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ABSTRACT

Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such

assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and

protective functions. However, an atom-level structural determination of large assemblies is challenging due to the size of the

complex and the difference in binding affinities of the involved proteins. In this study, we propose a novel combinatorial greedy

algorithm for assembling large oligomeric complexes from information on the approximate position of interaction interfaces of

pairs of monomers in the complex. Prior information on complex symmetry is not required but rather the symmetry is inferred

during assembly. We implement an efficient geometric score, the transformation match score, that bypasses the model ranking

problems of state-of-the-art scoring functions by scoring the similarity between the inferred dimers of the same monomer simul-

taneously with different binding partners in a (sub)complex with a set of pregenerated docking poses. We compiled a diverse

benchmark set of 308 homo and heteromeric complexes containing 6 to 60 monomers. To explore the applicability of the method,

we considered 48 sets of parameters and selected those three sets of parameters, for which the algorithm can correctly reconstruct

the maximum number, namely 252 complexes (81.8%) in, at least one of the respective three runs. The crossvalidation coverage,

that is, the mean fraction of correctly reconstructed benchmark complexes during crossvalidation, was 78.1%, which demon-

strates the ability of the presented method to correctly reconstruct topology of a large variety of biological complexes.
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INTRODUCTION

Protein complexes mediate many essential processes in

the cell. Often, very large multimeric protein complexes

are formed for regulating the metabolic processes, nutri-

ent delivery or defense mechanisms. Protein monomers

can aggregate with assistance of molecular chaperones1
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or in a self-assembly process in which they find their

position within the protein complex without any further

help.2 However, neither the processes in chaperone-

assisted assembly nor the molecular principles of self-

recognition and the hierarchical order of the association

process are well-understood. In the latter case, hydropho-

bic interactions are often involved3–5; in some cases

electrostatic interactions guide the process.6 To obtain a

deeper understanding of the biophysical basis of the

assembly processes, bioinformatics tools such as protein–

protein docking programs are often used.

The assembly of oligomeric complexes from protein

monomers resembles solving a three-dimensional jigsaw

puzzle. Yet, in contrast to a real jigsaw puzzle, protein

interfaces, that is, the surface patches that can interact

with a binding partner, are not as well defined and only

roughly complementary. If their location is known

approximately, for example, from crosslinking,7–9 corre-

lated mutation studies,10–13 clustering of global docking

poses to identify potential binding modes,14,15 or data-

bases such as Interactome3D,16 KBDOCK,17 or

PRISM,18 the corresponding interface areas can be

locally probed more extensively using docking meth-

ods.19 However, although state-of-the-art algorithms

usually yield near-native solutions, the employed scoring

functions typically fail to appropriately rank these poses

and distinguish them from decoy solutions.19,20

Hence, the computational assembly of large protein com-

plexes is challenging and the development of algorithms for

solving this problem has received attention only in the last

decade. Few multi-body docking approaches exist, the most

prominent being HADDOCK,21 an information-driven

docking algorithm that allows the simultaneous docking of

up to six protein monomers. Many algorithms incorporate

symmetry information to restrain the combinatorial space,

for example, ClusPro,22 SymmDock,23 Rosetta’s symmetry

docking protocol,24 M-ZDock,25 or a particle swarm

optimization-based method which predicts homo-

oligomers of up to 24 monomers.26 Methods not relying on

symmetry information also exist: DockTrina27 can compute

asymmetric trimers by scanning combinations of protein

dimers via an RMSD-based test; MDOCK_HEX28 and

CombDock29 use pairwise dockings to compute clash-free

minimum-weight spanning trees (based on docking scores)

representing protein complexes. Other methods employ

genetic algorithms and Monte-Carlo refinement during

assembly from pairwise dockings,30 or assemble complexes

using interaction data predicted by structural matching of

protein–protein interfaces.31

In this work, we present 3D-MOSAIC (3-dimensional

modeling of oligomeric structural assemblies based on pair-

wise interaction combination), a novel, time-efficient com-

binatorial algorithm that employs a tree-based greedy

scheme for assembling protein complexes from docked

complexes of pairs of monomers. To deal with the ranking

problem typical for commonly used scoring functions,19,20

we introduce a novel measure, called transformation match

score (tms), that scores (sub)complexes solely based on the

compatibility of pairwise complexes produced for each pair

of interacting monomers with a docking algorithm of the

user’s choice (RosettaDock32 in this study).

