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Abstract
Morphometric analysis of nuclei is crucial in cytological examinations. Unfortunately, nuclei segmentation presents many
challenges because they usually create complex clusters in cytological samples. To deal with this problem, we are proposing
an approach, which combines convolutional neural network and watershed transform to segment nuclei in cytological images
of breast cancer. The method initially is preprocessing images using color deconvolution to highlight hematoxylin-stained
objects (nuclei). Next, convolutional neural network is applied to perform semantic segmentation of preprocessed image.
It finds nuclei areas, cytoplasm areas, edges of nuclei, and background. All connected components in the binary mask of
nuclei are treated as potential nuclei. However, some objects actually are clusters of overlapping nuclei. They are detected
by their outlying values of morphometric features. Then an attempt is made to separate them using the seeded watershed
segmentation. If the attempt is successful, they are included in the nuclei set. The accuracy of this approach is evaluated
with the help of referenced, manually segmented images. The degree of matching between reference nuclei and discovered
objects is measured with the help of Jaccard distance and Hausdorff distance. As part of the study, we verified how the use
of a convolutional neural network instead of the intensity thresholding to generate a topographical map for the watershed
improves segmentation outcomes. Our results show that convolutional neural network outperforms Otsu thresholding and
adaptive thresholding in most cases, especially in scenarios with many overlapping nuclei.

Keywords Convolutional neural networks · Watershed · Nuclei segmentation · Breast cancer · Oversegmentation ·
Mathematical morphology

Introduction

According to global cancer project (GLOBOCAN), breast
cancer is the most common cancer among women
worldwide. It was estimated that in 2012, nearly 1.7 million
new cases were diagnosed (second most common cancer
overall) and 521,907 cases of deaths due to breast cancer
occurred (fifth cause of death from cancer overall). This
represents about 12% of all new cancer cases and 25% of all
cancers in women [3].

Breast cancer is mostly diagnosed by three medical
examinations usually occurring in the following order:
palpation, ultrasonography or mammography, and fine
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needle biopsy (FNB). In this work, we concentrate on the
analysis of results of FNB examination in an automatic way.
In FNB method, a cytological material is gathered directly
from tumor using a fine needle. Next, it is fixed and stained
with hematoxylin and eosin. Finally, glass slide with the
cellular material is examined by the pathologist under the
microscope. FNB is less traumatic and much safer for a
patient than an open surgical biopsy. However, detection of
cancer cells on the slide glass is not an easy task. Novice
pathologists to gain experience and knowledge to become
professional specialist must spend a lot of time browsing
various cytological samples. Moreover, analysis of entire
slide is a time-consuming process, even for experienced
pathologists.

During the examination of cytological images, pathol-
ogists evaluate morphometric features of cells and their
nuclei in order to distinguish tumor type. In recent years,
we have seen a very intensive development of techniques
dedicated to microscopic digital imaging. More and more
specialists browse virtual slides on a computer screen
instead of examining glass slides under a microscope.
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This situation opens up the possibility of supporting the
pathologist’s work using modern image processing and
machine learning techniques. They can speed up diagnosis
and increase their accuracy. However, we must remember
that the accuracy of nuclei segmentation is critical to the
performance of computer-assisted cytology. Unfortunately,
cytological images are rather challenging for existing seg-
mentation methods because nuclei have the tendency to
create complex structures like clumps or nests.

