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The malignancy of cancer disease depends on the ability of the primary tumor to metastasize to distant organs. The process of the
metastasis formation has largely been analyzed, but still main pathways regarding the extravasation step at the end of the metastasis
formation process are controversially discussed. An agreement has been reached about the importance of the endothelium to
promote metastasis formation either by enhancing the growth of the primary tumor or by homing (targeting) the tumor cells
to blood or lymph vessels. The mechanical properties of the invading tumor cells become the focus of several studies, but the
endothelial cell mechanical properties are still elusive. This paper describes the different roles of the endothelium in the process
of metastasis formation and focuses on a novel role of the endothelium in promoting tumor cell invasion. It discusses how novel
biophysical tools and in vivo animal models help to determine the role of the endothelium in the process of tumor cell invasion.
Evidence is provided that cell mechanical properties, for example, contractile force generation of tumor cells, are involved in the
process of tumor cell invasion.
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1. Introduction

The coordinated regulation of cell adhesion and cell motility
especially the migration of cells in a three-dimensional (3D)
environment (cell invasion) is essential for the development
and function of almost all multicellular organisms. The
transformation of cell-cell and cell-matrix adhesions as well
as the loss of contact responsiveness is an indicator for the
malignancy of tumors [1, 2]. Cell invasion is a driving force
in malignant tumor diseases, for example, in the progression
of primary tumor outgrowth and in the process of metastasis
formation. The malignancy of neoplasms is determined
by the capability of single tumor cells to invade into the
surrounding tissue, intravasate into blood or lymph vessels,
be transported, possibly extravasate and invade into the
connective tissue, proliferate, and finally metastasize [3, 4]
(Figure 1).

Cell invasion is a central step in the process of metastasis
formation. The prerequisites for cell invasion involved in the
metastasis formation process are (1) cell adhesion (adhesion

strength), (2) force generation, (3) detachment (deadhesion
and cytoskeletal remodeling), and (4) matrix composition
and remodeling via enzymes (Figure 2). The balance of
all these parameters determines the cell invasiveness, for
example, the migration speed in a 3D extracellular matrix.
All these considerations might play a more or less important
role in cell invasion depending on the cell type and
tissue origin, gene, or protein expression pattern of a cell,
the environment (growth factors, matrix constituents, and
mechanical stiffness), and adjacent cells. In line with cell
invasion, the interaction of a cell with the neighboring cells
underlies also mechanical properties of the cytoskeleton of
the two adjacent cells.

Alterations of cell-cell and cell-matrix interactions are
mirrored in the cytoskeleton and account for the ability of
tumor cells to cross tissue boundaries and to disseminate to
distant organ sites. Many adhesion molecules implicated in
tumor metastasis have been identified, but there exist only a
few studies with a broad designed approach. Several adhesion
or cell surface receptors have been identified to act either as
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Figure 1: Metastasis formation involves several steps. Two possible ways of metastasis formation: (a) first, single tumor cells disseminate
form the primary tumor and invade the extracellular matrix, intravasate into blood or lymph vessels, and get transported and adhere to the
endothelium. Secondly, (a) invasive tumor cells grow in vessels and do not transmigrate or (b) invasive tumor cells transmigrate through the
endothelium, invade and from a secondary tumor in the targeted tissue.
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Figure 2: Prerequisites for tumor cell migration on a 2D substrate and tumor cell invasion in a 3D extracellular matrix. (a) Scanning electron
microscopic image of an MDA-MB-231 breast carcinoma cell on a planar glass and (b) transmission electron microscopic image of an MDA-
MB-231 cell invaded in 3D collagen gel matrix. (a) For proper 2D motility, a cell needs to adhere/deadhere fast, remodel its cytoskeleton
fast, and possess a high CSK-fluidity. (d) For proper 3D motility, a cell needs, in addition to the 2D motility properties, to generate high
contractile forces, and the cells needs to overcome the viscous drag of the surrounding extracellular matrix to move forward.

negative, for example, E-Cadherin [5] or positive factors, for
example, αvβ3, CD24, and CXCR2 of tumor invasion and
metastasis formation [6–8]. The focus of this paper is on
the processes of cell invasion and transendothelial migration
of tumor cells as well as on their prerequisites including the
presentation of novel biophysical tools and in vivo metastasis
models. The emphasis is on the function of the endothelium
in the process of metastasis formation, such that it promotes
tumor cell invasion.