A similar idea has been proposed in DockTrina,27

where however the authors limit themselves to consider-

ing only trimers and thus evade the largest part of the

combinatorial burden. DockTrina also exploits the idea

to reward implicitly produced interfaces compatible with

pregenerated docking poses, and does not rely on

advance information on interaction interfaces. Unlike

CombDock,29 which does not require information on

these interfaces either, we explicitly use such information

to assemble a complex by successive attachment of

monomers and perform a greedy search in order to find

the correct complex topology. Our algorithm does not

rely on a priori symmetry information, but rather infers

symmetry during assembly and optimizes the complexes

accordingly. The successful validation on a diverse bench-

mark set of 308 complexes with 6 to 60 monomers and

up to 15 different protein types involved in complex for-

mation shows that 3D-MOSAIC considerably extends the

limitations of previous tools. 3D-MOSAIC is imple-

mented in BALL33 and is currently limited to PDB files

(<63 chains and 100,000 atoms), but will be extended to

other file formats. The algorithm requires the knowledge

of the stoichiometry of the complex, of three-

dimensional structures of all distinct monomers, and of

the approximate location of the interaction interfaces for

each pair of monomers in contact, from which it gener-

ates a set of candidate docking poses using an established

docking algorithm. The availability of the latter informa-

tion from experiment or prediction currently presents

the major limitation of the proposed algorithm. On the

one hand, the relevant experimental data may be hard to

come by, on the other hand, our tests show that in the

absence of such data, current pairwise docking algo-

rithms often do not find near-native poses. With the

progress in this area, we expect 3D-MOSAIC to become

applicable in cases when no advance information on the

location of interaction interfaces is available.

MATERIALS AND METHODS

Transformation match score

The central idea of 3D-MOSAIC is the transformation

match score (tms). In a complex, each monomer typically

interacts with multiple binding partners via different inter-

faces. 3D-MOSAIC uses a set of given pairwise complexes

of all involved monomers, and if this set includes poses cor-

responding to the near-native interactions between the

monomers, it is possible to find a rigid transformation that

superimposes a pair of monomers in the complex onto a

suitable docking pose. If we continue this process for other
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monomers, using one of the monomers of the preassembled

partial complex as an anchor, and adding a new monomer

consistent with a docking pose out of the set of pairwise

dockings, each new monomer will have an associated trans-

formation TA. However, if the added monomer forms an

additional interface with another monomer, another rigid

transformation TB can be associated with it.

The core of 3D-MOSAIC comprises a novel and

quickly computable score for measuring the pairwise

similarity of any two such rigid transformations TA and

TB, tms. This score is exact in a very fundamental sense,

since it is based on RMSD. Furthermore, it is efficiently

computable and easy to interpret.

Let tA; tB be the translations and RA;RB the rotations

associated with transformations TA and TB, respectively.

As we have previously shown,34 the RMSD between two

rigid transformations TA and TB associated with two

docking poses of a protein P can be calculated in con-

stant time, that is, the computing time does not depend

on the number n of atoms involved. Using the protein’s

Figure 1
Exemplary assembly of the homo-hexameric hemocyanin from Panulirus interruptus (PDB code 1HCY) using 3D-MOSAIC. In each iteration, new
monomers can be attached to all previously retained solutions. If a matching interface is found, the complex match score increases and the corre-

sponding complex might be ranked further up in the list of solutions (green double-tilted arrows). Solutions similar to better-ranked ones or yield-
ing severe steric clashes are discarded. After complex construction, a symmetry optimization can be performed. Complex images created with

PyMOL.41
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covariance matrix covðPÞ which has to be precomputed

only once, the RMSD between two rigid transformations

TA and TB involving P can be computed as:

RMSDðTA;TBÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtABj21 1

n
trðRAB � cov PÞÞð

r
(1)

where RAB : 5RB2RA. The elements of the covariance

matrix are defined as covðPÞij5
Pn

k51 xkixkj , where xki

and xkj are the i-th and j-th coordinates of atom k, and

i; j51; 2; 3.

Letting rmsdmax be the threshold for the maximum

RMSD under which TA and TB are considered similar,

we define the tms as follows:

SrmsdðTA;TBÞ : 5 max 12
RMSDðTA;TBÞ

rmsdmax

; 0

� �� �2

(2)

Srmsd is 1 for identical transformations and decreases

toward the value 0 obtained when the cutoff rmsdmax is

reached or exceeded. To speed up the calculations, we

introduce an additional parameter lmax that represents

the displacement of centers of masses resulting from

transformations Tr;d and Ta;da . If this parameter exceeds

a threshold, there is no need to calculate Srmsd, since the

transformations are clearly too dissimilar.

An additional score that employs translational and

rotational displacement instead of RMSD was devel-

oped.35 It produced similar results on the benchmark

that are not reported here.

Outline of 3D-MOSAIC

3D-MOSAIC requires high-resolution three-dimen-

sional structures of a representative of each protein

involved in forming the complex (hereafter, protein

types), information on the stoichiometry of the complex,

that is, the multiplicity of each protein type, and pair-

wise interfaces that provide the presumed binding modes

in the complex. 3D-MOSAIC assembles the complex in

an iterative tree-based greedy fashion with each node

representing a monomer attached in a particular orienta-

tion (Fig. 1): starting from a seed monomer with the

largest number of interfaces (identified from pairwise

docking poses after clustering) of all protein types as the

initial parent solution, in each iteration, the algorithm

generates new child solutions, that is, partial or subcom-

plexes by attachment of an additional monomer to each

of the parent solutions retained from the previous

iteration.