The most common approaches for nuclei segmentation
are based on active contours, intensity thresholding,
mathematical morphology, region growing, watershed, and
deep learning [4, 6, 10, 11, 18]. Last years brought an
enormous progress in classification and object recognition
using Convolutional Neural Networks (CNN) [2, 29].
It seems to be a promising technique for semantic
segmentation of cytological images [24, 25]. The most
considerable advantage of CNN is its ability to classify a
single pixel based on its neighborhood described by high-
level features. That is why excellent results are obtained
while detecting the nuclei and cytoplasm even when their
staining is strongly heterogeneous. Problems arise when
nuclei overlap and there are no clear boundaries between
them. In this situation, ordinary CNN networks are not
able to separate such nuclei. It seems that watershed
method deals better with such cases. However, the results
obtained by the watershed are strongly dependent on the
quality of the topographical map of distances. To obtain
precise topographical map, we need a precise mask of
nuclei region. Usually, intensity thresholding or extended
h-minima are used for this purpose [7, 23]. Unfortunately,
intensity thresholding usually generates nuclei mask that
contain objects with jagged contours and clumped objects.
As an effect, watershed usually is affected by the over-
segmentation. On the other hand, the results of extended
h-minima can vary substantially with regard to the value of
chosen h. According to the results presented in [16], the
method can miss finding some nuclei for some values of h.

To tackle these problems, we propose an approach
that combines the advantages of CNN and the watershed
method. CNN is employed to detect precise nuclei mask,
which then is used to generate topographical map and
nuclei seeds for watershed. Watershed is applied to separate
overlapping nuclei. Experimental studies have shown that
the use of CNN instead of the usual thresholding to
determine the nuclei mask significantly increases the
accuracy of nuclei segmentation.

The remainder of this paper is organized as follows.
Section “Data” presents material used for experiments.
The details of the proposed approach are described in
the “Methods” and “Data Preprocessing”sections. Section
“Experiment” presents the details of the experiments carried
out. Their results are shown in the “Results” section. The

paper ends with conclusions and future research in the
“Conclusions and Further Research” section.

Data

Cytological images used in this study came from 40 patients
of the University Hospital in Zielona Góra, Poland. Half of
the cases are malignant, half are benign. All tumors were
histologically confirmed, and all patients who had a benign
disease were biopsied or followed up for a year. Cellular
material was acquired from affected tissue using 0.5-mm-
diameter needle under the control of an ultrasonograph.
The material was fixed and then dyed with hematoxylin
and eosin (H+E). Glass slides were scanned using VS120
Olympus Virtual Microscopy System. The system consists
of a 40x lens and 2/3” CCD camera giving 0.17 μm
resolution. As a result, 40 slides were generated. The
average size of slide is approximately 200k × 100k pixels.
For each virtual slide 2 regions of interests (ROI) of size,
1583 × 828 pixels representing malignant or benign cells
were selected and saved as 8 bit/channel RGB TIFF image.
Example of ROI selected by the pathologist from the virtual
slide is shown in Fig. 4.

In total, we have collected 80 images. We divided them
into subset 1 (40 images coming from 10 benign cases
and 10 malignant cases) and subset 2 (40 images coming
from the rest 10 benign cases and the rest 10 malignant
cases). Subset 1 was used to train and validate CNN, subset
2 was used as a test subset to verify the accuracy of the
proposed approach. To train CNN, we have divided subset
1 (40 images) into training subset (20 images coming from
5 malignant cases and 5 benign cases) and validation subset
(20 images coming from 5 malignant cases and 5 benign
cases). Thus, images used for training CNN were never
used to the validation procedure. Moreover, the experiment
conducted to verify the effectiveness of the segmentation
procedure was carried out using test images. They do not
include images coming from patients that were used for
training and validation of CNN.

Methods

In this section, we describe the main steps of the proposed
segmentation method: (1) semantic segmentation of nuclei
and background using CNN; (2) determining connected
object on the semantic map generated by CNN; (3) detection
of connected clusters of objects (clustered nuclei) based
on their area and roundness; (4) applying conditional
erosion to determine nuclei seeds among clumped objects;
(5) separation overlapping nuclei using seeded watershed;
(6) aggregating segmentation results for overlapping and
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non-overlapping nuclei. The first step is implemented
using Python and Keras library, the rest of the steps are
implemented using Matlab.

