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Abstract

Introduction of semi-dwarfism and early maturity in rice cultivars is important to achieve

improved plant architecture, lodging resistance and high yield. Gamma rays induced muta-

tions are routinely used to achieve these traits. We report the development of a semi-dwarf,

early maturing and high-yielding mutant of rice cultivar ‘Improved White Ponni’, a popular

cosmopolitan variety in south India preferred for its superior grain quality traits. Through

gamma rays induced mutagenesis, several mutants were developed and subjected to selec-

tion up to six generations (M6) until the superior mutants were stabilized. In the M6 genera-

tion, significant reduction in days to flowering (up to 11.81% reduction) and plant height (up

to 40% reduction) combined with an increase in single plant yield (up to 45.73% increase)

was observed in the mutant population. The cooking quality traits viz., linear elongation

ratio, breadthwise expansion ratio, gel consistency and gelatinization temperature of the

mutants were similar to the parent variety Improved White Ponni. The genetic characteriza-

tion with SSR markers showed variability between the semi-dwarf-early mutants and the

Improved White Ponni. Gibberellin responsiveness study and quantitative real-time PCR

showed a faulty gibberellin pathway and epistatic control between the genes such as

OsKOL4 and OsBRD2 causing semi-dwarfism in a mutant. These mutants have potential

as new rice varieties and can be used as new sources of semi-dwarfism and earliness for

improving high grain quality rice varieties.

Introduction

Rice is the staple food for almost 50% of the world’s population. Overcoming the threats

caused by biotic and abiotic factors have been an important task in rice breeding. Recently, the

loss of arable lands and changing climatic patterns has further increased the pressure to

develop cultivars with improved plant architecture, high yield and superior grain quality.
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Mutagenesis as a tool can be effectively utilized to improve and modify the genotypes of popu-

lar rice cultivars appropriate for the modern agricultural and commercial needs. Improved

White Ponni (IWP) is one such rice variety with fine-slender grain, high yield potential, mod-

erate resistance to tungro, rice blast, bacterial blight, mite and green leafhopper. The variety

even responds well under organic cultivation systems. However, the tall stature and late matu-

rity of this variety relates to severe lodging and yield losses [1,2].

Continual improvements and studies have shown that semi-dwarfism in rice, conferred by

the sd-1 gene, improves lodging resistance and yield [3]. After the release of IR8 –the miracle

rice by IRRI [4], most of the modern rice varieties were developed with the semi-dwarf gene,

sd1. This accelerated the loss of valuable genetic base which threatens further improvements in

rice cultivars. Although new sources of semi-dwarfism in rice plants have been reported before

[5–8], the negative effects caused by these genes such as severe dwarfism, reduced panicle

length, poor grain yield and poor grain quality have limited their use in rice breeding

programs.

In crop plants, mutation breeding has been used as a tool to develop plants with improved

architecture such as semi-dwarfism and early maturity together with improved quality traits

[9]. Among the different types of mutagens used, the ionizing radiations (physical mutagens)

have been widely used.

In rice, mutation breeding has been mainly used to develop semi-dwarfism and earliness

[10]. Such cultivars were either directly released as new varieties or used as breeding stocks. In

Japan, rice variety Reimei (a gamma-ray mutant) was one of the first allele sources used for the

development of dwarf rice cultivars [11]. The allele conferring semi-dwarfism in this cultivar

was later found to be sd1 [12]. Gamma-rays was utilized to develop semi-dwarf mutants of cul-

tivars such as Basmati 370 [13,14]. Dominant type of semi dwarf cultivars were also developed

through induced mutagenesis: Ssi1 allele through X-ray irradiation [15]; Sdt97 allele in a rice

mutant [16,17]. Similarly, T-DNA insertion [18], RNA interference [19] and recently CRISPR/

Cas9 [20] induced mutations were used to develop semi-dwarf cultivars in rice.

Intercalary meristem cell division and elongation are the major causes for internodal elon-

gation in rice. In dwarf mutants, poor internodal elongation is often associated with defective

gibberellin pathway that reduces cell division [21]. Such mutants when supplied with gibberel-

lic acid, would attain rapid internodal elongation similar to the wild types [8]. Hence, it is

essential to analyze the gibberellin sensitivity in rice mutants which could relate to the defec-

tive gibberellin pathway.

The introduction of semi-dwarfism and early flowering in rice variety Improved White

Ponni can improve the lodging resistance. For this objective, mutations were induced in culti-

var Improved White Ponni through gamma-irradiation [22]. In this study, we evaluated

twenty mutants in advanced homozygous generation (sixth mutant generation: M6) for yield

and grain quality traits. The genotypes were tested using SSR markers and quantitative real-

time polymerase chain reaction (qRT-PCR).

Materials and methods

Development and selection of mutants

In 2011, seeds of Improved White Ponni were treated with different doses of gamma irradia-

tion (100, 200, 300, 400 and 500 Gy) in the Gamma Chamber facility (Model GC1200, Tamil

Nadu Agricultural University, Coimbatore, India). The experimental plots were maintained at

Agricultural College and Research Institute (Killikulam) and Agricultural Research Station

(Thirupathisaram), representing the rice growing tracts of South Tamil Nadu, India. Plant to

progeny method was followed to forward individual plants from M1 to M2 [22]. Plants with
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semi-dwarfism and earliness were primarily selected and forwarded to M3 [23]. In M4, 159

mutant families were evaluated and 70 were forwarded to M5. From this 70 in M5, 20 mutant

families were selected and forwarded to the M6 generation. During 2016, the 20 M6 mutants

were evaluated in randomized block design with two replications. The parent variety IWP was

grown as the control. For morphological observations, ten plants per treatment per replication

were chosen randomly and recorded.