For monomer attachment, each monomer r in the

parent solution is considered a potential interaction part-

ner. A new monomer l of a particular protein type p can

be attached to r, if i) the number of occurrences of p in

the parent solution has not yet reached its maximum

multiplicity, and ii) r has unoccupied interfaces (that can

be deduced from docking poses) for an interaction with

a protein of type p. Each docking pose associated with

such an interface is considered to be a new child solu-

tion, if the placement of the new monomer l of type p

according to that pose does not lead to a severe steric

clash of l with other monomers already present in the

parent solution. Particularly, we consider the aggregate

transformation Tr;d : 5Tr � Td , consisting of the transfor-

mation Tr given by node r and the docking pose trans-

formation Td . The new child monomer l is scored

according to the number of interfaces it has with all

ancestor monomers a already present in the complex. We

investigate each a for a docking pose da, such that the

aggregate transformation Ta;da is maximally similar with

the transformation Tr;d of the newly attached monomer

l, that is,

da : 5 arg max
d 0 2 all docking poses of all interfaces

SrmsdðTr;d ;Ta;d0 Þ (3)

We define the complex match score (cms) S(l) of a

child node l as the sum of the cms of its parent node r

and the obtained tms for all poses da over all ancestors a

except the monomer r to which l was attached by dock-

ing pose d:

SðlÞ : 511SðrÞ1
X

all ancestral nodes a 6¼r

SrmsdðT r;d ;T a;daÞ (4)

The additional summand 1 accounts for the attach-

ment of l via r using d for which d itself already yields a

“perfect” transformation similarity score. The complex

match score of the root node is zero. In case no addi-

tional interfaces are established, and the cms is equal for

all solutions (for example, first attachment step), the sol-

utions are ranked according to the score produced by the

external pairwise docking algorithm for the respective

docking poses. The position of the monomers, to which

the additional interfaces have been formed (if any), can

be adjusted by interpolating between the ones obtained

from transformations Tr;d and Ta;da for all ancestors a.

After each iteration, the generated child solutions are

clustered based on Ca RMSD to ensure a diverse solution

set in each iteration. Starting with the top-ranking solu-

tion as the first representative, each subsequent solution

is compared to each previously retained representative: if

the Ca RMSD of the RMSD-minimizing mapping (Sup-

porting Information, Section 1.1) of the monomers of

the new solution to the representative is below a thresh-

old, the solution is discarded, otherwise it is added to

the set of representatives. This procedure is iterated until

a user-defined number of diverse representatives has

been found.

After the final iteration, a symmetry optimization is

attempted for each complex (Supporting Information,

Section 1.2), provided that no steric clashes are thus
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introduced. First, all possible nontrivial superimpositions

of the complex onto itself, which map identical mono-

mers onto each other and produce RMSD below a

threshold, are identified. From all such superimpositions,

the final placement of each monomer is then averaged,

yielding a symmetry-optimized solution.

Benchmark data set

To validate 3D-MOSAIC, we established a diverse, rep-

resentative, high-quality benchmark set of protein com-

plexes obtained from the protein data bank (PDB)36

containing 52,112 structures. For each type of protein in

each complex, we determined the monomers with the

same sequence. Chains with sequence differences between

RESSEQ entry in the PDB file and actual structure, miss-

ing internal loops, mutations or nonstandard residues

were excluded from the set of candidates. We also

excluded structures with steric clashes, containing multi-

ple connected subcomplexes, nucleic acids, or antibodies,

split into several PDB entries and containing hetero

groups that cannot be handled by RosettaDock. For

structures containing complexes of several protein chains,

we selected those with more than six chains, and then

searched the rest of the PDB for sequence-identical

monomers. The resulting dataset consists of 350 com-

plexes, of which nine contain monomers also found in a

structure with only one protein chain (unbound cate-

gory), 10 contain monomers that are also found as

dimers in the PDB (dimer category), 122 contain mono-

mers that are found also in other multimeric complexes

(foreign category), and 209 contain unique monomers

not found in any other complex structure (same

category).

The binding modes, that is, the representative mutual

placement of each pair of interacting residues, in each

complex were determined via structural alignment to the

representative sequence-identical chains with best resolu-

tion and structural quality. If there were at least 20 pair-

wise distances below 10 Å between Ca atoms of residues

of the two representative chains, a dimer corresponding

to a potential binding mode was recorded. All such

dimers per complex were subsequently clustered using a

Ca RMSD of 5.0 Å to identify unique binding modes.

From each cluster, the dimer with the smallest number

of steric clashes was kept as the representative of a

unique binding mode. Several complexes contained a few

interfaces that were smaller than 20 contacting residue

pairs, and such interfaces were removed. In 42 cases, this

led to a complex falling apart into disjoint components

of less than six monomers, and such complexes were dis-

carded. The final set comprises 308 complexes (1044

unique binding modes) with 9, 8, 108, and 183 com-

plexes in the unbound, dimer, foreign, and same catego-

ries, respectively. Complexes in the dataset are symmetric

and asymmetric, contain from 6 to 60 monomers and up

to 15 protein types. For each representative chain, we

created a randomly rotated copy of the corresponding

protein structure centered at the origin which will be

used for assembly with 3D-MOSAIC.

Dimer preparation and docking

All representative dimers determined in the previous

section were prepared using RosettaDock’s32 prepack

protocol, and 10,000 docking poses per binding mode

were generated using RosettaDock standard parameters

(-dock_pert 3 8, -spin, -ex1, and -ex2aro) for local dock-

ing in low-resolution mode (side chains represented by

centroid atoms). The all-atom refinement stage was

skipped because optimal side-chain and rigid-body ori-

entations of the dimers can be expected to differ from

those in the actual complex.