The watershed transform is one of the most often used
segmentation method to separate touching or overlapping
objects. However, the method is effective if proper seeds
of objects are given. Here, we are proposing conditional
erosion to detect centers (seeds) of prospective nuclei.
Erosion is carried out on nuclei mask. Therefore, it is crucial
for the method to determine precise mask of the nuclei.
If nuclei overlap, we need at least to see some parts of
their silhouettes to determine their centers using conditional
erosion. Overlapping nuclei on inaccurate nuclei mask
usually create huge clumps and thus even conditional
erosion will fail to find their centers. To deal with this
challenge, we propose CNN as a tool for recognizing nuclei
regions. We also used to segment nuclei regions two other
methods based on intensity thresholding: Otsu thresholding
(GO) and adaptive thresholding (AT). Finally, we compared
the accuracy of CNN with both intensity thresholding
approaches.

Convolutional Neural Network

In recent years, CNN has gained a lot of popularity as a tool
for image segmentation and object recognition [12]. Typical
CNN is usually comprised of at least with two convolutional
layers combined with pooling layers and ended by at least
one fully connected layer (Fig. 6).

a) Convolutional layer is a core part of CNN,
composed of a set of learnable filters. Each filter extracts
different features from the input image. Filter parameters
(weights) are tuned during the learning procedure.
b) Pooling layer is used to progressively reduce the
spatial size of the input in order to extract higher level
features. Spatial size reduction is usually done by max
pooling using window of size 2×2 pixels.
c) Fully connected layer is at the end of CNN and
is connected to all activations in the previous layer.
The input of this layer is a one-dimensional feature

vector. The task of this layer is to capture the complex
relationships between high-level features and output
labels.

Trained CNN model was used for semantic segmenta-
tion. It classifies each pixel from the input image into one
of four categories (nuclei, cytoplasm, nuclei edge, back-
ground). In fact, the output of CNN contains probability dis-
tribution over four classes. Therefore, each pixel is always
labeled by the class which gained the highest probability. As
a result, we get a semantic mask for input image.

Segmentation of Nuclei Region

In this step, semantic mask generated by CNN model is
transformed into nuclei mask. Pixels belonging to nuclei are
labeled by 1, while others by 0. Therefore, such mask is very
similar to binary masks generated by GO or AT method.
Figure 1 presents sample results for CNN, GO, and AT. We
can visually asses that CNN is much more precise in nuclei
segmentation than GO and AT. It can be observed that CNN
separates the nuclei that are touching and overlapping much
better than two other techniques.

Detection of Overlapping Nuclei

All cytological images used in this study were manually
annotated by marking nuclei contours. Therefore, it is
possible to compute morphometric features of nuclei and
determine their distributions (see Fig. 2). We decided to
describe nuclei by their area and roundness [20]:

Roundness = 4 × Area

(P erimeter)2
. (1)

Based on 4447 manually annotated nuclei, it can be
concluded that nuclei have area in the range from 309 to
7801 pixels and roundness in the range from 0.31 to 0.99.
Based on these findings, we are able to distinguish the
nucleus from the object which consists of many clumped
nuclei.

Fig. 1 Segmentation of nuclei region: CNN (left), AT (middle), and GO (right)
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Fig. 2 Histograms of the nuclei areas and roundness

Nuclei mask determined by CNN usually contain
two types of regions that we call non-overlapping or
overlapping. In non-overlapping regions, objects are easily
recognized as nuclei because they are well separated, and
thus their areas and roundness are within allowed limits.
These objects are immediately classified as nuclei and they
do not require further processing. The rest of the objects that
do not meet the requirements of being single nucleus must
be subjected to a separation procedure by seeded watershed.

