are smooth and frictional walls,
with the same mechanical and frictional properties as the grains (Supplementary
Table 2).

The top side in the x−y plane is open. The cell is filled with N= 38,812 grains
that are initially inserted randomly in the cell with a desired volume fraction of
0.45. It is then equilibrated under gravitational forces for 10 million time steps
equivalent to Δt= 20 s. The initial concentration of large grains is uniform in the
simulation domain. The grains are free to move in other directions (e.g., to dilate)
in order to resemble a free-surface and shear-driven system. The grains are
modeled as compressible spheres of diameter ds,l that interact when in contact via
the Hertz–Mindlin model52–54:

F ¼ knδ~nij � αn~v~nij
� �þ ktδ~tij � αt~v~tij

� � ð7Þ

where the first term is total normal force,~Fn, and the second term is total tangential
force, ~Ft . In Eq. (7), kn and kt are normal and tangential stiffness respectively, δ is
the overlap between grains, αn is the normal damping, v is the relative grain
velocity,~nij is the normal vector at grain contact,~tij is the tangential vector at grain
contact, and αt is the tangential damping. The full model implementation is
available on the LAMMPS/LIGGGHTS webpage and several references55–57. In
accord with the low Stokes number of our laboratory experiments, the restitution
coefficient is chosen to very small (en= 0.01) such that collisions are highly damped
(Supplementary Table 2). Otherwise, there is no treatment of the viscous fluid in
DEM simulations. The DEM model system is frictional, meaning that the
coefficient of friction, μ, is the upper limit of the tangential force through the
Coulomb criterion Ft= μFn. The tangential force between two grains grows
according to non-linear Hertz–Mindlin contact law until Ft/Fn= μ and is then held
at Ft= μFn until the grains lose contact. The values of density, grain diameter,
Poisson’s ratio and acceleration due to gravity are chosen to match the
experimental conditions. The values for coefficient of restitution and friction
coefficient are chosen to mimic the effects from interactions with the fluid. The
Young’s modulus of the particles used here is chosen to be low (Supplementary
Table 2), MPa rather than GPa, in order to increase the calculation time step and
decrease computational cost; however, since the system is not under significant
confining pressure, a softer grain–grain interaction will not have considerable effect
on the results, and the simulation remains in the hard-sphere limit. The particles
are sufficiently hard that we find no additional rescaling of time is necessary. The
damping coefficients αn and αt are determined within the implementation of
LIGGGHTS from the chosen value for the restitution coefficient, en.

Influence of boundary roughness and grain density. We also performed DEM
simulations with inclusion of a roughness layer at the base of the granular bed
(Supplementary Fig. 10), to determine whether this has a significant influence on
creep dynamics. The roughness layer is made of a layer of hexagonal close packed
large grains fixed at their positions. Comparison of the horizontal velocity profile in
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simulations with and without the roughness layer shows that the general transition
from bed load to creep is qualitatively similar. The magnitude of the horizontal
velocity in the creep regime may decrease by an order of magnitude in the vicinity
of the rough boundary, which indicates a higher dissipation rate at the boundary.
In addition, we explored the influence of grain density (relative to fluid). Supple-
mentary Fig. 11 shows the velocity profiles (ux(z)), in DEM simulations of a
bidisperse sheared bed, for different grain densities (ρPMMA, ρglassbead, ρPMMA −
ρfluid, for PMMA, submerged PMMA and glass, respectively) sheared with surface
layer velocity utop= 0.05 m s−1. These results show that there is no qualitative
change in the dynamics with change in the grain density (relative to fluid). We
therefore believe that our observations are general.

Data availability. The experimental data that support the findings of this study are
available in figshare project repository https://figshare.com/projects/River-
bed_armouring_as_a_granular_segregation_phenomenon/24919 with identifiers
dois:10.6084/m9.figshare.5421085; 10.6084/m9.figshare.5419528; 10.6084/m9.fig-
share.5419525; 10.6084/m9.figshare.5419522; 10.6084/m9.figshare.5419267;
10.6084/m9.figshare.5419339; 10.6084/m9.figshare.5419384; 10.6084/m9.fig-
share.5417863; 10.6084/m9.figshare.5417764; 10.6084/m9.figshare.5417761;
10.6084/m9.figshare.5417596. All DEM simulations were run with LIGGGHTS
public version 3.2.1, released on 07-21-2015. Particle detection and image pro-
cessing scripts can be obtained from previous project of Penn Sediment Dynamics
(PennSeD) Laboratory accessible at doi:10.6084/m9.figshare.1269323.
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