3D-MOSAIC can then assemble protein complexes

based on the docking transformations and interaction

energies associated with these docking poses. To obtain

the interaction energies, we rescored all poses using

RosettaDock’s cen_std weights and subtracted the inter-

nal energies of each binding partner. In doing so, we

avoid multiple contributions from the internal monomer

energies to the total complex energy upon assembly.

Each pairwise docking pose describes two relative

placements which can be expressed as transformation

matrices: the placement of the second monomer relative

to the first one and vice versa, depending on which

monomer is considered to act as the reference (hereafter

receptor) to which the other one is bound (hereafter

ligand). In the case of a heterodimer consisting of two

monomers mA and mB with nonidentical protein types A

and B, respectively, one docking pose describes a relative

placement of (ligand) mB with respect to (receptor) mA

and, analogously, a relative placement of (ligand) mA

with respect to (receptor) mB. In the case of a homo-

dimer, the docking pose describes two placements for the

same protein type if the docking pose is asymmetric,

otherwise one. 3D-MOSAIC identifies a binding mode as

symmetric, if at least 1% of the poses associated with the

binding mode were symmetric, that is, could be superim-

posed on themselves with RMSD less than 0.5 Å. In

these cases, all nonsymmetric docking poses were dis-

abled. In the course of the algorithm, 3D-MOSAIC was

free to use any of these placements for a potential attach-

ment of a new monomer to a particular subcomplex,

depending on the protein types present and the sites of

attachment available in this subcomplex. From each of

these placements, the corresponding interaction interface

and transformation were defined.

Assembly experiments on the benchmark

The algorithm contains a large number of parameters

that were thoroughly explored. Ca RMSD in clustering

Efficient Complex Assembly from Docked Interfaces

PROTEINS 1891



after the first, all intermediate and last iterations were set

to either 1.0, 2.0, and 3.0 Å or 1.0, 3.0, and 5.0 Å, respec-

tively. The number of tolerated clashes 37 was set to 10,

25, 50, or 150, interpolation of the monomer placement

with respect to matching docking transformations was

either disabled or enabled. For Srmsd [Eq. (2)] thresholds

for displacement-based prefiltering (lmax) and rmsdmax

were set to 1.0 Å/3.0 Å, 1.5 Å/4.5 Å, and 2.5 Å/7.5 Å (see

Supporting Information Section 2.1 for details).

All runs employed a so-called solution reduction

scheme, that is, they considered 2000 solutions in the first

iteration, reduced by a factor of 2 in each subsequent itera-

tion, with a threshold of at least 100 poses to consider per

iteration. Parameters for large assemblies with 20 or 40

monomers were changed to reduce the required computa-

tional time: after adding the 20th monomer, the cluster

parameters were reduced by a factor of 5 and the number

of solutions to retain per iteration was reduced to 50. After

placement of the 40th monomer, cluster parameters were

reduced by 50%, the number of solutions to be kept per

iteration was decreased to 25. In the first 20 iterations, all

docking poses were enabled for attachment; after 20 (40)

levels, only the 500 (250) poses of each interface yielding

the highest tms were enabled.

In total, 48 combinations of parameters were explored.

The total number of runs of 3D-MOSAIC on the 308

benchmark complexes thus amounts to 14,784.

Topology RMSD

Routinely, the quality of a modeled structure is

assessed using Ca RMSD from a reference. However, this

measure has two disadvantages in the context of our

approach. First, when using only one representative

monomer structure per type of protein involved in the

complex, a certain amount of the measured Ca RMSD

will be due to conformational differences in the represen-

tative structure and the corresponding monomers in the

reference complex used for validation. Although this is

already true when using a representative monomer from

the reference complex itself, the effect becomes even

more dominant if monomers from a different complex

or an unbound structure are used for assembly. Second,

due to the iterative nature of complex assembly from

pairwise dockings, each docking pose which is not iden-

tical to the native binding mode will introduce a certain

amount of error, depending on its deviation from the

ideal interaction geometry. During iterative assembly

such errors will accumulate, and can result in large Ca

RMSDs, especially for complexes with many components,

even though the complex topology is correct and the dif-

ferences between the individual native dimers in the ref-

erence complex and their respective counterparts in the

modeled complex are small. Also, this renders the mea-

sure incomparable between complexes of different size.

Here, we introduce another measure for comparison

with a reference complex called topology RMSD

(tRMSD), which is inspired by the iRMSD38 for protein

dimers. To compute iRMSD, a protein is represented by

seven anchor points: its centroid and six points at 65.0 Å

in x-, y-, and z-direction. The RMSD values for this

reduced representation (iRMSD) have been demonstrated

to be more robust with respect to conformational differ-

ences between the compared structures, particularly if

these changes are located in regions which do not contrib-

ute to the interaction.38 We extend this measure to

oligomers as follows: for each protein type, the relevant

seven points are computed. For each pair of monomers

interacting in the reference, the corresponding matched

monomers from the complex are determined, and the

RMSD between the anchor points of the respective dimers

is computed. Finally, tRMSD is obtained as the mean

RMSD between the anchor points of all dimers. The

tRMSD thus assesses the correctness of the relative posi-

tion of the interacting monomers compared to the refer-

ence, while ignoring conformational differences in those

areas of the proteins that do not participate in any bind-

ing mode. We consider a complex to be correctly recon-

structed if its tRMSD from the reference is at most 2.5 Å.