Separating Overlapping Nuclei Using Seeded
Watershed

The classical watershed transform treats the image to be
segmented as a topographic surface. It segments image
by flooding basins from the seeds until basins attributed
to different seeds meet on watershed lines. The input of
the algorithm is usually a binary mask of the image. It
is transformed by the Euclidean distance transform and
local maxima from this transform are used as seeds.
Unfortunately, algorithm in this form tends to create many
micro-segments. Such over-segmentation makes the results
of the watershed method completely useless. To deal with
this problem, we used extended version of watershed that
uses nuclei seeds generated by the conditional erosion [9,
30]. The method process binary mask to detect centers of
objects. In our case, it was applied to nuclei mask INM to
find nuclei centers IS (seeds). We applied this processing
only to the objects classified as nuclei clumps.

In our approach, conditional erosion is based on classical
erosion defined as the operation of structuring element B on
image INM :

INM � B̌ = {x ∈ R|(B + x) ⊂ INM }, (2)

where B̌ is a reflection of set B. Conditional erosion
is conducted in two steps. First, coarse erosion using
structuring element Mc reduces the size of objects. To
prevent objects from disappearing, coarse phase switches

to fine phase for objects with area below T1. Fine erosion
uses structuring element Mf which is less likely to make
the nucleus disappear. It tries to separate clustered nuclei.
Element Mf is used iteratively until all objects have area
below T2. The size of both structuring elements should be
significantly smaller than the size of the processed objects to
not to reduce them too rapidly. Based on the reference nuclei
(manually segmented), we know that the size of nuclei can
vary from 300 to 8000 pixels, thus we can use the coarse
structuring element Mc and fine structuring element Mf

proposed in [30]:

Mc =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

, Mf =
(

0 1 0
1 1 1
0 1 0

)
.

To determine thresholds T1 and T2, we conducted a seg-
mentation test on a few chosen images. Segmentation
results were compared with those obtained by using classi-
cal watershed segmentation. We determined experimentally
that the best segmentation is obtained for thresholds T1 =
350 and T2 = 50.

The prototype of topographic map IT M is determined
by Euclidean distance transform. Next, seeds IS are used
to refine the topographic map. Seeds IS are combined
with the original topographic map IT M by morphological
reconstruction ρIT M

(IS) [28]. The algorithm is based on
repeated dilations of a seed mask IS until the contour of the
seed mask fits under a topographic map IT M :

I ′
T M = ρIT M

(IS) =
⋃
n≥1

δ
(n)
IT M

(IS). (3)

The grayscale geodesic dilation of size n is then given by:

δ
(n)
IT M

(IS) = δIT M
(. . . δIT M

(δIT M
(IS)))︸ ︷︷ ︸

n

, (4)
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Fig. 3 Segmentation of overlapping ellipses using seeded watershed
and classical watershed: a input mask; b result of conditional erosion;
c distance transform; d modified distance transform with imposed
seeds; e watershed using distance transform; f watershed using seeded
distance transform

and the elementary geodesic dilation is described by the
following relationship:

δIT M
(IS) = (IS ⊕ B) ∩ IT M, (5)

where (IS ⊕ B) is a standard dilation of size one followed
by an intersection (pointwise minimum ∩) and B is 4-
connected neighborhood structural element with pair of
horizontal and vertical connected pixels [28]. In Fig. 3, we
can observe how the seeds generated by conditional erosion
modify original topographic map and the positive effect of
such approach on the segmentation of overlapping objects
with the elliptic shape.

The approach described above is used to separate nuclei
clusters found in nuclei mask by procedure described
in the “Detection of Overlapping Nuclei” section. The
whole separating procedure employing conditional erosion
and watershed is applied to each object classified as
overlapping objects (clumped nuclei). Therefore, we obtain
separate segmentation results for each nuclei cluster. After
the separation procedure by seeded watershed, objects

detected are again classified as overlapping or non-
overlapping nuclei using the method described in the
“Detection of Overlapping Nuclei” section. We do this
to check if the separation was successful. All nuclei that
successfully pass the test of being single nucleus are
included in the final segmentation results. Clusters of nuclei
that have failed to be separated are rejected and do not
participate in further processing.