Morphological observations

Plant morphological traits viz., plant height in cm, days to 50% flowering, number of produc-

tive tillers per plant, panicle length in cm, number of filled grains per panicle, thousand grain

weight in grams (g) and single plant yield in grams (g) were recorded. Rice grain quality traits

viz.,dehusked kernel (brown rice) length in mm, dehusked kernel breadth in mm, kernel

length to the breadth (L/B) ratio, rice length after cooking in mm, rice breadth after cooking in

mm were measured. The linear elongation ratio and breadth-wise expansion ratio were calcu-

lated according to standard methods [24].

Amylose content

The amylose content of the mutant lines and IWP were estimated by colorimetric method

[25]. Based on the per cent amylose content the genotypes were categorized (S1 Table).

Gel consistency

The way cooked rice hardens upon cooling was measured by gel consistency according to the

Standard Evaluation System [26].

Statistical analysis

Estimation of variance parameters. The mean, variance and standard error were esti-

mated by following the standard methods [27]. The variances (phenotypic and genotypic) and

broad sense heritability were estimated by following the standard methods [28]. The pheno-

typic and genotypic coefficients of variability calculated by following the standard methods

[29]. The genetic advance (as per cent of mean) was calculated according to [30].

Genotypic correlation. The genotypic correlation (Pearson correlation coefficients)

between the traits was computed using Multi-Environment Trial Analysis with R for Windows

(META-R) [31]. The correlation values were plotted using R package ‘corrplot’ [32].

Cluster analysis and principal components analysis. The hierarchical cluster analysis of

genotypes based on squared-Euclidean distances and the principal components analysis were

performed using R software environment for statistical computing, version 3.5.1 [33]. The

PCA biplot drawn using the first two principal components (PC1 and PC2) was overlaid with

the hierarchical clusters.

Molecular analysis with SSR markers

To assess the mutation rate, the mutants were analysed with SSR markers. An SSR marker

panel consisting of 53 markers were chosen based on reports of QTL associations with plant

height and days to flowering which spread throughout the genome of rice (S2 Table). Genomic

DNA of IWP and mutants were isolated from young leaves following a modified cetyl tri-

methylammoniumbromide (CTAB) method [34]. The polymerase chain reaction was per-

formed with PrimeTaq 2X mastermix (GCC biotech, India) according to the manufacturer’s

instruction and the amplicons were electrophoresed in 2% agarose gel and visually scored by
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comparing with a standard 100 base pair ladder. The molecular diversity was analyzed using

molecular dissimilarity analysis software DARwin (Dissimilarity Analysis and Representation

for Windows) version 5.0 [35].

Scanning electron microscopy of mutants

The internal cell structure of IWP and a semi-dwarf mutant was studied using a scanning elec-

tron microscope (SEM) facility (FEL quanta 200 SEM, ThermoFisher Scientific, US) available

at Tamil Nadu Agricultural University, Coimbatore. Transverse sections of leaf, nodal region

and internodal regions were studied.

Responsiveness to external GA3

A superior mutant from the M6 generation, designated as WP-22-2 was selected based on the

morphological observations. Dwarf mutants in rice are classified as gibberellin responsive on

non-responsive based on their phenotypic response to the external application of gibberellin

hormone. Gibberellin responsiveness of WP-22-2 was studied by spraying 50 μM gibberellin

on 10 days old seedlings (GA3 solution prepared with gibberellic acid crystals, SRL, Mumbai,

India). Five days after treatment, 1st internode length and 2nd leaf length of the seedlings were

measured and compared with the parent IWP. Mean lengths were compared by using Stu-

dent’s t-test and plotted using R [33].

Mutation characterization through quantitative real time-polymerase

chain reaction

Molecular level changes during external application of GA3 was studied using qRT-PCR. Rela-

tive expression levels of six plant height controlling genes (Table 1) was compared at different

time-points.

GA3 treatment. Fourteen days old seedlings of IWP and WP-22-2 were sprayed with

50 μM GA3 solution using a hand sprayer. Leaf samples were collected and flash-frozen in liq-

uid nitrogen at 0 hrs (control), 6 hrs, 12 hrs and 24 hrs after spraying and stored at -80˚C until

RNA isolation.

RNA isolation and cDNA synthesis. Total RNA was isolated from the tissue by following

the TRIzol RNA isolation protocol [36]. The quality and quantity of the isolated RNA were

Table 1. Target genes and primers used for qRT PCR.

S.

No.