Computational resources and availability

All docking and assembly experiments were performed

on the high-performance cluster MOGON (Johannes

Gutenberg University, Mainz, Germany), consisting of

535 nodes, each with 4 CPUs and 16 cores per CPU,

clocked with 2.1 GHz. 3D-MOSAIC will be available offi-

cially as part of the next release version of the open-

source project BALL.33 A pre-release version and the

benchmark data set (1.2 GB) are available upon request.

RESULTS

Benchmark performance and crossvalidation

Of 308 benchmark complexes comprising 9, 8, 108,

and 183 complexes in the unbound, dimer, foreign, and

same categories, respectively, 267 (86.7%) could be

reconstructed correctly. Specifically, for each of those 267

complexes there is a parameter combination such that

the structure model generated with this combination

deviated from the reference complex with a tRMSD score

not greater than 2.5 Å, and ranked within the top 100

solutions. However, owing to limitations in computa-

tional resources, the number of parameter combinations

that can be tested in a real application scenario is small.

We thus performed an exhaustive search and determined

the combination that provides the best coverage. It ena-

bles reconstruction of 71.8% of complexes in the bench-

mark. The respective parameter settings are: clustering Ca

RMSD of 1 Å after the first, 5 Å after the last, and 3 Å
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after each intermediate iteration, 150 clashes (as defined

in Ref. 37) for each pair of monomers, prefiltering dis-

placement threshold 2.5 Å and RMSD threshold for tms

calculation 7.5 Å thus being the most error-tolerant com-

bination. In the case that no information is available on

the nature of the interactions in a complex, it is also a

common practice to run an algorithm several times with

modified parameters. Thus, we have also identified three

sets of parameters that jointly produce optimal results in

terms of coverage (see Supporting Information, Section

2.1). In a practical scenario, one needs to run the assem-

bly reconstruction three times using each of these settings

to achieve best chances to obtain a correct solution. In

addition, we carried out a 10003 10-fold crossvalidation

to investigate how well this performance generalizes to

unseen data (Table I). In many cases, the correct solution

is ranked among the top solutions (Table II).

The number of correctly reconstructed complexes

increases to 81.8% (252) when one takes the best result

from three independent runs with different combinations

of parameters. The crossvalidation results show that the

best-performing parameter settings determined on our

benchmark are well-suited for assembly of unknown

complexes: the best combination of parameters deter-

mined for randomly selected 90% of the benchmark

complexes yielded mean coverages (Table I) almost as

good as determined for the whole data set, with a

maximum deviation of 3.7%. If we disable tms, the key

feature of the presented algorithm, the number of cor-

rectly reconstructed complexes drops by half (Table I).

Disabling clustering of solutions after each iteration leads

to a further performance drop.

The generated solutions are ranked based on complex

match score [Eq. (4)]. We have noticed that applying

symmetrization to the generated complex and then re-

ranking the solutions by favoring those with detected

symmetry can often further improve the ranking (Table

III). Indeed, symmetrization improves ranking of correct

solution, and if 3D-MOSAIC can reconstruct a complex

correctly at all, this reconstruction almost certainly is

found within top 25 solutions, and in most cases appears

at the top of the list.

Of all benchmark cases, complexes in unbound (nine

complexes, 6–10 monomers) and dimer (eight com-

plexes, 6–12 monomers) categories represent a setting

closest to reality. Six of nine complexes in the unbound

and five of eight in the dimer category could be correctly

reconstructed using the best performing combination of

parameters. In most cases the correct solution is ranked

as first or second, the lowest rank of the first correct

solution being five.

Docking results and determination of
essential binding modes

Performance of 3D-MOSAIC critically depends on the

quality of the generated docking poses, which we gener-

ate using RosettaDock32 in this study. For each of the

Table I
Performance of 3D-MOSAIC in the Benchmark

Parameter tms disabled tms and clustering disabled
setting N (cov) covcv N (cov) N (cov)

Best one 221 (71.8) 69.1 110 (35.7) 60 (19.5)
Best two 245 (79.5) 76.6 125 (40.6) 69 (22.4)
Best three 252 (81.8) 78.1 128 (41.6) 73 (23.7)

Number N (and coverage cov [%]) of the benchmark complexes reconstructed using the best one, two or three combinations of parameters, with corresponding cross-

validation coverage (covcv [%]) rates.