Data Preprocessing

Input images are preprocessed by color separation proce-
dure and cutting into blocks of fixed size (patches). Patches
are further processed and augmented to prepare training data
for CNN.

Color Separation

Cytological samples are subjected to a staining process
to precisely visualize the cellular material that is being
analyzed. We usually use hematoxylin and eosin for this
purpose. Hematoxylin is mainly absorbed by the cell nuclei
and dyes them blue. Eosin dyes the cellular material in
red and deposits mainly in the cytoplasm. Unfortunately,
the process of staining and digitizing glass slides is not
standardized. In effect, cytological samples coming from
different laboratories may differ in color. Color variation
can arise due to different staining protocols, different
stain brands, a shelf life of stains, or due to using
different microscopy scanners. It has been shown that
the performance of segmentation algorithms deteriorates
substantially when the color of processed images differs
from the color of training images [8, 15, 17]. To tackle
this problem, various color normalization methods have
been proposed. They can be generally categorized into
histogram matching methods, color transfer methods, and
spectral matching methods (For a complete overview of
the state of the art color normalization methods please see
[22]).

Color normalization is usually preceded by the stain
separation because different cellular structures absorb all
stains to some extent. The stain concentration is closely
related to the attenuation of the light transmitted through
the stained material. In turn, light transmission through the
cytological sample can be described by the Beer Lambert
law:

I = I0 exp (−WH), (6)

where I is the intensity of the light that passed the sample
(3 × n matrix, n - number of pixels), I0 is the intensity of
light entering the sample (matrix of the same size as I ), W
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Fig. 4 Image representing
hematoxylin concentration

is a stain color matrix of size 3 × k (k = number of stains),
and matrix H (k × n) represents the stain concentrations.
Stain separation approaches can be divided into supervised
and unsupervised methods. The well-known supervised
method is based on color deconvolution [21]. In this method
matrix, W is determined empirically and it uses pseudo
inverse transform to obtain H . By contrast, unsupervised
methods estimate both W and H . Usually these methods
are based on independent component analysis (ICA) or
non-negative matrix factorization (NMF) [1, 19]. Another
approach is based on a model where image colors are linear
combinations of stain vectors which describe the proportion
of absorbed light in RGB channels. Due to the fact that
absorption weights are non-negative, thus every value may
exist between stain vectors. The method exploits this fact to
find them using two largest singular values determined by
singular value decomposition (SVD) [14].

In this study, we applied a supervised method of stain
separation proposed in [21]. The effectiveness of this
algorithm is confirmed by numerous research publications
and moreover it is easily available for many scientific
computing environments. Our implementation is based on
built-in stain vectors for Hematoxylin/Eosin taken from
ImageJ color deconvolution plugin. Absorption spectra
of hematoxylin and eosin overlap in RGB space, but
mentioned color separation allows us to some extent
evaluate the contribution of hematoxylin and eosin at

Table 1 Collections of patches

Training Validation

Number of images 20 20

Total patches 18,315,912 18,961,569

− nuclei border 1,739,200 1,968,232

− nuclei center 5,105,059 5,788,305

− cytoplasm 5,588,398 5,770,039

− background 5,883,255 5,434,993

each pixel. Three separate intensity images are created
as a result of deconvolution, the first represents the
hematoxylin concentration, second eosin concentration,
and third residuals. For further processing, we are using
images of hematoxylin concentration. They emphasize
nuclei and suppress cytoplasm which absorbs mainly eosin
(Fig. 4).

