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Abstract
Pseudomonas aeruginosa AG1 (PaeAG1) is a Costa Rican strain that was isolated in 2010 in a major Hospital. This strain 
has resistance to multiple antibiotics such as β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. 
PaeAG1 is considered critical (Priority 1) due to its resistance to carbapenems, and it was the first report of a P. aeruginosa 
isolate carrying both VIM-2 and IMP-18 genes encoding for metallo-β-lactamases (MBL) enzymes (both with carbapenemase 
activity). Owing to these traits, we have studied this model for 10 years using diverse approaches including multi-omics. In 
this review, we summarize the main points of the different steps that we have studied in PaeAG1: preliminary analyses of this 
strain at the genomic and phenomic levels revealed that this microorganism has particular features of antibiotic resistance. In 
the multi-omics approach, the genome assembly was the initial step to identify the genomic determinants of this strain, includ-
ing virulence factors, antibiotic resistance genes, as well as a complex accessory genome. Second, a comparative genomic 
approach was implemented to define and update the phylogenetic relationship among complete P. aeruginosa genomes, 
the genomic island content in other strains, and the architecture of the two MBL-carrying integrons. Third, the proteomic 
profile of PaeAG1 was studied after exposure to antibiotics using 2-dimensional gel electrophoresis (2D-GE). Fourth, to 
study the central response to multiple perturbations in P. aeruginosa, i.e., the core perturbome, a machine learning approach 
was used. The analysis revealed biological functions and determinants that are shared by different disturbances. Finally, to 
evaluate the effects of ciprofloxacin (CIP) on PaeAG1, a growth curve comparison, differential expression analysis (RNA-
Seq), and network analysis were performed. Using the results of the core perturbome (pathways that also were found in this 
perturbation with CIP), it was possible to identify the “exclusive” response and determinants of PaeAG1 after exposure to 
CIP. Altogether, after a decade of study using a multi-omics approach (at genomics, comparative genomics, perturbomics, 
transcriptomics, proteomics, and phenomics levels), we have provided new insights about the genomic and transcriptomic 
determinants associated with antibiotic resistance in PaeAG1. These results not only partially explain the high-risk condition 
of this strain that enables it to conquer nosocomial environments and its multi-resistance profile, but also this information 
may eventually be used as part of the strategies to fight this pathogen.
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Context

Antibiotic resistance is a major threat to public health, 
because it compromises the administration of appropriate 
antibiotic therapy. Pseudomonas aeruginosa is an oppor-
tunist pathogen that causes infections among immuno-
compromised hosts. In 2010, P. aeruginosa strain AG1 
(PaeAG1) was isolated from a Costa Rican Hospital. This 
microorganism is a high-risk sequence type 111 clone (ST-
111, a molecular genotype associated with epidemics and 
multidrug resistance; see more details in the “Comparative 
genomics” section), showing a resistance profile to multi-
ple antibiotics such as β-lactams including carbapenems, 
aminoglycosides, and fluoroquinolones. PaeAG1 was iden-
tified as the first report of a P. aeruginosa isolate carrying 
both VIM-2 and IMP-18 genes encoding for metallo-β-
lactamases (MBL) enzymes, both with carbapenemase 
activity. According to the World Health Organization 
(WHO), carbapenem-resistant P. aeruginosa is considered 
critical, being classified as Priority 1 group because of its 
resistance to this last resource antibiotic class. PaeAG1 has 
particular features at genomic and phenomic levels, many 
of them related to antibiotic resistance. Owing to these 
traits, for 10 years, we have been studying the molecular 
determinants of antibiotic resistance in PaeAG1 using a 
multi-omics approach.

Multi‑omics

Biological systems rely on the DNA–RNA–protein infor-
mation transfer paradigm that determines the phenotype of 
an organism (O’Donnell et al. 2020). The comprehensive 
or global assessment of a set of molecules, which requires 
interpretation of molecular intricacy and variations at 
multiple levels, has been referred to as “-omics sciences” 
(Subramanian et al. 2020). The current high-throughput 
nature of these techniques, as well as their increased acces-
sibility in terms of time and cost, has triggered the volume 
of information that can be gathered in individual studies 
including multiple-omics levels, which together are called 
“multi-omics” (O’Donnell et al. 2020; Subramanian et al. 
2020).