2. Tumor Cell Invasion

2.1. How Do Cell-Matrix Adhesion Receptors
Influence Tumor Cell Invasion?

To generate tractions especially in a 3D extracellular matrix,
the cells need to have a tight connection between the

extracellular matrix and the intracellular cytoskeleton via
focal adhesions and cell-matrix receptors. This connection
is commonly facilitated by transmembrane proteins like
integrin cell adhesion receptors. Integrins are heterodimeric
proteins that are involved in cell adhesion, migration, and
invasion processes and regulate the cell cycle. The protein
family of human integrins comprises 18 α- and 8 β-subunits
[9]. At least 24 different α-β-heterodimer combinations
have been identified, that are capable of binding to a large
variety of ligands, among them were components of the
extracellular matrix (e.g., collagen, fibronectin, and laminin)
as well as binding partners on adjacent cells (e.g., VCAM-1
and PECAM-1) [10–13]. The physical link between these
adhesion receptors and the actin cytoskeleton via intra-
cellular focal adhesion proteins mediates the bidirectional
force transmission and the biochemical signal transduction
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across the plasma membrane [14, 15]. The major signaling
pathways activated by integrins through their α-subunits
are different. The activation of α4 and α9 integrin subunits
leads to decreased cell spreading and increased cell migration
on a planar substrate [16–18]. This is in contrast to the
activation of other integrin α-subunits (e.g., α1, α5, αv,
α3, α6, and αIIb) that lead to enhanced cell spreading and
decreased cell migration [19–23] and show different bindings
to fibronectin via the canonical integrin recognition site
arginine-glycine-aspartic acid (RGD) [24–28]. Furthermore,
the α5β1 integrin regulates the αvβ3-mediated adhesions and
migration on the extracellular matrix [29]. The formation,
activation, and regulation of focal adhesion proteins in the
focal adhesions and their physiological function are pivotal
and have been the focus of intense research efforts and may
have opposite effects depending on the integrin subunit type
[9], but the mechano-regulating function, for example, in the
process of cell invasion is still elusive. The αvβ3, αvβ6, and
α6β4 integrins have been described to act as enhancers of
tumor cell invasion and metastasis formation [30–32]. Their
role in the process of metastasis formation and their impact
on transendothelial migration of tumor cells are still unclear.

The β1 integrins have also been reported to promote
tumor cell migration in a matrigel [33]. To make it more
confusing, the role of the α5β1 in the process of 3D cell
invasion, tumor growth and metastasis formation is contro-
versially discussed because several reports described an inva-
sion enhancing, tumor growth promoting, and metastasis
increasing role that is inversely correlated with E-cadherin
expression [34, 35], but others reported it vice versa [36–38].
The differences of the results might be explained by the use of
different tumor cell lines. The correlation of the expression
of one gene alone might not be helpful in determining
the malignant potential of a tumor. The combination of
gene expression and biophysical measurements of the cell’s
mechanical properties could be more sufficient because the
expression a certain integrin by itself changes the cytoskeletal
structure of a cell [39]. Combined with gene expression data,
the overall cellular stiffness or the cytoskeletal dynamics of a
cell could explain cellular behavior, for example, cell invasion
and help to understand the general mechanisms important
for the regulation of this process [6].