After color separation, hematoxylin image is subjected
to feature-wise standardization. Each pixel in the image
array is treated as a separate feature. Based on the randomly
chosen sample of 10,000 training image patches, we can
determine the mean and standard deviation for every feature
(pixel). They are stored and then used to standardize images.
Every pixel in the image is standardized using a mean and
standard deviation determined exactly for his position in the
image

Manual Segmentation

To train CNN, we needed ground truth images with labeled
objects. Therefore, all images used in this study were
subjected to manual segmentation. The procedure was
carried out using ImageJ software1 and involved selection
of four types of objects: nuclei interior, nuclei contour,
cytoplasm, and background. In the case of ambiguity, e.g.,
if overlapping nuclei cannot be separated, no objects were
marked. But, if the separation was possible, then nuclei were
marked as separate objects.

Based on selected regions, semantic maps were created
for each image. On a semantic map, each pixel is
given the label and can belong to the following classes:
indeterminate, background, cytoplasm, nuclei, or nuclei
border. Set of pixels belonging to nuclei border was
determined automatically by extracting pixels from nuclei
regions lying on the contours of nuclei.

1https://imagej.nih.gov/ij/
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Fig. 5 Example of training patches (hematoxylin concentration). From left: nuclei, nuclei border, cytoplasm, background

Extraction of Patches

The images were cut into patches of size 43×43 pixels.
The size of the patch was chosen arbitrary so that the
patches contain large fragments of cell nuclei. For each
pixel, a single patch is extracted. The class of each patch is
assigned based on the label of central pixel. Label is read
from semantic map. Patches corresponding to unlabelled
pixels are excluded from further processing and thus are
not used to train or validate CNN. As in many other
studies concerning semantic segmentation, CNN is deciding
about the class of the pixel based on the patch centered
in that pixel. Set of all patches was divided into training
and validation subsets, their sizes, and distributions are
presented in Table 1. Examples of patches used for training
CNN are shown in Fig. 5.

Patches Augmentation, Transformation,
and Preprocessing

The raw patches generated in the previous step were
augmented and preprocessed to improve the learning
process of the CNN model. It is important for learning
procedure to have balanced number of training samples
within each class. In our case, the class of patches describing

nuclei borders is underrepresented (see Table 1). To
overcome this problem, a set of nuclei border patches was
augmented by artificial patches. They were generated using
some well-known transformations applied to actual patches.
To generate new patches, each original nuclei border
patch was subjected to three randomized transformations:
scaling by a factor from range 0.8 to 1.2, rotating using
random angle, flipping vertically and/or horizontally. The
set of patches was enlarged four times using augmentation
technique. To increase the diversity and variability of
patches coming form other classes, they were also randomly
subjected to these transformations. In order not to increase
the size of these classes, the original patch after being
transformed was replaced by the new one.

Experiment

Network Architectures and Training Parameters

A lot of different CNN architectures have been already
described and tested in the scientific literature [12, 13,
27]. They vary in the layer configuration and depth of
the structure. The structure of CNN used in this study is
shown in Fig. 6. Our network consists of four convolutional

Fig. 6 The structure of CNN
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Fig. 7 Results of semantic segmentation using CNN: input image: hematoxylin concentration (left), semantic mask generated by CNN classifier
(middle), and nuclei mask (right)

layers, which are separated by two max-pooling layers.
At the top of the network, we placed two fully connected
layers (512 neurons and 4 neurons respectively). All
convolutional layers are followed by rectified linear units
(ReLU). Weights in convolutional layers were initialized
using Xavier method, learning rate was set to 10−4, and
weight decay was set to 10−6 [5]. Training was conducted
using stochastic gradient descent, mini-batch was set to
256, and training process was finished after 20 epochs.
We applied dropout technique to prevent the network
from over-fitting [26]. This allowed us to achieve the
91.33% classification accuracy for the validation set. All
experiments were realized with the help of GeForce GTX
TITAN X with 12GB of RAM.

Semantic Segmentation

Trained CNN model was used to predict classes for all
pixels in the images from the test set. The input of the
network is a single patch. The output is a class probability
distribution for a central point of the patch. To segment
the whole image, classification procedure must be repeated
for each pixel in the image. As a result, we obtain a class
probability distribution for every pixel. Finally, pixel is

labeled by the class that achieved the highest probability.
In this way, a semantic mask was obtained for a given
input image. From the semantic mask, it is possible to
extract nuclei mask to generate a topographic surface for
the watershed transform. Sample semantic mask and nuclei
mask are shown in Fig. 7.