Multi-omics can provide a greater understanding of the 
flow of information in biological systems, from the origi-
nal biological set-up or conditions (genetic, environmen-
tal, or developmental) to the functional consequences or 
relevant interactions (Hasin et al. 2017; Civelek and Lusis 
2014). This makes it possible to draw more comprehensive 
conclusions on the biological processes in which these 
data sets must be integrated and analyzed as a holistic sys-
tem (O’Donnell et al. 2020). Also, integrated approaches 

that combine individual omics data help to bridge the gap 
from genotype to phenotype, are considered a promising 
strategy to understand the complexity of biological sys-
tems and unravel the mechanisms underlying the biologi-
cal condition of interest (Subramanian et al. 2020; Civelek 
and Lusis 2014).

In this context, a comprehensive multi-omics approach 
has been implemented to study molecular determinants of 
antibiotic resistance in the PaeAG1 model, including genom-
ics, transcriptomics, and proteomics (Fig. 1).

Antibiotic Resistance

Resistance arises from the extensive and intense use that 
humans have made of antibiotics over the last eight decades 
in different settings, including community, hospitals, vet-
erinary medicine, animal production, and plant production. 
This generates a strong selection pressure in favor of micro-
organisms with mutations in chromosomal genes or with 
horizontally acquired genes that confer the ability to grow 
at therapeutic concentrations (Brauner et al. 2016; Berti and 
Hirsch 2020).

Antibiotic resistance is a current major threat to public 
health, because it compromises the administration of appro-
priate antibiotic therapy. The number of deaths directly 
attributable to antimicrobial resistance has been estimated 
to be about 300 million people through 2050 (approximately 
10 million people per year), with a total financial loss of up 
to $ 100 trillion (O´Neill J 2016). This scenario is indicative 
of the large scale and seriousness of the problem, mainly 
because of the lack of therapeutic options to treat infections, 
increasing patient morbidity and mortality (Woodford et al. 
2011; Farajzadeh Sheikh et al. 2019), as well as an increase 
in the costs of health services. The situation is aggravated by 
the emergence of strains simultaneously resistant to multiple 
antibiotics (Firme et al. 2010), the knowledge limitation of 
interactions with pathogens and mechanisms of the action of 
antimicrobial agents, and the reduced development of new 
antibiotics (Brazas et al. 2005).

The minimum inhibitory concentration (MIC) is an 
in vitro criterion applied in the clinical setting for humans 
and animals, and indicates the concentration that antibiotics 
must reach in the tissues of infected individuals to have ther-
apeutic efficacy (Andersson and Hughes 2014). Although 
it has no practical application outside the clinical setting, 
the MIC value also reveals the degree of resistance that a 
bacterial isolate has to a particular antibiotic. A concentra-
tion below the MIC is considered sub-inhibitory. Subinhibi-
tory concentrations of antibiotics can generate a selection 
pressure in favor of antibiotic resistance genes in bacterial 
populations, causing phenomena of resistance or tolerance to 
antibiotics, and can also induce diverse biological responses 
in bacteria, which perceive them as chemical substances 
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in the form of signals that can trigger different cellular 
responses (Molina Mora et al. 2021; Stockwell and Loper 
2005), including alterations in motility patterns or biofilm 
production, characteristics that can cause an increase in their 
virulence (McFarland et al. 2015; Stewart et al. 2015). Thus, 
the use of sub-inhibitory concentration of antibiotics also 

contributes to antibiotic resistance as it selects pre-existing 
resistant organisms and allows the strains to continue grow-
ing (McVicker et al. 2014). Since sub-inhibitory antibiotic 
concentrations are found in many natural environments, as 
well as in the course of prophylaxis and therapeutic use, 
bacteria can naturally trigger mechanisms of resistance 

Fig. 1   General workflow to study molecular determinants of anti-
biotic tolerance in the high-risk P. aeruginosa AG1 (PaeAG1) by a 
multi-omics approach. Different studies have been performed to study 
PaeAG1. After isolation and determination of MIC of several anti-
biotics, distinct experimental assays were implemented to identify 
MBLs, integrons and phage genes (PCR), MBLs expression (RT-
qPCR), as well as proteomic profiling to antibiotics (2D-GE). Then, 
the genome sequence was assembled and annotated, including the 

comparison against other genomes to solve the architecture of the 
integrons. This defined the genomic determinants for PaeAG1. To 
study the transcriptome response to ciprofloxacin (CIP), a first analy-
sis was done to identify the core perturbome or response to multiple 
perturbations in expression data. Finally, the transcriptomic determi-
nants in response to CIP were identified using RNA-Seq, including 
the “exclusive” response not present in the perturbome
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(Andersson and Hughes 2014). However, the fundamental 
mechanisms of bacterial response to antibiotics have not 
been fully elucidated (Stewart et al. 2015).