Primer

ID

Primer sequences (5’! 3’) Targeted gene Functions

1. SLR-1 Forward CGATCGGGCTTACGGTTCTC SLR-1 (LOC_Os03g49990) Probable repressor of GA signalling pathway.

Overexpression induces dwarf phenotypeReverse AGATGGGCTAGGAGGACCAA

2. GA Forward CCAATTTTGGACCCTACCGC GA20oxidase (LOC_Os01g66100) Key enzyme in biosynthesis of gibberellin. Promotes

internode elongationReverse TCCATTCATCCGTCGTTCCA

3. OsKOL4 Forward CAGATGACCAACTGATGCTGC ent-Kaurene oxidase like-4

(LOC_Os06g37300)

Heme binding; gibberellin biosynthetic process

Reverse CGGATCTCTTGGTAGAGTAGC

4. KO2 Forward AACCTGTACGGGTGCAACAT ent-kaurene oxidase 2-like

(LOC_Os06g37364)

Heme binding; key role in biosynthesis of GA

Reverse CTTGTACATGTCCGCCACCT

5. MAX2 Forward GACAAATGGGATGGCGTGTG Fbox/LRR-repeat MAX2 homolog

(LOC_Os06g06050)

Mutations cause high tillering and dwarfism

Reverse TCAGATTAAATCCTTACTGCTGTGT

6. OsBRD2 Forward AAGACATGCTGGTTCCCTTGT Brassinosteroid Deficient

(LOC_Os10g24780)

controls grain shape and height; cell elongation

Reverse TGGTTTTCACAGGGAGCTTGT

https://doi.org/10.1371/journal.pone.0245603.t001
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estimated using 1.2% agarose gel and NanoDrop (Thermo Fisher Scientific, US) spectropho-

tometer. The complementary DNA (cDNA) was synthesized using Verso cDNA synthesis kit

(Thermo Fisher Scientific, US) with random hexamer and Oligo dT (in 3:1 ratio) as RNA

primers in a thermal cycler (ProFlex PCR system, ThermoFisher Scientific, US) following

manufacturer’s instructions. For template in qRT PCR, cDNA was diluted ten folds with

molecular grade water.

Quantitative Real Time PCR. PCR was performed with template cDNA and master mix

(PowerUp SYBR Green master mix, Thermo Fisher Scientific, US) in Real Time PCR machine

(ABi 7900 HT, US) with standard operating conditions. OsAct was used as an internal control

to normalize the data. The expression ratio of each gene was calculated relative to its expres-

sion in control sample by the ΔΔCT method [37]. Error bars representing standard error were

calculated based on three technical replicates for each biological duplicate.

Gene sequencing analysis

Whole-genome assembly was initiated in IWP and WP-22-2 genotypes (Illumina HiSeq 2500;

Agrigenome labs, Hyderabad). Preliminary sequence analysis showed mutations in the

OsGA20Ox2 gene of WP-22-2 mutant. This was confirmed by targeted sequencing of the gene

using primers SD1_F [5’-TCCCTCATCCCCTGTGGTG-3’] SD1_R [5’-ATGGCGGGTAGTAGT
TGCAC-3’].

Results

Mean performance

Plant height and days to 50% flowering was generally reduced in the M6 generation mutants

(Table 2; Fig 1). Up to 13 days reduction in fifty per cent flowering (11.8% reduction from 110

days in IWP-control) was observed in a mutant WP 5–4. Up to 11 days reduction in days to

flowering was observed in six mutants. The phenotypic co-efficient of variation (PCV) and

genotypic co-efficient of variation (GCV) were low (7.23 and 7.17, respectively). The trait

recorded high heritability (98.4%) and intermediate genetic advance as per cent of mean

(14.7%). Similarly, up to 42% reduction in plant height was observed in WP-16-5 (149.9 cm in

IWP-control). High PCV (20.03%) and GCV (20.02%) were observed for the trait. High herita-

bility (99.92%) and high genetic advance as per cent of mean (41.23%) was observed.

Increase in yield was observed in many semi-dwarf and early mutants when compared to

the IWP-control. Four mutants have recorded single plant yield above 50 grams (Table 2).

An average of 5.0% increase in milling per cent and 4.9% increase in head rice recovery was

observed among the mutants while IWP-control recorded the lowest milling per cent of

61.7%.

Reduction in dehusked kernel length (brown rice) was observed in mutants (0.25 mm to

0.6 mm reduction) compared to the IWP-control (5.45 mm). But the dehusked kernel breadth

remained unaltered in the mutants.

The linear elongation ratio of rice kernels (LER) in nine mutants were higher than the

IWP-control. The gelatinization temperature of the mutant and IWP-control was uniform.

Similarly, the gel consistency values, which measure the softness of rice after cooking, were

unaltered in the mutants. All genotypes, including IWP-control, had a value of more than 60

mm, corresponding to soft rice grains.

IWP-control and mutants WP 6–3, WP 23–3 and WP 30–1 had low amylose contents.

Three mutants, WP 5–4, WP 15–5 and WP 16–5 had intermediate amylose content (S3 Table).

Based on the overall morphological performance, mutant WP-22-2 was selected with high

single plant yield, semi-dwarfism, reduced days to maturity than IWP, increased milling per
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cent and head rice recovery, fine grain L/B ratio and high linear elongation ratio (Tables 2 and

3). This mutant was selected for further analyses.

Correlation between traits

The genotypic correlation between the traits was calculated (S4 Table; Fig 2). High significant

positive correlation (Pearson correlation co-efficient: 0.78) was observed between plant height

and days to fifty per cent flowering. The trait days to fifty per cent flowering was negatively

correlated with number of productive tillers (-0.56). The grain quality trait length after cooking

had positive correlation with thousand grain weight (0.86), length before cooking (0.73), pani-

cle length (0.49) and LB ratio (0.45). However, it was negatively correlated with traits head rice

recovery (-0.62) and number of grains per panicle (-0.51). The trait single plant yield had no

significant correlations with any other traits, however non-significant and negative correla-

tions was observed with days to fifty per cent flowering and plant height.

Table 2. Mean performance of the M6 mutants and IWP-control.