Results

Evaluation Procedure

In order to verify the effectiveness of the proposed
approach, it was applied to detect nuclei in 20 test
images. The accuracy of CNN was compared with the
accuracy of GO and AT method. These methods were
used to determine the nuclei mask but final segmentation
was always carried out using seeded watershed (see
“Segmentation of Nuclei Region”). Thus, three methods
used to extract nuclei mask were compared with respect to
watershed segmentation accuracy.

To measure the accuracy of automatic segmentation,
we compare nuclei segmented automatically with reference
nuclei segmented manually. We are given a list of manually

Table 2 Results for Hausdorff distance

TP FP

CNN AT GO CNN AT GO

Benign

Mean 83.4% 52.4% 51.3% 5.1% 14.6% 14.9%

Sd 12.8% 21.6% 19.0% 4.1% 5.0% 5.8%

Max 98.2% 86.1% 77.2% 15.5% 23.1% 30.8%

Min 41.0% 7.7% 10.3% 0.0% 3.8% 6.3%

Malignant

Mean 78.1% 54.4% 56.6% 21.4% 27.9% 19.2%

Sd 11.7% 10.8% 12.1% 13.4% 12.4% 7.2%

Max 93.7% 77.8% 85.2% 51.9% 63.6% 32.7%

Min 56.3% 38.7% 37.0% 3.2% 14.5% 8.1%

The best results are italicized
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Table 3 Results for Jaccard distance

TP FP

CNN AT GO CNN AT GO

Benign

Mean 77.6% 50.1% 49.6% 10.9% 16.9% 16.5%

Sd 14.2% 22.6% 20.0% 6.5% 6.5% 7.6%

Max 93.3% 81.9% 76.8% 24.6% 27.4% 38.5%

Min 38.5% 7.7% 10.3% 1.3% 7.1% 7.5%

Malignant

Mean 73.2% 55.1% 57.8% 26.3% 27.2% 18.0%

Sd 11.4% 10.9% 13.7% 11.2% 11.9% 6.7%

Max 90.5% 81.5% 92.6% 52.7% 54.5% 29.3%

Min 53.1% 38.7% 37.5% 12.0% 10.9% 3.7%

The best results are italicized

Fig. 8 Aggregated TP rates and FP rates with regard to methods of segmentation

Fig. 9 The number of images for which the segmentation method obtained the best result

J Digit Imaging (2020) 33:231–242 239



Fig. 10 Sample segmentation results: TP (white), FP (gray)

segmented nuclei in the form of binary masks. Nuclei
segmented automatically can be also presented in the form
of binary masks. Therefore, it is possible to measure
distances between reference nuclei and automatically
segmented nuclei. To do that, we are using Hausdorff
distance (HD) and Jaccard distance (JD). For each
segmentation method, (CNN + seeded watershed, GO +
seeded watershed, AT + seeded watershed), two distance
matrices were determined using Hausdorff distance and
Jaccard distance respectively. The distance matrix stores
the distances between all pairs of manually segmented
nuclei and nuclei segmented using a chosen automatic
segmentation method. Using distance matrices, we are
trying to pair all manually segmented nuclei with the
closest nuclei segmented automatically. We assumed that

the nuclei between which Hausdorff distance is greater
than 30 or Jaccard distance is greater than 0.5 are so
different that must be considered as two separate objects.
The single manually segmented nucleus can be paired with
the only one, nearest nucleus segmented automatically and
the distance between them must be below the predefined
threshold. As a result, 3 scenarios are possible: manually
segmented nucleus can be matched with the nearest
automatically segmented nucleus and such case is classified
as true positive (TP), no automatically segmented nucleus
can be found to match with the manually segmented
nucleus and such case is classified as false negative (FN),
and automatically segmented nucleus can stay without
corresponding manually segmented nucleus and thus it is
classified as false positive (FP).
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Experimental Results

Tables 2 and 3 summarize basic statistics for TP and FP
coefficients determined for all test images. The results
are presented separately for benign and malignant cases.
Aggregated (for benign and malignant cases) mean values
of TP and FP rates are shown in Fig. 8.