2.2. Role of the Extracellular Matrix
Composition and Mechanical
Properties of the Tissue

The mechanical properties of the extracellular matrix
determine the gene expression patterns, the differentiation,
proliferation, and cell mechanical properties [40–42]. The
ability to generate forces might also be influenced by the
mechanical properties of the 3D environment of the cell [43].
Furthermore, the environmental properties of the primary
tumor might also determine the secondary tumor formation
site maybe because of similar mechanical properties of the
primary tumor tissue and the new metastasis formation
site. Adhesion strength and cell stiffness determine the
strength of the contractile forces [43] and might influence

the ability of cells to invade into the extracellular matrix and
to transmigrate through an endothelial cell monolayer and
the basement membrane surrounding the vessels. The ability
to remodel their cytoskeleton to squeeze through the pores
of the extracellular matrix (amoeboid migration) with or
without the generation of contractile forces is important for
the invasion speed, invasion depth, and finally the ability to
form metastasis. For the migration in a 3D matrix, the CSK-
fluidity may play also an important role, the higher the CSK-
fluidity the higher the invasiveness of the cells (Figure 2).

2.3. Enzymatic Modulation of the Mechanical
Properties of a 3D Connective Tissue

Changes of the extracellular matrix composition and struc-
ture (e.g., matrix pore size) influence the mechanical para-
meters of the matrix that could impact cell invasiveness via
changing the mechanical properties inside the cell. These
changes of the extracellular matrix’s mechanical properties
could origin from the invading cell itself. For example, cell
shape changes such as protrusion dynamics of mesenchymal
tumor cells were monitored in combination with matrix
deformation due to enzymatic matrix remodeling using a 3D
collagen matrix embedded with polystyrene beads [44]. The
cells themselves produce enzymes either membrane-bound
(e.g., MT-MMPs) or secreted to modulate the adjacent
extracellular matrix [33]. The expression of collagenases
MMP-14, MMP-12, and MMP-9 increase the invasiveness
of tumor cells migrating through a collagen fiber network
or through a Boyden-chamber (transwell membrane) [33].
MMP-9 cooperates with the αvβ3 integrin in supporting
breast carcinoma cell migration using transwell membrane
assay [20]. The inhibition of these enzymes using a cocktail
of inhibitors leads to reduced or impaired invasion of tumor
cells and changes the prior mesenchymal invasion to an
amoeboid invasion type [33]. The production of sheddases
leads to the cleavage (e.g., ADAMs = a disintegrin and
metalloprotease domain) of several adhesion receptors like
α6 integrin and αvβ3 integrin, reduces cell adhesion, and
increases motility [22, 45, 46]. ADAMs are a family of type
I transmembrane glycoproteins that have the ability to bind
to integrins and disrupt their adhesion to the extracellular
matrix [47–49]. The ADAM-15 sheddase contains an RGD-
peptide motif and can hence act as a natural binding partner
for αvβ3 integrin and reduce cell adhesion, increasing
migration and invasion of tumor cells [50]. Despite the
binding to αvβ3 integrin, the ADAM-15 interacts also with
the α5β1 integrin [51]. Hence, the expression of sheddases
like ADAM-15 is associated with a poor diagnosis of the
cancer disease [52] and supports the interaction of prostate
cancer cells and endothelial cells in the process of metastasis
formation [53]. Confirming that the overexpression of
MMP-14 increased the invasiveness of the cells, more cells
were able to invade and they invade deeper into the gel
via enhanced motility (or a higher adhesion site turn over
rate). The cutting of the extracellular part of membrane-
bound receptors reduced their cell surface expression that
leads to decreased adhesion strength and decreased traction
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generation. All these enzymes alter either the extracellular
matrix adjacent to the invading cell or the adhesion receptor
expression on the migrating cell itself. This might influence,
in turn, the adhesion strength (e.g., the adhesion process)
and the generation of contractile forces (Figure 2).