S. No. Lines DFF PH (cm) NOPT PL (cm) GPP TGW (g) SPY (g)

1 WP 5–1 119.0 127.1 19.5 24.4 264.3 15.2 47.0

2 WP 5–4 97.0 94.1 19.4 23.8 227.3 15.2 40.6

3 WP 6–3 104.0 97.1 24.2 25.1 218.3 14.3 43.3

4 WP 6–4 102.5 90.5 16.5 24.2 235.3 14.5 32.7

5 WP 6–5 104.5 91.6 16.9 22.6 264.3 14.7 37.6

6 WP 15–1 102.5 90.5 22.3 22.7 192.8 13.3 49.4

7 WP 15–5 102.0 98.1 23.9 22.6 198.3 14.1 59.4

8 WP 16–1 98.5 95.9 20.6 23.7 258.5 13.5 52.9

9 WP 16–2 98.5 89.3 19.7 23.6 234.8 13.7 56.0

10 WP 16–3 107.0 90.0 18.0 23.0 257.0 13.7 31.3

11 WP 16–4 108.0 92.7 19.3 24.1 278.8 14.0 49.8

12 WP 16–5 109.5 86.5 23.1 24.3 286.0 13.7 48.2

13 WP 22–1 104.5 88.3 20.5 22.7 269.3 13.0 38.2

14 WP 22–2 99.0 91.6 21.3 24.2 264.3 12.5 54.6

15 WP 22–3 106.5 94.2 24.4 23.8 266.8 12.8 49.7

16 WP 22–5 99.0 89.6 21.5 24.0 242.8 12.6 47.5

17 WP 23–3 98.5 89.6 22.0 24.0 240.3 13.3 48.3

18 WP 23–4 99.0 93.6 22.0 23.3 284.5 14.1 42.9

19 WP 30–1 122.0 149.9 22.9 24.4 191.5 16.0 35.3

20 WP 30–5 122.0 135.7 19.7 23.9 184.8 15.2 39.3

21 IWP Cont 110.0 149.9 21.7 26.3 224.5 15.6 40.8

Grand mean 105.4 101.2 20.9 23.8 242.1 14.0 45.0

Range 97.0 to 122.0 86.5 to 149.9 16.5 to 24.4 22.6 to 26.3 184.8 to 286.0 12.5 to 16.0 31.3 to 59.4

PCV (%) 7.23 20.03 10.80 3.81 13.07 7.17 17.17

GCV (%) 7.17 20.02 10.70 3.68 12.91 7.12 17.12

Heritability (%) 98.41 99.92 98.08 93.22 97.54 98.62 99.29

Genetic advance 15.45 41.74 4.56 1.74 63.60 2.04 15.81

Genetic advance (as per

cent of mean)

14.66 41.23 21.82 7.32 26.27 14.57 35.13

(DFF- days to 50% flowering; PH- plant height; NOPT- number of productive tillers per plant; PL- panicle length; GPP- grains per panicle; TGW- thousand grain

weight; SPY- single plant yield).

https://doi.org/10.1371/journal.pone.0245603.t002
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Genetic variability based on hierarchical cluster analysis

Three major clusters were identified in the hierarchical cluster analysis. The taller and late

maturing mutants WP-30-1 and WP-30-5 were grouped together with IWP-control. WP-6-3,

a mutant with high rice length after cooking and linear elongation ratio formed a separate clus-

ter. The remaining mutants were grouped under the third cluster (Fig 3).

Principal components analysis

Six principal components (PC1 to PC6) were extracted with Eigen values above one (Table 4,

S5 Table). Together, these six components explained about 82.8% of the variance where, PC1

explained 25.75%. In PC1, rice length after cooking, thousand grain weight and rice length

before cooking were the major contributors of variance (S5 Table). The biplot drawn using

PC1 and PC2 (Fig 3) shows the relationship between traits and genotypes.

Molecular analysis with SSR markers

The SSR marker panel consisting of 53 SSR markers showed the mutation rate in the mutants.

Dissimilarity analysis showed the effect of mutagenesis at different SSR loci (S6 Table; S1 Fig).

Totally, 71 alleles were recorded for the SSR markers screened. Sixteen markers were polymor-

phic in which 14 markers showed two alleles and two markers showed three alleles.

The dissimilarity values were generally low between the mutants and the IWP-control (S6

Table). The tall and late maturing mutants WP-30-1 and WP-30-5 were clustered in close

Fig 1. Comparison of IWP-control and a high yield, semi-dwarf and early maturing mutant. A1) The parent

variety IWP; A2) a semi-dwarf, early maturing and high-yielding mutant, WP-22-2 (note: the IWP is still in the

flowering stage while in the WP-22-2, the panicles are already maturing); scale bar– 10 cm; B1) Panicle of the IWP and

B2) WP-22-2; scale bars– 1 cm; C1 & C3) Rice kernels of IWP and WP-22-2; C2&C4) dehusked kernels of IWP and

WP-22-2; scale bars– 2mm.

https://doi.org/10.1371/journal.pone.0245603.g001
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Table 3. Mean performance of the M6 mutants and IWP-control.

S.

No.