Table II
Joint Performance of the Best Three Combinations of Parameters

Category
Number of
complexes Top 1 Top 10 Top 25 Top 100 All

Unbound 9 6 7 7 7 7
1.00 (0.69) 1.19 (0.78) 1.19 (0.78) 1.19 (0.78) 1.19 (0.78)

Dimer 8 5 6 6 6 6
1.00 (0.67) 1.77 (0.75) 1.77 (0.75) 1.77 (0.75) 1.77 (0.75)

Foreign 108 74 83 86 86 90
1.00 (0.67) 1.29 (0.74) 1.88 (0.77) 2.01 (0.77) 8.06 (0.80)

Same 183 130 143 146 148 149
1.00 (0.68) 1.36 (0.75) 1.47 (0.76) 1.87 (0.77) 3.18 (0.77)

Total 308 215 239 245 247 252
1.00 (0.68) 1.34 (0.75) 1.62 (0.76) 1.90 (0.77) 4.84 (0.78)

Number of complexes with correct solution within top-ranked N solutions is reported. The mean rank of the first correct solution and the crossvalidation accuracy (in

parentheses) are given in the next line. The ranks are computed by generating three ranked lists, one for each combination of parameters. Each list is ordered lexicographi-

cally with respect to symmetry, then cms. The resulting ranked lists are merged and items with equal rank are ordered with respect to the accumulated docking score.
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1044 binding modes retained in the benchmark dataset,

the minimum, median, and maximum Ca dimer RMSD

of all corresponding 10,000 docking poses from the refer-

ence binding mode was determined (Fig. 2), which

reveals that RosettaDock was able to find a near-native

pose (Ca dimer RMSD at most 2.0 Å) for 1031 thereof,

with a mean Ca dimer RMSD for the minimum-RMSD

distribution of 0.654 Å and standard deviation 0.326 Å.

The median and maximum RMSD distributions with

mean RMSDs of 12.457 Å and 22.756 Å and standard

deviations of 3.718 Å and 7.046 Å, respectively, demon-

strate that the employed docking protocol generated a

sufficient number of decoys to provide a reasonable test

scenario for 3D-MOSAIC.

Comparison with Comeau and Camacho22

and CombDock29

In addition to the crossvalidation, we evaluated the

best-performing parameter settings determined in the

benchmark experiment on an independent data set of 17

homo-hexamers obtained from Comeau and Camacho22

Two of the 17 complexes (PDB codes 1I40, 1NSF) are also

present in our benchmark data set, but are assembled

using monomers from structures determined in independ-

ent X-ray crystallography experiments, whereas in the eval-

uation on the data set from Comeau and Camacho they

are assembled using monomers from 1I40 and 1NSF,

respectively, making the assembly problem easier. 3D-

MOSAIC successfully reconstructs 12 of them.

We also applied CombDock29 to our benchmark set.

The program failed to finish in 118 cases, producing an

assembly for 190 complexes. Only one complex was

reconstructed correctly, that is, with tRMSD below 2.5 Å.

This comparison is unfair, however, because CombDock

does not employ information on the approximate loca-

tion of interaction interfaces, that is essential for 3D-

MOSAIC to generate docking poses. So we also refrained

from using this information to conduct a fair experi-

ment. Instead of generating docking poses from a repre-

sentative dimer (cf. Section “Dimer Preparation and

Docking”), we performed unconstrained global protein–

protein docking of each two monomers with Comb-

Dock,29 and used these docking poses as input for

3D-MOSAIC run with slightly relaxed parameters (see

Supporting Information Section 3.1 for details). The

interaction interfaces were thus not known in advance,

so we consider the whole monomers as a single interface

and allow multiple attachments. In this setting, 3D-

MOSAIC produces no correct solutions. However, if we

consider a slightly extended threshold of 5 Å for tRMSD,

we find correct solutions with 3D-MOSAIC in 19 cases

versus 2 with CombDock, and 3D-MOSAIC typically

yields a smaller tRMSD per complex than CombDock

(Fig. 3). These solutions were also usually ranked higher

with 3D-MOSAIC. Generally, both methods perform

poorly, which can mainly be attributed to the difficulties

in generating near-native binding modes among the

docking poses produced by the unconstrained pairwise

docking of CombDock29: Ca dimer RMSD> 3.0 Å for

94% of the binding modes.

Experiments using single Residue-pair
interaction constraints

As the above comparison shows, we cannot completely

avoid using knowledge of approximate positions of inter-

action interfaces. Thus, we set out to find the minimal

amount of information necessary. Literature and data-

base searches did not provide enough data of this kind.

Thus, we modeled it by assigning to each interface one

pair of contacting residues: for each of the native binding

Table III
Effect of Symmetry Optimization on Ranking of Solutions

Ranking by Top 1 Top 10 Top 25 Mean Rank

cms 78.2 (3.8%) 92.9 (1.8%) 96.0 (1.0%) 4.00 6 11.27
symmetry, cms 82.9 (5.4%) 94.9 (2.2%) 97.2 (1.3%) 3.18 6 9.77

Mean percentage (and standard deviation) of correctly reconstructed benchmark complexes per parameter setting with a near-native solution among the top 1, 10, 25

ranks, as well as the mean rank of the first correctly reconstructed complex. Ranking is either based on cms or on a lexicographical ordering with respect to the extent

of symmetry involved and then by cms.