3. Interactions of Tumor Cells and
Endothelial Cells

3.1. Transendothelial Migration: Intravasation
and Extravasation of Tumor Cells

The metastasis formation process begins with the dissoci-
ation of single or clustered tumor cells from the primary
tumor and is followed by extracellular matrix invasion,
entrance into blood or lymph vessels (intravasation), and
transport to other tissue sites of the body (Figure 1). It
has been reported that tumor cells sometimes escape from
the microvasculature (extravasation), invade into the tumor-
type dependent specified target tissue, and form a secondary
tumor in distant organs [3, 54, 55]. The mechanisms of the
tumor-type specific targeting of secondary tumor formation
are almost unknown. Some people speculate about mechan-
ical properties of the tissues determining different target-
organ selections for secondary tumor formation [56, 57].
The extravasation process as well as the intravasation process
involves adhesion of tumor cells to endothelial cells and
the transmigration through the endothelium and underlying
basement membrane [3, 58–60]. For several tumor cell types,
it has been reported that they are able to pass the endothelial
barrier (perivascular metastasis) [60–65]. Nevertheless, the
extravasation step is not the only mechanism for metastasis
formation, it is also possible that tumor cells intravasate
into vessels, but they never extravasate. These tumor cells
grow inside the vessels on the endothelial cell layer and
form the metastasis at these sites (intravascular metastasis)
[4]. Despite the extravasation step performed, the function
of the endothelial monolayer in the metastasis formation
process is thought to be crucial in that it can actively regulate
metastasis formation by either allowing or blocking the
adhesion, and possibly transmigration, of tumor cells and
thereby determining the target organ of secondary tumor
formation [62–64]. The endothelial cell function in the
process of metastasis formation is still unclear, and the effect
of the endothelium even to promote tumor cell invasion
has recently been reported, but the mechanism is poorly
understood [6]. More insights might bring novel in vivo
models on metastasis formation.

3.2. In Vivo Models: Vascular and Lymphatic
Routes of Metastasis Formation

Metastasis formation occurs via the vascular system as
well via the lymphatic system [4, 66–68]. Tumor cells can
form intravascular and perivascular metastases [3, 4, 69]
(Figure 1). Any type of cancer process, including tumor
cell motility and invasion, as well as metastasis formation
can be measured using animal models in combination with
fluorescent proteins that stain the injected tumor cells as well

as the host tissue. Naturally fluorescent proteins, especially
those with long excitation wavelengths, visualize in real time,
aspects of tumor initiation, tumor growth, and metastasis
formation in living animals [66, 68, 70–73]. The benefit of
these novel in vivo rodent metastasis models allows us to
study migration directly in live blood or lymph vessels and
tumor-host interactions in the presence or in the absence
of anticancer drugs or chemotherapy drugs [67, 71, 74, 75].
Besides, the injection of tumor cells whole tissue explants
(named orthotropic model) can be transferred into nude
mice and studied for response to drugs or vascularization
[71, 76]. These studies show that tumor cells metastasize
via vascular and lympathic vessels [4, 66–68]. The lymphatic
route (lymphatic system) of the tumor metastasis formation
is less well understood compared to the vascular route
(circulatory system) [77]. Using the real-time imaging of
fluorescently labeled tumor cells that were injected in the
inguinal lymph node, tumor cell survival and migration to
the axillary lymph node were measured. In addition, the
effect of pressure on tumor cell shedding into lymph vessels
and migration to the lymph node was analyzed. Due to the
clinical studies indicating that high interstitial fluid pressure
in the tumor is correlated with a poor diagnosis [78–80],
this lymphatic animal model shows that increased pressure
on the tumor increased the numbers of shedded tumor cells
that may lead to higher lymphatic metastasis formation [68].
The mechanical properties of the extracellular matrix (in
this case of the tumor) change the cellular properties toward
higher motility and invasiveness. A combination of these in
vivo models with biophysical measurements will help to get
more insights and reveal the mechanisms why some tumors
metastasize and others do not and what role the endothelium
plays.

3.3. Does the Endothelium Represent a Barrier
for Tumor Cell Invasion?

It is still unclear whether tumor cells transmigrate through
the cytoplasm of endothelial cells similar to leukocytes, or
destroy endothelial cells [81], or transmigrate between two
adjacent endothelial cells by Src-mediated disruption of their
cell-cell connections (VE-cadherin-β-catenin) [61]. It has
been reported that transmigrating tumor cells are able to
overcome the endothelial barrier by inducing changes within
the endothelial cell monolayer, including the upregulation
of adhesion molecule receptor expression [82], the reorga-
nization of the cytoskeleton [83], Src-mediated disruption of
endothelial cell-cell-adhesions [61], the formation of “holes”
within the endothelial layer [84], and the induction of
apoptosis [81] (Figure 3). Furthermore, tumor cell invasion
may use similar invasion strategies as leukocytes, for which
the endothelium acts as a barrier and greatly reduces invasion
rates [85].