Lines Mill (%) HRR (%) LBC

(mm)

BBC

(mm)

L/B LAC

(mm)

BAC

(mm)

LER BER ASV GC (mm) Amylose

(%)

1 WP 5–1 68.7 61.1 5.00 2.00 2.50 7.85 2.70 1.57 1.35 3.0 84.8 33.5

2 WP 5–4 65.7 57.7 4.95 2.00 2.48 7.80 2.90 1.58 1.45 3.0 100.0 22.3

3 WP 6–3 64.6 54.2 5.05 1.95 2.59 8.05 2.80 1.59 1.44 4.0 57.7 16.5

4 WP 6–4 68.6 60.4 5.10 2.10 2.43 7.50 2.70 1.47 1.29 3.0 61.5 34.8

5 WP 6–5 66.6 55.6 5.20 2.05 2.54 7.80 2.70 1.50 1.32 3.0 100.0 36.6

6 WP 15–

1

65.1 58.0 5.00 1.95 2.57 7.35 2.50 1.47 1.28 3.0 87.2 26.2

7 WP 15–

5

67.1 61.5 5.15 2.00 2.58 7.50 2.75 1.46 1.38 3.0 80.9 23.0

8 WP 16–

1

68.0 62.1 5.05 2.00 2.53 7.30 2.70 1.45 1.35 3.0 65.4 32.7

9 WP 16–

2

67.5 61.2 5.00 2.00 2.50 7.15 2.60 1.43 1.30 3.0 100.0 37.2

10 WP 16–

3

68.4 56.2 4.85 2.00 2.43 7.35 2.75 1.52 1.38 3.0 78.9 35.6

11 WP 16–

4

68.4 60.3 4.90 1.95 2.51 7.55 2.50 1.54 1.28 3.0 100.0 29.1

12 WP 16–

5

68.5 57.4 5.20 2.00 2.60 7.40 2.60 1.42 1.30 3.0 74.7 21.8

13 WP 22–

1

67.5 57.6 5.05 2.00 2.53 7.25 2.40 1.44 1.20 3.0 100.0 30.0

14 WP 22–

2

66.7 57.6 4.95 1.85 2.68 7.20 2.50 1.45 1.35 4.0 100.0 25.8

15 WP 22–

3

66.7 58.7 5.20 1.95 2.67 7.55 2.60 1.45 1.33 3.0 88.1 34.5

16 WP 22–

5

68.2 60.9 4.85 1.80 2.70 7.30 2.40 1.51 1.33 3.0 100.0 29.3

17 WP 23–

3

67.2 57.2 5.00 2.05 2.44 7.35 2.80 1.47 1.37 3.0 75.3 13.2

18 WP 23–

4

68.7 57.7 4.95 2.00 2.48 7.40 2.70 1.50 1.35 3.0 100.0 31.2

19 WP 30–

1

62.5 50.4 5.45 2.05 2.66 8.40 2.65 1.54 1.29 3.0 87.9 15.0

20 WP 30–

5

65.3 58.6 5.50 2.00 2.75 8.15 2.45 1.48 1.23 3.0 75.1 31.5

21 IWP

Cont

61.7 53.1 5.45 2.00 2.73 8.10 2.75 1.49 1.38 3.0 67.6 19.3

Grand Mean 66.7 57.95 5.09 1.99 2.56 7.59 2.64 1.49 1.33 3.00 85.00 27.10

Range 61.70 to

68.70

50.35 to

62.05

4.85 to

5.50

1.80 to

2.10

2.43 to

2.75

7.15 to

8.40

2.40 to

2.90

1.42 to

1.59

1.20 to

1.45

3.00 to

4.00

57.7 to

100.00

19.3 to 37.2

PCV (%) 2.93 5.10 3.62 2.97 3.60 4.62 5.08 3.36 3.76 17.01 26.79

GCV (%) 3.01 5.15 3.78 3.73 4.19 4.68 5.49 3.36 5.04 16.9 26.8

Heritability

(%)

94.83 98.33 91.89 63.64 73.91 97.62 85.71 100.00 55.56 99.0 99.7

Genetic

advance

3.92 6.04 0.36 0.10 0.16 0.71 0.26 0.10 0.08 29.5 15.2

Genetic

advance (as per

cent of mean)

5.87 10.42 7.15 4.89 6.38 9.41 9.69 6.91 5.77 34.7 55.0

(Mill-milling per cent; HRR-head rice recovery; LBC-dehusked kernel length before cooking; BBC-dehusked kernel breadth before cooking; L/B-length to breadth ratio;

LAC-rice length after cooking; BAC-rice breadth after cooking; LER-linear elongation ratio; BER-breadth wise elongation ratio, ASV-alkali spreading value; GC-gel

consistency).

https://doi.org/10.1371/journal.pone.0245603.t003
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affinity with IWP-control showing low dissimilarity (Fig 4). The genotypes WP-16-3 with

WP-16-4 and WP-22-1 with WP-22-2 had low dissimilarity of 0.038. Maximum variability

was observed between IWP-control and WP 23–3 with dissimilarity value of 0.45 (S6 Table).

Responsiveness of mutant rice to external GA3

Based on overall morphological performance, WP-22-2 was selected as a superior mutant and

was used in further characterisation studies. Morphological changes was observed in this

mutant as a result of external GA3 application. Significant increase in seedling height of WP-

22-2 was contributed by the increase in 2nd leaf length (14.9 cm ± 0.99 S.E. in WP-22-2(GA3);

Fig 5; S7 and S8 Tables).

Scanning electron microscopy

The SEM images showed cell patterning differences in the regions of internodes between IWP

and a semi-dwarf and an early-maturing mutant. Large cell size and reduced number of cells

per unit area was observed in the studied dwarf mutant (S2 Fig).