Figure 2
Histogram of docking performance over all 1044 reference binding

modes: for each binding mode, the minimum, median and maximum

Ca dimer RMSD from the reference mode over all 10,000 docking poses
was determined.
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modes, we randomly selected a pair of residues, one

from each protein in the binding mode, whose Ca dis-

tance is at most 10 Å. Then we generated the start

dimers by aligning the monomer centroids with the

assigned contacting pair along a straight line and ran-

domly rotating each monomer. The contacting residues

were placed at 10 Å from each other. The docking poses

were then generated with RosettaDock32 using the same

protocol as for the benchmark (see Section “Dimer Prep-

aration and Docking”). Moreover, in addition to actually

contacting pairs, three, six, or ten non-native contacting

pairs were added to each complex to model experimental

or prediction error. We performed this experiment on

ten complexes, all of which could be reconstructed in the

benchmark: 1HI9 (10), 1KW6 (8), 1PVV (12), 1QK1 (8),

1X1O (6), 1YNB (6), 2BJK (6), 2F1D (24), 2UYU (8),

3Q46 (6) (the number in parentheses represents the

number of monomers in each).

We ran 3D-MOSAIC with slightly relaxed parameters

(see Supporting Information Section 3.1 for details) and

could reconstruct seven of them (Fig. 4). Three com-

plexes: 2BJK, 2UYU, and 1PVV, could not be recon-

structed, mainly due to the fact that at least one of the

native binding modes was not found among pairwise

docking poses for some of the interfaces. Additionally,

the topology of 1PVV resembles a hollow sphere, which

leads to a hardly restrained configurational space for the

docking poses that can be validly attached without intro-

ducing severe steric clashes. When adding six non-native

binding modes, three complexes (1KW6, 1QK1, and

3Q46) could be reconstructed, and two of them (1KW6

and 1QK1) could still be reconstructed correctly, when

ten non-native binding modes were added.

Examples

Figure 5 shows some successfully reconstructed com-

plexes whose properties emphasize some regards in which

3D-MOSAIC is superior to other methods: for example,

the 20S proteasome in complex with activator PA26

(PDB code 1Z7Q, 15 protein types, 42 monomers), a pro-

tein complex that degrades proteins, could be recon-

structed with a tRMSD of 0.93 Å from the reference

complex using monomers from the reference complex.

Similarly, the proteasome core complex (PDB code 1RYP,

14 protein types, 28 monomers, not shown) could be

reconstructed with a tRMSD of 0.67 Å which is remark-

able because monomers from five different sources have

been used (PDB codes 1Z7Q, 1FNT, 3L5Q, 3UN4, 1VSY).

Figure 3
Distribution of difference of best tRMSDs per assembly between Comb-

Dock and 3D-MOSAIC. In only seven out of 190 cases, CombDock
yielded a better tRMSD than 3D-MOSAIC (bars below zero). Images

created with Matplotlib.42

Figure 4
The seven complexes that could be reconstructed in the single residue-

pair interaction constraints experiments. Each assembled complex is

superimposed onto the respective reference. Complex images created
with PyMOL.41
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Another interesting example is the bovine cytochrome

BC1 trans-membrane complex (PDB code 1BE3, 22

monomers, 11 protein types) which is part of the final

stages of energy conversion in the electron transport chain

and could be reconstructed with a tRMSD of 0.91 Å.

None of these complexes could be reconstructed with

CombDock.29

3D-MOSAIC was even capable of assembling 60-mers,

as, for example, the capsids of satellite panicum mosaic

virus (PDB code 1STM) and satellite tobacco necrosis

virus (PDB code 2BUK), reconstructed with tRMSDs of

0.23 Å and 0.31 Å, respectively, as well as a member of

the tumor necrosis factor family (TNF), sTALL-1 (PDB

code 1JH5), which also exhibits a capsid-like structure

and could be reconstructed with an outstanding tRMSD

of 0.06 Å. Asymmetric multimeric assemblies are rare in

Nature, and hence depleted in our benchmark. An exam-

ple of such a case is the complex of yeast cytochrome

BC1 with stigmatellin (PDB code 2IBZ), which con-

tains 11 monomers of 11 protein types and could be re-

constructed with a tRMSD of 0.87 Å.

To visually demonstrate the characteristics of complexes

which are more difficult to reconstruct with 3D-

MOSAIC, Figure 6 shows some examples of complexes

for which a successful reconstruction could not be

achieved. For example, ring-like complexes with many

monomers [Fig. 6 (a)] where each monomer provides

two interfaces, one for each of its neighbors in the ring,

can be considered to be an extreme case because of their

low connectivity. In such cases, the search for similar

transformations is only reasonable upon ring closure, that

is, when the last monomer is attached. Here, an addi-

tional interaction with the initially placed monomer can

be established, yielding a non-zero tms. In preceding iter-

ations, the cms of all solutions are equal and 3D-MOSAIC

must rely on the ranking based on the accumulated dock-

ing scores. Hence, near-native solutions must be ranked

accurately in the set of docking poses for the assembly to

be successful. Similarly, cage-like structures, for example,

the pyruvate dehydrogenase complex (PDB code 1B5S),

are hard to assemble. Here, two monomers of each of five

well-connected trimers form decameric rings [Fig. 6 (b)]

and, while 3D-MOSAIC easily correctly reproduces the

involved trimers, their proper ring-like arrangement is

hard to achieve. Complexes with monomers that are

mostly helical [Fig.6 (c)] or heavily intertwined via b-

sheets [Fig.6 (d)] are also difficult to assemble. Helical

monomers exhibit almost no complementary surfaces and

all docking poses are equally likely. In case of intertwining

b-strands, the number of compatible docking poses is

highly limited as the docking funnel is very narrow, and

an assembly will likely lead to severe steric clashes.