3.4. How Do Cell-Cell Adhesion Receptors
Influence Tumor Cell Invasion?

Beside cell-matrix receptors, cell-cell adhesion receptors
play a role in cell invasion and especially facilitate
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Figure 3: Three currently discussed strategies for tumor cell transmigration through an endothelial cell monolayer. (a) The tumor cell
transmigrates through the cytoplasm of the cell body. (b) The tumor cell induced apoptosis in the adjacent endothelial cell and migrated
through the hole in the endothelial cell layer. (c) The tumor cell transmigrates through the endothelial cell-cell contacts without permanent
destroying the endothelial cell monolayer.

transendothelial migration of tumor cells as well as leuko-
cytes. It has been reported that αvβ3 integrin as well as
glycosylphatidylinositol-anchored CD24 protein facilitates
tumor cell transmigration and enhances tumor cell invasion
in a 3D collagen fiber network [6, 8, 86] (Figure 4).
Endothelial cells expressed L1-CAM and PECAM-1 have
been described as counter-receptors that interact with cancer
cell αvβ3 integrin [87, 88]. Endothelial cells expressed L1-
CAM, and P-selectin have been described as a ligands for
CD24 [7, 89]. A loss of E-cadherin cell-cell contacts is
important for single cell invasion and has recently been
discovered as a tumor suppressor gene [5]. The α4β1 integrin
interacts either with VCAM-1 or CD14 to enhance tumor cell
migration or invasion [11, 90]. It has to be ruled out how the
interaction of tumor cells and endothelial cells through these
receptors might, in turn, alter the mechanical properties of
both cell types and change their invasive potential.

3.5. Role of Cytokines, Chemokines, or Other
Stimuli in Tumor Cell Invasion and
Transmigration

The scatter factor/hepatocyte growth factor (HGF) has
largely been analyzed to enhance tumor cell migration on 2D
substrates in in vitro cell culture assays [91]. Consistent to
in vitro experiments, in vivo experiments have shown that
this factor increased tumor cell spreading, dissemination,
and metastasis formation in mice [91]. Recently, it has
been shown that HGF influences the expression of integrin
receptors, which in turn mediates the secretion of MMPs
[92]. Despite this interaction, HGF ligand binding to the
Met receptor as well as the α6β4 integrin can independently
enhance tumor cell invasion [32].

Cytokines affect the barrier function of an endothelial
cell monolayer (Figure 5). For example, the function of the
endothelial cell barrier against both leukocyte trafficking

and tumor cell transmigration is reduced in the presence of
inflammatory cytokines like such as necrosis factor-α and
interleukin-1β [62, 82, 93, 94]. These cytokines induce an
upregulation of the cell-cell adhesion molecule E-selectin
[82]. The subsequent adhesion of tumor cells expressing
the E-selectin counter-receptor sialyl Lewis x (CD15s) to
endothelial E-selectin leads to an upregulation of stress-
activated protein kinase-2 (SAPK2/p38) in endothelial cells
[82] and triggers actin polymerization and actin reorganiza-
tion into stress fibers [83] (Figure 4).

Chemokines and their receptors have an impact on
leukocyte trafficking [95, 96] and tumor cell invasion [97].
The superfamily of chemokines consists of small cytokine-
like proteins that induce cytoskeletal rearrangements in
endothelial cells and leukocytes, the firm adhesion of
leukocytes to endothelial cells, and the directional migra-
tion (chemotaxis) of leukocytes [95]. The involvement of
chemokines in tumor-endothelial interactions and their
effect on tumor cell mechanical properties during invasion
are considerably less well understood.

We recently found that the expression of the chemokine
receptor CXCR2 enhanced tumor cell motility in 3D extra-
cellular collagen matrix. The expression of the CXCR2 influ-
ences other mechanical properties of the receptor bearing
cells [6]. High CXCR2 expressing subcell lines derived from
the human breast carcinoma cells MDA-MB-231 produced
enhanced traction forces on fibronectin-coated 2D substrates
[6]. CSK-dynamics, cell stiffness, and CSK-fluidity are
enhanced [6].