In this context, a decade of study of PaeAG1 has not only 
contributed to gain new insights about the antibiotic resist-
ance in the Pseudomonas group, but also new questions have 
arisen, which motivates to continue studying this model.

Pseudomonas aeruginosa Group

P. aeruginosa is an opportunist and versatile pathogen 
which is able to survive in a wide variety of environments 
(Klockgether et al. 2010). With a large genome (6–7.5 Mb), 
P. aeruginosa strains have a large proportion of the genome 
(> 8%) dedicated to regulatory functions (Cabot et al. 2016) 
resulting in a consequent diversity of metabolic capabili-
ties and responses to stress. Because of these features, P. 
aeruginosa is responsible for infections among immuno-
compromised hosts (Lu et al. 2016), nosocomial infections 
(Fernández et al. 2018), and is a major cause of death among 
patients with cystic fibrosis (Kumar et al. 2019). Antibiotics 
such as β-lactams (cell wall synthesis inhibition, including 
carbapenems as a last-resort treatment, e.g., imipenem), qui-
nolones (inhibition of DNA gyrase gyrA, e.g. ciprofloxa-
cin), and aminoglycosides (inhibition of protein synthesis, 
e.g., tobramycin) antibiotics are used to treat Pseudomonas 
infections.

However, the treatment of P. aeruginosa infections is 
challenging due to its many intrinsic and acquired mecha-
nisms of resistance (Toval et al. 2015), resulting in signifi-
cant morbidity and mortality. According to the World Health 
Organization (WHO), resistance to carbapenems in P. aer-
uginosa, Acinetobacter baumannii, and Enterobacteriaceae 
family is considered a critical issue in the context of antibi-
otic resistance, being classified as Priority 1 group (World 
Health Organization 2017).

Regarding multi-omics approaches, only a few studies 
have used this strategy to study P. aeruginosa. For example, 
two closely related P. aeruginosa strains (ATCC 33988 and 
PAO1) grown in n-alkanes or glycerol were analyzed at the 
transcriptomic and proteomic levels, in which the lack of the 
activity of a quorum sensing (QS) system was reported as a 
key element in a better adaptation for growth and survival 
(Grady et al. 2017). Another study was focused on P. aerugi-
nosa causing health-care-associated bloodstream infections 
to identify a pathogen-derived prognostic biomarker for 
patients at risk for unfavorable outcomes. The multi-omics 
approach was implemented using genome sequencing and 
proteomics as part of a clinical study (Willmann et al. 2018).

Recently, Lood and collaborators studied a jumbo bac-
teriophage PA5oct in P. aeruginosa PAO1 using genom-
ics, transcriptomics, and proteomics. The study elucidated 
the genome organization and the response it elicits during 

infection of its host, as well as the evolutionary relationships 
with other phages were found using a gene‐sharing network 
analysis (Lood et al. 2020).

Regarding high-risk P. aeruginosa clones, associated with 
epidemics and multidrug resistance, most of them are stud-
ied at the genomic level (genotyping or genome sequencing), 
and, to our knowledge, there are no studies of high-risk P. 
aeruginosa strains using multi-omics approaches. In this 
sense, our multi-omics approach to study PaeAG1 is the first 
one for a high-risk clone.

Pseudomonas aeruginosa AG1 (PaeAG1)

Diverse P. aeruginosa clones have been identified in several 
bacterial species that show particular traits associated with 
resistance to antibiotics and virulence, which stands out for 
being high-risk clones: their dissemination in hospital set-
tings, their ability to cause infections, as well as the difficulty 
of their treatment. This phenomenon has been reported not 
only worldwide (Mulet et al. 2013a; Petitjean et al. 2017), 
but also in Costa Rica (Toval et al. 2015; Molina-Mora and 
Garcia 2020; Molina-Mora et al. 2020a).