We can observe that CNN method outperforms GO and
AT for benign cases. On average, CNN-based approach can
extract 83.4% of benign nuclei according to HD and 77.6%
according to JD. Whereas the methods based on GO and
AT are able to extract from 51.3 to 52.4% of benign nuclei
according to HD and from 49.6 to 50.1% according to
JD. We also see that CNN-based segmentation outperforms
other methods for malignant cases. For malignant cases,
CNN-based method can correctly detect 78.1% of nuclei
according to HD and 73.2% according to JD, while for the
other methods average values are in range 54.4%–56.6% for
HD and 51.1%–57.8% for JD.

The CNN method received on average lower FP error for
benign cases than the other methods, while for malignant
cases FP error is slightly larger than for GO method. The
obtained values of standard deviations indicate that for all
methods results are distributed in similar range around the
mean.

In Fig. 9, we have presented results that indicate how
many times each segmentation method reached the highest
TP rate and the lowest FP rate. CNN clearly outperforms
two other approaches, because it gained the best results for
most test images.

Classical intensity thresholding methods (AT, GO) are
very effective for detecting areas occupied by the nuclei
if nuclei are well separated. Unfortunately, these methods
usually fail if overlapping nuclei are present in an image.
This problem is much less visible if we use CNN instead of
GO or AT. Sample segmentation results confirming this fact
are shown in Fig. 10. The CNN method is more effective
than AT and GO in detecting overlapping objects, but the
side effect is the detection of redundant objects. Thus, the
value of FP for some images can slightly increase if we
use CNN segmentation. However, on average CNN method
performs much better than GO and AT.

Conclusions and Further Research

Methods of nuclei segmentation based on intensity thresh-
olding, edge detection, watershed transform, active contours
and artificial neural networks usually have problems with
cytological images. Mainly because of complex and het-
erogeneous nature of these images which often contain
overlapping and touching nuclei. In this paper, we are
presenting an alternative approach which uses CNN

classifier to pre-segment nuclei and then seeded watershed
to deal with overlapping nuclei. We are showing that our
approach outperforms classical watershed method. More-
over, we determined that the proposed method can detect
about 81% of real nuclei (on average) and, at the same time,
have a low rate of false positive detection (13%).

Despite the fact that obtained result looks quite
promising, there are some points of our project which
can be improved. Semantic segmentation using a classical
convolutional neural network turned out to be very
computationally expensive. Especially training process was
time consuming. In future research, we are going to use for
semantic segmentation fully convolutional network (e.g., U-
Net network) which will allow us to significantly reduce the
computational burden of the method.

Another drawback of the method is that it needs manually
segmented nuclei to train CNN. Unfortunately, the process
of manual segmentation is very time consuming and tedious.
Therefore, we plan to develop a software for semi-automatic
segmentation of nuclei, an operator will have to only
correct the errors introduced by the automatic method. Such
approach allows us to prepare richer set of training images
and save time.

We also plan to modify the step responsible for detection
of overlapping nuclei coming from semantic segmentation.
We are going formally determine the thresholds for
roundness and area based on hypothesis testing framework.

Our system can be used to segment and detect
nuclei. Therefore, we plan to develop a computer-aided
cytology system to help diagnose breast cancer and
lung cancer. Based on the segmentation results of our
system, we plan to compute morphometric, textural, and
colorimetric features of nuclei and apply machine learning
techniques to make predictions about the type of the
cancer.
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