Another impact of the CXCR2 receptor in the metastasis
formation process could be the interaction with endothelial
cells producing the CXCR2 ligands Gro-β and IL-8. Both
chemokines enhance the transmigration and the followed
invasiveness in vitro 3-D collagen fiber matrix assays [6].
Recently, it has been reported that Gro-β and IL-8 receptor
(CXCR2) expressions on tumor cells are the key mediators
responsible for the breakdown of the endothelial barrier
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Figure 5: Prerequisites for tumor cell transendothelial migration. Single tumor cells adhere to the endothelium via cell adhesion
receptors like integrins, muccins, or immunoglobulins and their counter-receptors on endothelial cells. Many other factors like enzymes,
cytokines/chemokines influence these interaction as well as biomechanical properties of both cells (CSK-dynamics, CSK-fluidity, cell
stiffness, and contractile force generation).

function by enhancing tumor cell force generation and
cytoskeletal remodeling dynamics (Figure 6). These results
have to be expanded on other tumor cell types and further
improved by using animal metastases models. All these
different stimulations of the cells might underlie a common
change of the cell’s mechanical properties.

4. Role of Other Cell Types during
Metastasis Formation

Several recent reports discussed the importance of platelets
in adhering to single tumor cells and promote or induce
their transendothelial migration [98–100], but in contrast
to them, many other reports show clearly that single tumor
cells are by themselves able to transmigrate through the
endothelium [6–8, 62]. The platelets might be able to
decorate single tumor cells and enhance their transmigration
and invasion capabilities. But the question of do other
cell types promote or induce tumor cell invasion and

metastasis formation is still not answered fully. Do platelets
guide tumor cells through the endothelium? For example,
the role of mast cells either in solid tumors or in close
neighborhood to tumors is poorly investigated. Did mast
cells also promote or induce tumor cell transmigration or
invasion? Do mast cells stimulate tumor cells to contract after
histamine release? It has been reported that mast cells survive
in close contact to endothelial cells and even proliferate there
[101]. This might explain the increased numbers of mast
cells in vascularized solid tumors [102–104]. Of course other
cell types like eosinophilic granulocytes, lymphocytes, or
monocytes/macrophages might also influence the mechani-
cal properties of tumor cells either by secretion of contractile
force stimulating (enhancing) or by relaxing the substances.
The role of mast cells in tumor metastasis formation has to
be ruled out by using biophysical tools as well as dual-color
imaging animal metastasis models.

The presence of macrophages in a tumor has been
correlated with a poor prognosis, but how macrophages
are involved in hematogenous metastasis was unclear. Do
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Figure 6: New role of the endothelium in the process of tumor cell invasion. (a) A human endothelial cell monolayer (e.g., HUVEC) cultured
on top of a collagen fiber network-induced tumor cell invasion of cocultured human tumor cell lines. (b) The endothelium decreased the
invasion of several invasive tumor cell lines (barrier for cell invasion), did not alter the invasion of tumor cells, or even enhanced tumor cell
invasion into a collagen gel fiber matrix (enhancer for cell invasion).

macrophages change the mechanical properties of the tumor
cells either by direct binding or by secretion of cytokines or
by growth factors? Direct visualization of macrophages that
assisted tumor cell intravasation in hematogenous metastasis
of mammary tumors has been reported by using multipho-
ton microscopy [105]. Macrophages supported tumor cell
motility toward blood vessels and tumor cell intravasation
[105]. How this affects the mechanical properties of the
tumor cells and their ability to generate contractile forces
to move forward remain unclear and should be further
investigated using biophysical tools, for example, traction
microscopy. The dual-color fluorescence imaging technology
distinguishes injected and fluorescently labeled tumor cells
from the host stroma cells of transgenic mice and enables
further insights in tumor-host interactions [106, 107].