Fig 2. Genotypic correlation between morphological traits. The plant height has high positive correlation with days to fifty per

cent flowering and high negative correlation with milling per cent. ��-significant at 1% and �-5% level of significance.

https://doi.org/10.1371/journal.pone.0245603.g002
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Quantitative real time-PCR

The effect of external GA3 at molecular level was compared between IWP and WP-22-2 at four

time points (Fig 6; S9 and S10 Tables). Of the six genes compared, four genes (KOL4, KO2,

MAX2 and BRD2) showed significant differences in expression levels between IWP and WP-

22-2.

Downregulation of SD1 gene (GA20Ox2), a key regulator of gibberellin pathway of rice was

observed in both IWP and WP-22-2. The relative expression levels of OsKOL4 in IWP gradu-

ally decreased from 0 hr to 24 hrs after the GA3 application. In mutant WP-22-2, the expres-

sion levels reduced from control (0 h); however, remained higher than IWP. Significant

differences in expression levels of KO2 and MAX2 genes in IWP and WP-22-2 were witnessed.

In IWP, the expression levels of KO2 gene remained higher than the WP-22-2. Gradual

increase in expression of MAX2 gene was observed in WP-22-2. The BRD2 gene (brassinoster-

oid deficient) contrasting pattern of expression was observed in IWP (upregulation) and WP-

22-2 (downregulation).

Fig 3. PCA and hierarchical cluster analysis of genotypes based on morphological data. The biplot was drawn using the first two principal

components and overlaid with the three clusters produced by hierarchical clustering. The group 1 has tall and late-maturing genotypes; Group 2 has semi-

dwarf mutants with similar panicle length and alkali spreading values; Group 3 has semi-dwarf and early maturing mutants with high grains per panicle

and milling per cent. (DFF-days to fifty per cent flowering; PH-plant height; BBC- dehusked kernel breadth before cooking; BAC-rice breadth after cooking;
TGW-thousand grain weight; LBC-dehusked kernel length before cooking; LAC-rice length after cooking; LER-linear elongation ratio; PL-panicle length;
BER-breadthwise elongation ratio; ASV-alkali spreading value; LB-length breadth ratio; NOPT-number of productive tillers; SPY-single plant yield; Mill-
milling per cent; GPP-grains per panicle; HRR-head rice recovery).

https://doi.org/10.1371/journal.pone.0245603.g003
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Targeted sequencing of OsGA20Ox2 gene

Whole genome assembly of IWP and WP-22-2 has indicated mutations in the exon 1 and

intron 1 regions of OsGA20Ox2 gene (preliminary analysis of whole genome assembly; results

unpublished). Sanger sequencing of this gene revealed 356 bp deletion in WP-22-2 as against

IWP (Fig 7). The bases 296 to 652 in exon1 and intron has been lost in WP-22-2.

Discussion

The ‘green revolution’ gene in rice—the mutant gene of GA20ox2 (sd1)—has resulted in

improved source-sink relationship in rice cultivars, which dramatically improved rice grain

yield [3,8]. However, use of this gene as the single source of semi-dwarfism in rice cultivars has

resulted in loss of diversity. Hence, identification of a new allele as a source of semi-dwarfism

has long been researched and reported [8,17,38].

In popular rice cultivars, mutation breeding has been routinely used to improve the plant

architecture. Since the mutation events are random throughout the genome, chances for iden-

tifying superior and novel alleles remain higher.

We employed gamma rays to develop semi-dwarf and early maturing mutants of the popu-

lar south Indian rice variety Improved White Ponni (IWP). The overall agronomic perfor-

mances of the IWP mutants were better than the IWP-control as studied in the M6 generation.

The mean performance of IWP mutants indicates a significant reduction in plant height and

days to flowering (Fig 1). Apart from these two, IWP mutants showed increased yield than

IWP-control. A yield increase of up to 18.65 g (45.73%) was recorded in mutant WP-15-5.

Seven mutants viz., WP-15-1, WP-15-5, WP-16-1, WP-16-2, WP-16-4, WP-22-2 and WP-22-3

have recorded yield increase above 20% than IWP-control. The correlation of single plant

yield with plant height and days to 50% flowering were negative. This clearly shows that the

reduced plant height in the mutants improved the source-sink relationship.

Table 4. Principal components and per cent of variance explained.

Components Eigenvalue Variance (%) Cumulative Variance (%)

PC1 4.89 25.75 25.75

PC2 3.45 18.15 43.90

PC3 2.70 14.20 58.10

PC4 1.89 9.93 68.03

PC5 1.64 8.62 76.65

PC6 1.17 6.14 82.79

PC7 0.98 5.18 87.97

PC8 0.68 3.60 91.58

PC9 0.56 2.96 94.53

PC10 0.38 1.99 96.52

PC11 0.29 1.53 98.06

PC12 0.20 1.04 99.10

PC13 0.09 0.48 99.58

PC14 0.06 0.30 99.88

PC15 0.02 0.10 99.98

PC16 0.00 0.02 100.00

PC17 0.00 0.00 100.00

PC18 0.00 0.00 100.00

PC19 0.00 0.00 100.00

https://doi.org/10.1371/journal.pone.0245603.t004
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Although an increase in yield of cultivars is desired, maintaining the grain quality is highly

important in a commercial perspective, especially with the highly preferred varieties like

Improved White Ponni. All the mutants evaluated here outperformed IWP-control in milling

per cent. Mutants WP-5-1, WP-6-4, WP-15-5, WP-16-1, WP-16-2, WP-16-4, WP-22-3, WP-

22-5 and WP- 30–5 recorded more than 10% increase in head rice recovery. Amylose content

had positively contributed to the increased head rice recovery in mutants (r = 0.61; P =<0.01)

which was similar to the earlier reports [39,40].