In Costa Rica, the isolation of carbapenem-resistant P. 
aeruginosa strains is relatively common in some major hos-
pitals, up to 63.1% of prevalence, as previously reported 
(Toval et  al. 2015), much higher than the frequencies 
observed in other countries (Hong et al. 2015). The Costa 
Rican strain PaeAG1 was identified as the first report of a P. 
aeruginosa isolate carrying both VIM-2 and IMP-18 genes 
encoding for MBLs enzymes, both with carbapenemase 
activity (Toval et al. 2015). Later, another isolate from the 
United Kingdom with the same enzymes was reported (Tur-
ton et al. 2015).

PaeAG1 was grown from a sputum sample of a patient 
from the Intensive Care Unit in the San Juan de Dios Hos-
pital (San José, Costa Rica) in 2010. This strain has resist-
ance to multiple antibiotics such as β-lactams (including 

Table 1   Minimum Inhibitory Concentration (MIC) of several antibi-
otics against P. aeruginosa strains PAO1 (reference) and PaeAG1

Antibiotics Break-
point (µg/
mL)

MIC (µg/mL)

PAO1 PaeAG1

Third-generation 
Cephalosporines 
(β-lactam)

Ceftazidime 32 1 512

Carbapenems 
(β-lactam)

Meropenem 8 0.250 32
Imipenem 8 0.250  > 32

Aminoglycosides Gentamicin 16 1 128
Tobramycin 16 1  > 192

Quinolones Ciprofloxacin 4 0.125 32
Polymyxins Polymyxin B 8 2 1
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carbapenems), aminoglycosides, and fluoroquinolones, 
being only sensible to colistin (Table 1).

The first molecular analysis of the genes in PaeAG1 was 
done to identify MBLs (Fig. 2A) and phages genes by end-
point PCR. Sanger sequencing (primer walking method) 
confirmed that VIM-2 and IMP-18 genes are encoded in 
class 1 integrons, which were registered as KC907378 and 
KC907377 in Genbank, as we reported previously (Toval 
et al. 2015). At the proteomic level (Fig. 2B, control with 
LB medium), periplasmic proteins were analyzed using 
2-dimensional gel electrophoresis (2D-GE, see below for 
more details). In addition, at the phenomic level, preliminary 
comparison to the reference strain (P. aeruginosa PAO1) 

showed that PaeAG1 has particular features after exposure to 
different antibiotics (Fig. 2B), including pigment production, 
biofilm formation, phage plaque induction (Fig. 2C), and 
others in comparison to the reference strain P. aeruginosa 
PAO1 (Toval et al. 2015; Chinchilla 2018).

In this context, PaeAG1 represents an excellent study 
model for the analysis of the genomic, evolutionary, meta-
bolic, virulence, and, especially, clinical characteristics 
of the clonal lineage ST-111 in the P. aeruginosa species. 
The deep knowledge of these traits in PaeAG1 establishes 
a platform for the analysis of alternatives to control its dis-
semination and the treatment of infections caused by this 
high-risk clone.

Fig. 2   Different experimental assays to study PaeAG1. a End-point 
PCR assays were standardized to identify genes of MBLs and other 
elements of the integrons, and phage genes (two genomic DNA con-
centrations were used). MBLs expression was also assessed using 
RT-qPCR (see Text). b In addition, the proteomic profile of PaeAG1 

after exposure to antibiotics was evaluated using 2D-GE. Other 
assays included the phage plaques assay, which was used to validate 
the transcriptomic results regarding phage induction (see details 
below)
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The Multi‑omics Approach to Study PaeAG1

In view of the preliminary analysis of genomic and phe-
nomic features of PaeAG1, we were interested in study-
ing PaeAG1 in-depth using a multi-omics approach. To 
address this, the strategy was developed in five main steps 
(Fig. 1).

Genome Assembly and Annotation of PaeAG1

First, genome sequencing was done using short- (Illumina) 
and long-read (Oxford Nanopore Technology, ONT) tech-
nologies. Although a reference genome is available for the 
P. aeruginosa group (strain PAO1), a de novo strategy to 

assemble the PaeAG1 genome was required, since it was 
initially estimated that PaeAG1 has ~ 1.0 Mb additional of 
DNA sequence in its genome.