5. Contractile Forces and the Role of Vinculin

5.1. Measurement of Contractile Forces

To move forward in a 3D matrix, the invading tumor cells
need to generate contractile forces to overcome the viscous

drag. Despite the composition and the enzymatic digestion
of the matrix, the coordinated regulation of cell adhesion
(adhesion strength) and deadhesion (including cytoskeletal
remodeling) together with the generation of contractile
forces determine the invasion speed in a 3D matrix. Our
knowledge of cell migration, mechanical tensions, and forces
is derived from studies of cells cultured on planar substrates
(e.g., glass or polyacrylamide hydrogels). Previous reports
showed how to measure traction forces during cell migration
in 2D culture systems [108, 109] and were further improved
to quantitative tools [110–113]. All the methods depend on
the measurement of the deformations of an elastic substrate
with known elastic modulus on which the cells adhered and
spread. During this cell-matrix contact, the cell generates
tractions and deforms the substrate. The tractions were
computed from the substrate displacements visualized by
embedded markers (fluorescent 0.5 μm beads) using contin-
uum mechanics theory. Measurement of the displacement
field is accomplished by tracking these beads that are near the
surface of the substrate. The spatial resolution of the traction
map obtained with traction microscopy approaches is 1 μm,
which is sufficient to resolve the forces from individual



8 Journal of Biophysics

focal adhesions [112]. Traction microscopy has brought new
insights into tumor cell migration in particular [6, 86, 113].
The cells feel and respond to the stiffness of the extracellular
matrix through dynamic regulation of integrin clustering,
altered focal adhesion formation, and remodeling of the cell’s
cytoskeleton [40]. To conclude, contractile force generation
and cell invasion are strongly influenced by the mechanical
properties of the extracellular matrix [109].

5.2. Cell-Matrix Adhesions Protein Vinculin

For the generation of contractile forces, a cell needs to
adhere to the 3D matrix via cell-matrix adhesions. The
focal adhesion protein vinculin has been described to be
structurally important connecting the extracellular matrix
via cell-matrix adhesions and adjacent cells via cell-cell
adhesions with the actin cytoskeleton by providing an
intracellular linkage between the integrin receptor and the
actin cytoskeleton via the focal adhesion formation [114–
117]. The vinculin protein is encoded by 1066 amino acids,
has a molecular weight of ∼117 kDa, and binds to many
other focal adhesion and cytoskeletal proteins including
talin, paxillin, tensin, zyxin, VASP, α-actinin and actin
[118].

The function of vinculin has been largely analyzed in
cells cultured in 2D systems. Vinculin knock out (k.o.)
mouse embryonic fibroblasts (MEFs) as well as vinculin k.o.
mouse embryonic carcinoma cells (F9 cells) exhibit a more
round cell shape, show fewer and less stable lamellipodia,
but similar filopodia compared to vinculin-expressing MEFs
(wild type) [116, 119, 120]. Focal adhesion complexes of
vin-/- cells are smaller and consist of increased tyrosine-
phosphorylated proteins like talin, α-actinin, FAK, and
paxillin without increasing total protein content [116, 121].
Vinculin-deficient fibroblasts (MEFvin-/-) and carcinoma
cells (vin-/-) show reduced adhesion to extracellular matrix
proteins like fibronectin, vitronectin, laminin, and collagen
as well as a two-fold increase in motility and three-fold
increase in focal adhesion kinase activity compared to
wild-type cells [121, 122]. All the described studies were
performed in 2D migration or 2D adhesion assays and did
not properly mirror the in vivo situation of cells invading and
contracting the 3D tissue environment during the malignant
progression of tumor disease involving tumor outgrowth and
metastasis formation.

Vinculin’s function in tumor disease has so far hardly
been investigated. We recently reported that vinculin func-
tions as a mechano-coupling protein, and that its tail-
domain acts as a regulator for contractile force generation
[86].

In a recent study, we examined whether vinculin is
involved in cell invasion into a 3D extracellular matrix [123].
We found that vinculin enhanced the generation of trac-
tions, and that this mechanical parameter despite all other
mechanical parameters (e.g., cell adhesion, detachment, and
matrix degradation) plays a prominent role in cell invasion
in a 3D matrix to overcome the steric hindrances, but not
on a 2D substrate, where the viscous drag is negligible.
Future analyzes of the transmission of forces in cells via focal

adhesions might help to determine the prerequisites of the
invasive potential of a tumor cell.