However, dehusked kernel length was reduced in semi-dwarf and early maturing mutants.

Non-significant positive correlation observed between plant height and days to flowering with

dehusked kernel length before and after cooking suggests a relationship between these traits

(S4 Table). But the breadth remained unaltered or reduced among the IWP mutants. Hence,

there was no major changes in the L/B ratio and fifteen mutants and IWP-control with L/B

ratio above 2.50 can be grouped under medium grain rice. The fine slender grain trait

Fig 4. Variability analysis using SSR marker data. Genetic clustering with SSR marker data separated the semi-dwarf and early maturing mutants from the tall and late

maturing genotypes. Cont (IWP), WP-30-5 and WP-30-1 are tall and late-maturing genotypes and other genotypes in the clusters are semi-dwarf and early maturing

mutants. The scale bar indicates genetic distance of 0.1.

https://doi.org/10.1371/journal.pone.0245603.g004
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Fig 5. Responsiveness of WP-22-2 mutant to external-GA3. 50 μM GA3 was sprayed on 10 day old seedlings of WP-

22-2 which completely reverted the plant height similar to Improved White Ponni. A) Comparison of IWP, WP-22-2

(untreated) and WP-22-2 (GA3 treated) seedlings after fourteen days from sowing; scale bar– 1 cm; B) Stacked barplot

representing the seedling growth between IWP, WP-22-2 (untreated) and WP-22-2 (GA3 treated). While the primary

node lengths were similar, second leaf length showed much variation (red indicates II leaf length and blue indicates the

1st internode). The error bars indicate standard error of the mean for three independent experiments (N = 3); C)

Stacked barplot showing the panicle length and first four internode lengths of IWP and WP-22-2 after maturity.

Uniform reduction in the length was observed in four internodes of WP-22-2 responsible for semi-dwarfism; D)

Table showing the internode lengths of IWP and WP-22-2; unit–cm.

https://doi.org/10.1371/journal.pone.0245603.g005

Fig 6. Graph of gene expression. The relative expression levels of six genes controlling plant height in rice were

studied. Clear variations in expression levels are visible in ent-kaurene oxidase 2 (KO2), MAX2 and OsBRD2 genes.

Interestingly, both the IWP and WP-22-2 showed reduced expression levels in sd1 gene (GA20Ox2). Error bars

indicate standard error (N = 3).

https://doi.org/10.1371/journal.pone.0245603.g006
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IWP-control was maintained among the mutants (Fig 1C). Rice varieties with more linear

expansion and less breadth wise ratio have high preference. These two traits among the

mutants suggested less change in rice length after cooking.

The other cooking qualities of rice, gelatinization temperature of rice measured by alkali

spreading value (ASV) and gel consistency was similar for IWP and the mutants. Intermediate

gelatinization temperature (ASV score of ‘3’) and soft gel consistency has high preference in

many rice growing countries [41]. Further, many mutants had intermediate amylose similar to

the IWP (Table 3). Mutant WP-22-2 shows balanced morphological improvements such as

semi-dwarfism, earliness, high milling and head rice recovery, high L/B ratio and especially

higher yield than IWP. Hence, this mutant was mainly selected as a superior mutant. SSR mark-

ers are powerful tools to study the polymorphism created by mutagenesis [42–45]. In addition,

they are useful to identify true mutants from outcrosses or mixtures [46,47]. The strategy to

select 53 SSR markers (S2 Table) with known associations with plant height and days to matu-

rity QTLs [48–66] was highly useful since they have clearly differentiated between the semi-

dwarf and early maturing genotypes from wild-types (S1 Fig). Clustering based on morphologi-

cal data (Fig 3) and molecular marker data (Fig 4) have clearly separated the IWP-control and

tall, late maturing mutants (WP-5-1, WP-30-1 and WP-30-5) in same clusters. Out of the 53

SSR markers used, only two markers (RM302 and RM310) showed maximum variability i.e.

three alleles. This is expected since the mutant population is derived from the single parent viz.,

IWP [46,47]. Even the highest genetic distance of 0.45 (IWP with WP-23-3) was very low (given

the range of dissimilarity: 0 to1), an indication that induced mutations cannot create drastic

variations. With this, WP-23-3 can be considered as the genotype with more mutations for the

SSR loci tested. Similar results with SSR markers were observed for other rice mutants created

with N-Nitroso-N-methylurea [45], somaclonal mutants [67] and ion beam radiation [68].

Intercalary meristem cell division and elongation are the major causes for internodal elon-

gation rice and flaws in these processes severely affect the plant height. Many studies in dwarf

mutants suggest defects in gibberellic acid pathway that reduce the cell division [21]. GA3

treatment can restore the plant height in mutants, a characteristic feature in GA deficient

mutants [69]. This same feature was observed in GA3 treated WP-22-2 suggesting its GA3 defi-

ciency. At the two leaf stage of the plants with which the experiment was performed, the 2nd

leaf was highly responsive to the GA3 than the 1st internode (Fig 5A and 5C). Thus it was the

major contributor of plant height in IWP. The scanning electronic microscopic images show

reduced number of cells per unit area in the mutants. This explains the reduction in internode

lengths in rice mutants. These experiments hinted that there is a deficient gibberellin pathway

in WP-22-2 causing semi-dwarfism.