As detailed in Molina-Mora et al. 2020a, a benchmark 
of non-hybrid (using a single DNA sequencing technology) 
and hybrid (using both short and long-read data) assemblers 
was required to select the optimum model. To make this 
possible, the 3C criterion (i.e., contiguity, completeness, and 
correctness) was conceptualized as a set of metrics that can 
be used to benchmark genome assemblies and select the best 
approach. Recently, we have used this strategy in another 
work for the genomic surveillance of SARS-CoV-2 in Costa 
Rica (Molina-Mora et al. 2021a).

The final assembly (GenBank: CP045739, 7,190,208 bp), 
using a hybrid approach, revealed that PaeAG1 has not 
only the expected gene content for the P. aeruginosa group 

Fig. 3   Genomic determinants of antibiotic resistance in PaeAG1 
genome. The genome assembly of PaeAG1 showed not only the 
expected virulence factors and many antibiotic resistance genes but 

also 57 genomic islands harboring phages, integrons, and other anti-
biotic resistance genes. Using a comparative approach, the architec-
ture of the two integrons was revealed
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but also specific elements that are absent in the refer-
ence genome (Fig. 3): 57 genomic islands (corresponding 
to ~ 1.0 Mb DNA sequence and > 1000 genes) harboring 
the two complete class 1 integrons, six prophages, mobile 
genetic elements, and 250 virulence factors. Besides, 
PaeAG1 has 60 resistance genes, a not functional CRISPR-
Cas system (which may explain the high content of genomic 
islands), and a molecular genotyping profile of a high-risk 
ST-111 strain.

These particular results are key components of the multi-
omics approach with the subsequent analyses. If a mapping 
to the reference genome had been selected instead of a de 
novo assembly, the gene content of the extra 1.0 Mb DNA 
sequence (as part of the accessory genome) could not have 
been revealed. In this regard, two out of the other studies 
were focused on elements found in this accessory genome: 
(i) the two PaeAG1 integrons, and (ii) the role of phages 
in the response to ciprofloxacin. Importantly, integrons and 
phages are absent in the reference genome.

Comparative Genomics: Pan‑Genome Analysis 
and Architecture of Integrons

To describe the landscape of the genomic regions associated 
with the two integrons of PaeAG1, a comparative genomic 
strategy was performed as a second main step in the multi-
omics approach. It was first demonstrated that VIM-2 and 
IMP-18 are inducible genes under exposure to carbapen-
ems using RT-qPCR (Molina-Mora et al. 2021b). We then 
described the phylogenetic relationships among all the com-
plete genomes of P. aeruginosa strains using a pan-genome 

analysis (Fig. 4A). This led to identify not only the core 
and the accessory genome for this group, but also other 
strains sharing the PaeAG1 genomic islands. Phylogeneti-
cally related strains were also classified as ST-111 clones, 
but a variant profile of the PaeAG1 genomic island content 
was found in other strains. ST-111 is a lineage that belongs 
to the high-risk group in P. aeruginosa (Oliver et al. 2015), 
which is frequently associated with epidemics where multi-
drug resistance confounds treatment (Petitjean et al. 2017). 
Many P. aeruginosa high-risk clones carry genomic deter-
minants of antibiotic resistance such as carbapenemases 
or extended-spectrum β-lactamases (Oliver et al. 2015). In 
databases, only 10 complete genome sequences of ST-111 
strains (including PaeAG1) are available and, as shown in 
Fig. 4B, they are distributed worldwide.

Since PaeAG1 has special genomic features regarding 
antibiotic multi-resistance, with the carbapenemase activ-
ity by the VIM-2 and IMP-18 genes, the profile of genomic 
island content in phylogenetically related genomes was used 
to gain insights into the evolution and landscape of genomic 
regions around the MBL-carrying integrons of PaeAG1. 
Thus, specific genomic regions associated with the two inte-
grons were reconstructed and characterized to compare the 
gene content and architecture in close genomes.

The genomic region associated with the VIM-2-carrying 
integron (identified as an In59-like element, INTEGRALL-
database http://​integ​rall.​bio.​ua.​pt/) was completely found 
in the other two ST-111 strains, being considered as an 
old-acquaintance integron (Fig. 3, bottom). In the case of 
the IMP-18-carrying integron, the architecture and the sur-
rounding genomic region had never been reported before. 