DISCUSSION

3D-MOSAIC is a novel combinatorial greedy algo-

rithm for assembling large oligomeric protein complexes

from pairwise docking poses that uses a new function,

Figure 5
Examples of successfully reconstructed assemblies, superimposed onto the corresponding reference complex. Images created with PyMOL.41
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called transformation match score (tms), scoring the sim-

ilarity between two rigid (docking) transformations of

the same protein. The validation of 3D-MOSAIC on a

diverse benchmark set of 308 complexes, with one single

combination of parameters allowing for reconstructing

71.8% of all complexes, shows that the introduced scor-

ing function is efficiently capable of selecting docking

poses that represent native pairwise binding modes to

form an oligomeric complex. 3D-MOSAIC extends capa-

bilities of docking-based reconstruction of large com-

plexes by increasing the number of complex components

as well as the number of protein types that can be

handled, with running times of a few hours for smaller

complexes (up to ten monomers) to as little as approxi-

mately one day for complexes with 60 monomers, when

using 10,000 docking poses per binding mode (for a

detailed analysis of the running times see Supporting

Information, Section 2.2).

3D-MOSAIC relies on prior knowledge of the approxi-

mate location of the binary protein interaction interfaces.

This can be considered a limitation of the algorithm.

3D-MOSAIC favors complex topologies in which multi-

ple binding modes are simultaneously established upon

attachment of a new monomer. Complexes with a low

degree of connectivity between the monomers can be

expected to be more difficult to assemble. These com-

plexes do not exhibit many binding modes, consequently,

tms will rarely find matching docking poses, and thus,

3D-MOSAIC must resort to the ranking based on the

sum of docking scores of the poses used for assembly.

Here, the method suffers from the same problem that is

common to all state-of-the-art assembly algorithms based

on pairwise dockings in such a situation: common dock-

ing scoring functions are seldom able to effectively score

and rank near-native solutions and to discriminate them

from decoys and, thus, near-native solutions will rarely

be found among the top ranks.19,20 Due to the combi-

natorial nature of the complex assembly problem using

pairwise dockings, viable solutions will be rapidly down-

ranked. Although 3D-MOSAIC is often still able to

assemble such complexes, it definitely performs better for

well-connected complexes, for which the tms will, upon

attachment of a new monomer, reward many surround-

ing monomers that form docking poses compatible with

the position of the newly placed monomer. 3D-MOSAIC

does not assume a high degree of connectivity between

the monomers in the complexes, but benefits from it. In

such cases, upon attachment of a new monomer to one

already present in a given subcomplex, the tms can detect

additionally established interactions with other mono-

mers in the subcomplex. The benchmark set derived

from the PDB in a semi-automated fashion with a mini-

mum amount of manual intervention indicates that the

majority of known complexes exhibit a sufficient amount

of connectivity for the tms to be successfully applied. tms

thus provides a valuable measure which significantly

advances the field of assembling and ranking complexes

based on pairwise dockings.

3D-MOSAIC can be used with any kind of pairwise

interaction information that either (i) can be used to gen-

erate docking poses, for example, the aforementioned sin-

gle residue pair interactions which can for example be

obtained from crosslinking experiments7–9 as well as

Figure 6
Examples of complexes and corresponding topology graphs for hard

cases: (a) ring-like topology of T4 lysozyme hexamer (PDB code 3SBA),
(b) cage-like topology of pyruvate dehydrogenase E2 60-mer core com-

plex (PDB code 1B5S), (c) inovirus coat protein filament (PDB code
2C0W) composed of helical monomers, and (d) human cystatin C

complex (PDB code 1R4C) forming interchain b-sheets. Different node

colors correspond to different protein types, different edge colors to dif-
ferent binding modes. Images created with PyMOL.41
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correlated mutation studies,10–13 or (ii) can be described

as transformations of the respective binding partners rela-

tive to each other, for example, dimers obtained from the

PDB,36 Interactome3D,16 or PRISM.18

The availability and collection of such data form the

basis for the field of integrative modeling approaches

which combine a multitude of different information

sources providing data on distances between components

of the complex to generate medium-to-high resolution

structural models of macromolecular assemblies. For

example, Lasker et al.39 have demonstrated that a suffi-

cient amount of data can be collected (in this case cryo-

EM maps and densities, residue-specific crosslinks, pro-

tein–protein interaction data from in vitro binding

assays, crosslinking experiments and others, as well as

structures for the individual monomers), to model com-

plexes as large as the 26S proteasome (2.5 MDa, 33 pro-

tein types, 66 monomers).40

Depending on the application scenario and the avail-

able information, our approach can thus either provide

assistance for or be used as a complement to such inte-

grative approaches. Currently, additional features such as

the incorporation of cryo-EM data to guide assembly

and the step-wise generation of protein subcomplexes to

facilitate reconstruction of weakly connected complexes

and to improve runtime efficiency are being explored.
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