Fig 7. Deletion in GA20Ox2 gene of WP-22-2 mutant. Deletion in exon 1-intron 1 regions was identified in targeted gene sequencing of GA20Ox2. Electrophoresis

image shows the amplicon differences between IWP and WP-22-2. Gene diagram shows the relative positions of three exons and introns of the genes; and the position of

deletions in the gene (horizontal black bar indicates introns and grey boxes indicate exons).

https://doi.org/10.1371/journal.pone.0245603.g007
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To further study the molecular level changes during gibberellin treatment relative expres-

sion of six genes was compared using qRT-PCR (Fig 6). Overall, the expression changes

between IWP and WP-22-2 was indicative of a deficient gibberellin pathway in WP-22-2. The

SLENDER1 (SLR-1) gene of rice (DELLA protein SLR1-like) interacts with GA-GID1 complex

to act as a GA signalling repressor [8] and overexpression induces dwarf phenotype. Gradually

decreasing time-course expression levels in IWP and increasing expression levels in WP-22-2

indicated mutations. Comparison of GA20Ox2 gene (GA20oxidase), the major semi-dwarfing

gene utilised in breeding of rice has indicated an interesting phenomenon. In plants, the

GA20oxidase converts GA intermediates into bioactive forms [7]; hence loss of function may

cause dwarfism in rice plants. But, reduced expression in both IWP (wild-type) and WP-22-2

indicated possible mutations in other dwarfing regions such as the alternate semi-dwarf 1 [70]

and Slr-d6 [71]. Such mutants were reported to be responsive to the GA3 hormone to a limited

extent [71] or a key regulator in the Brassinosteroid pathway of rice [70]. But, the GA3 respon-

siveness of the mutant studied here is prominent, a characteristic feature of mutations in the

GA3 pathway of rice [8]. It further necessitates the requirement of genome-wide characterisa-

tion of the mutant to identify other alleles causing semi-dwarfism.

Significant differences in expression levels were observed for four genes: OsKOL4, OsKO2,

MAX2 and OsBRD2. Of these, ent-kaurene oxidases (OsKO2) and ent-kaurene oxidase like

proteins (OsKOL4) regulate the gibberellic acid pathway by converting the intermediary ent-
kaurene to GA12 [6]. Inhibited activity and/or expression of the ent-kaurene oxidase like pro-

teins result in dwarfism in rice [38]. This is clearly witnesses with OsKO2: in IWP, the gene is

over expressed while in WP-22-2 it is down regulated, suggesting mutations in the gene. Simi-

lar expression changes were witnessed for Fbox LRR/MAX2 protein (an orthologous gene of

Arabidopsis MAX2/ORE9) which is known to control apical dominance. Mutations in these

regions cause dwarfism and high tillering in rice [72]. The increased expression in both the

genotypes is an indicator of GA3 responsiveness of the mutant.

A more prominent pattern of expression changes can be seen in the OsBRD2 gene (delta

24-sterol reductase) which is a part of the Brassinosteroid pathway and reduction in activity

results in dwarfism. This reduced activity (downregulation) is observed in WP-22-2 indicating

mutations in the gene. Hence, the semi-dwarfism in WP-22-2 can be attributed to deficiencies

in the two independent gibberellin and brassinosteroid pathways. However, it is necessary to

do genome wide characterisation of this mutant. This mutation is significant as it is useful to

reduce the dependency on GA20Ox2 as a single dwarfing gene. Further, this complex control

will reduce the genetic bottlenecking effect in rice cultivars. of plant height with high yield and

fine slender grain quality in WP-22-2 could reduce the dependency on the single gene, the

GA20Ox2 for semi-dwarfism in other high grain quality rice cultivars.

Our preliminary whole genome resequencing analysis (results unpublished) in IWP and

WP-22-2 has shown 356 bp deletion in GA20Ox2 (LOC_01g66100) gene (Fig 7) which could

be responsible for the semi-dwarfism in WP-22-2 mutant. Mutations in GA20Ox2 gene (sd1
alleles) are generally deficient in GA metabolism and cause semi-dwarfism in rice plants [8].

Although the large deletion could be associated with the semi-dwarfism in WP-22-2, expres-

sion of this gene was not much variable between IWP and WP-22-2. Epistatic interactions of

the other genes studied in qRT PCR could explain these differences. However, further investi-

gation with the whole genome information would clearly explain the behaviour.

Conclusion

The study summarizes the positive effect of gamma rays on the plant architecture of Improved

White Ponni. We identified several mutants with semi-dwarfism and earliness of which, WP-
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22-2, WP-15-5, WP-16-1, WP-16-1 and WP-15-1 were superior for agronomic traits and com-

mercially important grain quality traits. Molecular level mutations were confirmed with SSR

markers which produced clusters similar to morphological clustering. Based on overall perfor-

mance, we propose WP-22-2 mutant in place of IWP-control with increased tolerance to lodg-

ing and with high yield. Even though the semi-dwarf mutant WP-22-2 was gibberellin

responsive, a possible epistatic control (between the genes of gibberellin and brassinosteroid

pathway) rather than an effect of a single gene was witnessed. This may preserve the valuable

genetic diversity by reducing the dependence on OsGA20Ox2 gene. However, a genome wide

characterisation study is required to further validate this data.
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