Fig. 4   Comparative analysis of all the P. aeruginosa complete 
genomes. The genome sequences separate strains by MLST geno-
typing profile, including a well-defined cluster for all the ten ST-111 

strains, including PaeAG1 (A). The ten ST-111 genomes have been 
isolated from different places worldwide (B). *: The reference strain 
PaePAO1 (ST-549) was included in (B)

http://integrall.bio.ua.pt/
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The IMP-18-carrying element was registered as a new inte-
gron In1666 in INTEGRALL-database (Fig. 3, up).

Jointly, the chromosome assembly and the compara-
tive genomics were able to define the molecular arsenal of 
PaeAG1 at the genomic level, including multiple genomic 
determinants of virulence, mobile elements, and antibiotic 
resistance genes.

Proteomic Profile After Exposure to Antibiotics

On the other hand, in the context of antibiotic resistance, 
different assays have been performed in PaeAG1 to study 
its resistance to antibiotics. Antibiotic susceptibility testing 
is reported in Table 1 (Toval et al. 2015; Chinchilla 2018), 
and an MBLs’ differential expression has been tested not 
only to carbapenems as demonstrated (Molina-Mora et al. 
2021b) but also to other antibiotics (Chinchilla 2018).

At the proteomic level, the protein content in PaeAG1 
under exposure to antibiotics was investigated. Two-dimen-
sional gel electrophoresis (2D-GE) analysis was imple-
mented using different imaging and machine learning algo-
rithms (Molina-Mora et al. 2020b). Results revealed that the 
global proteomic profile after exposure to sub-inhibitory cip-
rofloxacin (CIP, quinolone) concentration remains close to 
control (LB medium, without antibiotics), contrasting with 
the results obtained with tobramycin (an aminoglycoside) 
and imipenem (a carbapenem) (Fig. 2B). This suggests that 
the effects of ciprofloxacin on PaeAG1 at the proteomic level 
are fewer than the changes given by other antibiotics. This 
is an interesting finding when we compare growth curves 
(see below and Fig. 6, left panels). Growth curves showed a 
particular concentration effect for PaeAG1 when exposed to 
sub-inhibitory CIP concentrations, but not to other tobramy-
cin or imipenem antibiotics at sub-inhibitory concentrations. 
Thus, to investigate the association between the PaeAG1 
growth and sub-inhibitory CIP concentrations, two main 
transcriptomic analyses were performed: i) the identifica-
tion of core perturbome in the P. aeruginosa group and ii) 
transcriptomic profiling of PaeAG1 after exposure to CIP.

Central Response to Multiple Perturbations: Core 
Perturbome

In our work of the study of the molecular response to 
diverse perturbations (including CIP), term as perturbome, 
transcriptomic data of P. aeruginosa were used (microar-
ray data of the reference strain PAO1 with multiple distur-
bances, GEO database) (Molina Mora et al. 2021). This 
makes it possible to generate the landscape of the central 
regulatory mechanisms of the stress response at the tran-
scriptomic level in this bacterial group. Tolerance to stress 
conditions is vital for organismal survival, including bacteria 

under diverse environmental conditions (such as antibiot-
ics) (DeLong 2012). Thus, to identify the core perturbome 
of P. aeruginosa, a machine learning approach was imple-
mented to recognize gene expression patterns among public 
transcriptomic data sets, similar to other studies (Ma et al. 
2014; Zhao et al. 2016; Cornforth et al. 2018; Glaab et al. 
2012). In this regard, only a few studies have used machine 
learning methods on biological data to describe the effects of 
multiple perturbations in complex biological systems (Ber-
mingham et al. 2015; Caldera et al. 2019) and so far none 
in P. aeruginosa.

In a subsequent analysis, the specific case of CIP expo-
sure was used to standardize a systems biology pipeline to 
build large-scale molecular networks (Molina-Mora et al. 
2018).

The analysis of the central molecular response to pertur-
bations, by both machine learning and large-scale networks, 
showed that the stress response is pleiotropic in P. aerugi-
nosa, composed of genes belonging to energy metabolism, 
ribosomal activity, response to stimuli, and DNA metabo-
lism (Fig. 5, circle). Specific effects on gene networks were 
reflected as changes in gene expression profiles and the com-
plexity of molecular regulation (Molina-Mora et al. 2018).