6. How Can Mechanical Parameters of the Cells
Help to Improve Tumor Diagnosis?

Several reports describe a relationship between tumor cell
mechanical properties and their malignant potential in pro-
moting metastasis formation [6, 43, 124]. The measurement
of only a single cell mechanical parameter might not be
sufficient to predict the invasiveness of tumor cells nor
their metastasis formation potential. Many factors may
be involved in promoting tumor cell invasion (Figure 2)
and tumor cell transendothelial formation (Figure 5). The
mechanical properties of the tumor cells as well as their adhe-
sion receptor, sheddases, or enzyme expressions together
determine the ability to invade a tissue and to transmigrate
the endothelium (Figures 2 and 5). Only small fraction of
tumor cell lines is able to invade a 3D extracellular matrix [6].
To provide a proper analysis tool to determine the invasive
or metastasis potential of a tumor, it is first important
to isolate subcell fractions of isolated primary tumor cells
using well-defined mechanical parameters (contractile force
generation). These obtained primary tumor cells can be
analyzed for their metastatic potential by using metastatic
animal models.

7. Role of Clinically Relevant Metastatic
Animal Models

Orthotropic metastatic animal models can be used to
discover anticancer drugs and to determine drugs’ efficiency
[71]. These models are established for a wide variety of
tumors including spontaneous metastatic bone models of
prostate cancer, breast cancer, and lung cancer as well as
spontaneous liver and lymph node metastastic models of
colon, pancreatic, stomach, ovarian, bladder, and kidney
cancer [71]. These models present a new generation of
rodent tumor models and differ from transgenic tumor
models or subcuntanenously-growing human tumors in
immunodeficient mice, because the latter models did not
represent sufficient models in regard to metastasis formation
or drug sensitivity [71]. The advantage of novel orthotropic
metastatic models is that histologically intact fragments
of human cancer—directly taken from the patient—were
implanted to the corresponding organ of immunodeficient
mice. This allows researchers to determine tumor growth and
metastatic potential of transplanted tumors [125, 126]. These
orthotropic metastatic animal models can be combined
with measurements of the cells mechanical properties and
the mechanical properties of the transplanted tissue. To
understand the diverse roles of the endothelium in the tumor
metastasis, a transgenic nude mouse model visualizing
tumor angiogenesis could be helpful. It is based on the
nestin-promotor-linked green fluorescent protein because
many of the newly formed blood vessels originate from hair-
follicle stem cells that express nestin. The transcription of
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GFP indicates newly formed blood vessels in the animal
[127].

8. Conclusions and Future Directions

In summary, this paper presented a new function of the
endothelium in inducing or enhancing tumor cell invasion.
It discussed the two described pathways for tumor cell
metastasis formation and pointed out the importance of cell-
matrix and cell-cell adhesion receptors as well as chemokine
receptors for tumor-endothelial cell interactions. It focused
the view on the mechanical properties of tumor cells as
well as that of endothelial cells during the process of
metastasis formation. It discussed in vivo animal models
to visualize vascular and lymphoid metastases formation of
single injected tumor cells or implanted orthotropic tissue
resections.

The main new direction of tumor cell invasion and
metastasis research is to measure the ability of tumor cells
to generate contractile forces in a 3D environment and
to determine the malignancy of a tumor using in vivo
animal models. The mechanical measurements of tumor
cell subpopulations in patient’s liquids or tissue samples
might help to determine whether a tumor is able to form
metastases. A future direction of tumor metastasis research
is to focus on the diverse roles of the endothelium. The
combination of biophysical tools for mechanical properties
analysis of tumor and endothelial cells, the generation of
mechanical diverse tumor cells, and with their injection into
nude mice using the dual-color in vivo imaging method will
be extremely helpful in developing new diagnosis tools and
drugs reducing tumor metastases.
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