Transcriptomic Response in PaeAG1 After Exposure 
to Ciprofloxacin

With the identification of the landscape of the core pertur-
bome for P. aeruginosa, the study was resumed with the 
particular response to CIP in PaeAG1, as the final main step 
of the multi-omics study. Analyses are detailed in a previous 
study (Molina-Mora et al. 2020c).

The knowledge of the core perturbome was necessary 
to differentiate the pathways and responses that are shared 
by other perturbations, but more importantly, to identify 
the “exclusive” responses to CIP in PaeAG1. As detailed 
before, growth reduction was evidenced for this strain as 
sub-inhibitory CIP concentrations were increased. Thus, we 
identified the transcriptomic determinants associated with 
the response to CIP in PaeAG1. To address this, we used 
transcriptomic profiling by RNA sequencing and network 
analysis by applying a top–down system biology approach.

Transcriptomic determinants included classical elements 
of the core perturbome for P. aeruginosa with down-reg-
ulation of pathways related to energy metabolism, riboso-
mal activity, and DNA metabolism, most of them related to 
bacterial growth reduction. Also, an exclusive feature, the 
phage induction, was suggested due to the up-regulation of 
phage genes creating two well-defined clusters at a network 
level (Fig. 5).

To validate CIP effects on phage induction, we applied 
a phage plaque assay (at a phenomic level, Fig. 2C) that 
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showed an exponential induction as CIP was increased. 
Since these phages are absent in the reference genome, 
again, the de novo genome assembly was a critical step 

to obtain biological insights for PaeAG1. Although 
PaeAG1 is resistant to CIP, a sub-inhibitory concentra-
tion of this antibiotic can induce a pleiotropic effect at a 

Fig. 5   Transcriptomic network of PaeAG1 after CIP exposure. Dif-
ferent transcriptomic determinants (hub genes, gene clusters, and 
pathways) are induced, including elements of the central response to 
multiple perturbations or core perturbome (metabolism, ribosomal 

activity, RNA degradation, other), but a “more exclusive” response 
of phage induction (blue triangles) was identified. The Cytoscape 
network file is available as the “Supplementary_material-Transcrip-
tomic_network.cys”
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transcriptomic level, including pathways of the core per-
turbome and phage induction (Fig. 5). In the last case, 
with the subsequent bacterial cell lysis, the reduction on 

the growth curve is explained by CIP in a concentration-
dependent manner. This phenomenon is particular to CIP 
and not found for imipenem or tobramycin (Fig. 6).

Fig. 6   Growth curves and phage plaque assay of PaeAG1 exposed 
to antibiotics. For CIP but not for other antibiotics, sub-inhibitory 
antibiotic concentrations showed decay in the growth as the concen-
tration was increased. The transcriptomic analysis suggested phage 
induction as a key determinant in the response to CIP (A), which was 

demonstrated using the phage plaque assay. This phenomenon was 
not observed for other antibiotics (imipenem nor tobramycin, B–C 
respectively). More details in our previous work (Molina-Mora et al. 
2020c)
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Phage induction by CIP in PaeAG1 can be used as a 
complementary strategy to fight Pseudomonas infections. 
The fact that PaeAG1 phages are resident elements of the 
genome and not exogenous elements as in other studies 
(Kamal and Dennis 2015; Fothergill et al. 2011) represents 
an advantage to eventual further implementations. Future 
studies are required to evaluate the modulation of the CIP 
response using genetic engineering (knock-out, knock-down, 
and the like), other—omics approaches (proteomics, ChIP-
Seq, etc.), and in vivo models.

Using our results and previous work, we defined that 
the response to CIP in PaeAG1 is complex (Fig. 7). First, 
the mechanism of action of CIP induces a DNA damage 
response, in which repressor genes of the SOS pathways or 
phage induction are modulated. Besides, the physiological 
consequences of the CIP by a general stress response are 
orchestrated in part by RpoS, with specific consequences on 
metabolism, protein synthesis, and regulation of virulence 
factors. Finally, these determinants influence other cell pro-
cesses which can have different effects on the cell metabo-
lism and the profile of resistance to antibiotics.

Integration and Conclusions

Antibiotic resistance is a major threat to public health 
because of its continuous emergence, worldwide spread, 
and increasing prevalence (Hong et al. 2015). Unlike highly 
host-adapted pathogens and symbionts undergoing genome 
reduction, as a versatile environmental organism, P. aer-
uginosa continually expands its genomic repertory (Mathee 
et al. 2008). With a high-risk ST-111 profile, PaeAG1 is a 
critical organism given its resistance to multiple antibiotics, 
including carbapenems (World Health Organization 2017).

Using a multi-omics approach, it was able to study 
molecular determinants of antibiotic resistance in PaeAG1. 
Genome assembly using a benchmark strategy led to build-
ing a high-quality sequence. A de novo approach allowed 
assembling around 1.0 Mb of sequence that is absent in 
the reference genome. These exclusive regions are com-
posed of 57 genomic islands harboring two MBL-carry-
ing integrons, phages, and many other genes. Compari-
son to all available complete sequences showed that the 
genome could be grouped by MLST profile, including a 
clear ST-111 cluster containing PaeAG1. In addition, a 
landscape of genomic regions surrounding integrons was 

Fig. 7   Transcriptomic determinants of PaeAG1 in response to CIP. 
After exposure to CIP, different response to DNA damage and gen-
eral stress are induced. This includes different pathways of the cen-
tral response to multiple perturbations or core perturbome, as well as 

particular pathways in response to CIP, including the SOS response 
(well known to be induced by CIP in P. aeruginosa group and other 
bacteria) and the “exclusive” phage induction in PaeAG1. Image was 
modified from our previous work (Molina-Mora et al. 2020c)
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described in which an IMP-18-carrying integron was char-
acterized for the first time. Multi-resistance profile, anti-
biotic resistance genes, the MLST profile, clusters of the 
pan-genome analysis, and the architecture of integrons the 
evolutionary history of the genome of PaeAG1.

To study the central response to perturbations in the 
P. aeruginosa group, the core perturbome, and to iden-
tify gene expression patterns, we used a machine learn-
ing approach. Pathways of energy metabolism, ribosomal 
activity, DNA metabolism, and others were enriched. 
Similar findings of enriched pathways were obtained for 
the specific case of PaeAG1 exposed to CIP, but particular 
genes (absent in the reference strain, such as phage genes) 
were also identified. Phage induction upon CIP treatment, 
suggested by phage genes up-regulation, was validated at 
a phenomic level. Particular key genes, gene clusters, and 
pathways were recognized as transcriptomic determinants 
of antibiotic resistance in PaeAG1.

Together, these genomic and transcriptomic elements 
are molecular determinants of antibiotic resistance in 
PaeAG1. This is particularly relevant for critical clones 
with the ability to conquer nosocomial environments and 
to develop a multi-resistance profile. As has been sug-
gested, the biological markers of high-risk clones could 
be useful for the future design of specific treatments and 
infection control strategies (Mulet et al. 2013b). Thus, to 
study the implications of these genomic and transcrip-
tomic determinants in PaeAG1, more detailed analyses are 
needed and we are planning to continue with other strate-
gies, such as different levels of molecular regulation, other 
expression analyses (including proteomic level), other 
stress conditions to define the perturbome, genetic and 
phenotypic variability, validation of the effect and power 
of hub genes, modeling molecular circuits, explorations of 
the relationship between the presence of specific virulence 
traits and severity, in vivo models, and phage induction as 
a potential therapy to overcome resistance.

Finally, as shown here, the study of the molecular deter-
minants in PaeAG1 was possible thanks to the integration of 
sequencing data, phenotypes, and bioinformatics pipelines. 
Because of the data complexity and results depending on 
algorithms, benchmarking strategies were required to ana-
lyze the data and to select the best protocols according to 
different criteria. Although we studied a bacterial genome 
(small in comparison to eukaryotic models), high-perfor-
mance computational infrastructure was necessary mainly 
for comparative genomic and transcriptomic analyses. 
Besides, isolation and antibiotic resistance profiling, genome 
and RNA sequencing, as well as proteomic and other phe-
nomic assays have been implemented for the last 10 years 
to study this bacterial model, implying a high cost. All 
these considerations remind us that these types of projects 
demand high-performance computational infrastructure, 

best bioinformatics practices, and investment in scientific 
research in general.
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