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Both Conifer II and Gnetales are
characterized by a high frequency of
ancient mitochondrial gene transfer to the
nuclear genome
Sheng-Long Kan1,2, Ting-Ting Shen3, Jin-Hua Ran1,2* and Xiao-Quan Wang1,2*

Abstract

Background: Mitochondrial gene transfer/loss is common in land plants, and therefore the fate of missing
mitochondrial genes has attracted more and more attention. The gene content of gymnosperm mitochondria
varies greatly, supplying a system for studying the evolutionary fate of missing mitochondrial genes.

Results: Here, we studied the tempo and pattern of mitochondrial gene transfer/loss in gymnosperms represented
by all 13 families, using high-throughput sequencing of both DNA and cDNA. All 41 mitochondrial protein-coding
genes were found in cycads, Ginkgo and Pinaceae, whereas multiple mitochondrial genes were absent in Conifer II
and Gnetales. In Conifer II, gene transfer from mitochondria to the nucleus followed by loss of the mitochondrial
copy was common, but complete loss of a gene in both mitochondrial and nuclear genomes was rare. In contrast,
both gene transfer and loss were commonly found in Gnetales. Notably, in Conifer II and Gnetales, the same five
mitochondrial genes were transferred to the nuclear genome, and these gene transfer events occurred,
respectively, in ancestors of the two lineages. A two-step transfer mechanism (retroprocessing and subsequent
DNA-mediated gene transfer) may be responsible for mitochondrial gene transfer in Conifer II and Gnetales.
Moreover, the mitochondrial gene content variation is correlated with gene length, GC content, hydrophobicity,
and nucleotide substitution rates in land plants.

Conclusions: This study reveals a complete evolutionary scenario for variations of mitochondrial gene transferring
in gymnosperms, and the factors responsible for mitochondrial gene content variation in land plants.

Keywords: Mitochondrial gene transfer, Gene content variation, Evolutionary fate, Gymnosperm, Conifer II, Gnetales

Background
Compared with the almost unchanged mitochondrial
protein-coding gene content in animals and certain
other eukaryotes, the loss of mitochondrial genes fre-
quently occurred in many land plant lineages, with the
mitochondrial gene number ranging from 19 (Viscum

scurruloideum) to > 50 (Marchantia polymorpha) [1–6].
It is generally believed that loss of protein-coding genes
from the mitogenome may occur following functional
transfer of a gene to the nucleus [3, 7–16]. However, the
loss of a gene from the mitochondrial compartment does
not necessarily imply its functional transfer to the nu-
cleus, particularly for ribosomal protein genes, which
were frequently lost in land plants, especially in angio-
sperms [2, 17–19]. For example, almost all ribosomal
protein genes were missing from the mitogenome of
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Zostera, but only a subset of them were found in the nu-
cleus [20]. In addition, a mitochondrial gene may have
been replaced by a homologous gene originating from
chloroplast or nuclear DNA [21, 22]. Although previous
studies have investigated the evolutionary fate of mito-
chondrial genes transferred to the nuclear genome, most
of them explored a single gene or focused on a specific
lineage with a relatively short evolutionary history [7, 10,
15, 23]. It is of great interest to investigate the evolution-
ary dynamics/fates of mitochondrial genes in major
clades of land plants with long evolutionary histories.
The gene content of gymnosperm mitochondria

shows great variation, especially among different line-
ages [4, 24–26], providing a good system for studying
the evolutionary fate of missing mitochondrial genes.
As the sister group of angiosperms, gymnosperms
represent four of the five main clades of seed plants
with a crown age dated to the Carboniferous, and
Conifer II (non-Pinaceae conifers or cupressophytes)
has been resolved as a unique lineage in gymno-
sperms [27, 28]. The complete assembly of plant
mitochondrial genomes (mitogenomes) remains chal-
lenging due to their complex and variable structures
[29]. To date, only six mitogenomes have been se-
quenced for gymnosperms [25, 26, 30–32], although
over 100 angiosperm mitogenomes have been se-
quenced (https://www.ncbi.nlm.nih.gov/genome/
browse#!/organelles/). A comparison of mitochondrial
gene content among gymnosperms revealed an evolu-
tionary stasis in Cycas taitungensis, Ginkgo biloba,
and three Pinaceae species (Pinus taeda, Picea abies,
and Picea sitchensis), in contrast to extensive gene
loss in Taxus cuspidata and Welwitschia mirabilis.
The Cycas, Ginkgo, and Pinaceae mitogenomes con-
tain 41 protein genes, as in the ancestors of angio-
sperms [33]. In contrast, Taxus and Welwitschia have
lost not only the sdh3 gene but also eight and eleven
ribosomal protein genes, respectively [25, 26]. By compar-
ing mitochondrial gene and intron contents among 15 di-
verse gymnosperm species, Guo et al. [24] found that
Gnetales and Conifer II mitogenomes underwent exten-
sive gene and intron losses, but they did not investigate
the fate of the missing mitochondrial genes, and their
study did not sample several phylogenetically important
families such as Ephedraceae, Cephalotaxaceae, and Scia-
dopityaceae. In addition, Kan et al. [26] reported the mito-
genome sequence of Taxus cuspidata and found that
eight genes of this species have been transferred to the nu-
cleus. Therefore, it would be interesting to investigate the
evolutionary patterns of mitochondrial genes in gymno-
sperms and the fate of missing mitochondrial genes in
particular, based on a complete sampling at the family
level and a joint analysis of both genomic and transcrip-
tomic data.

Various hypotheses have been proposed to explain
why frequent gene transfer events occurred in plant
mitochondria. Some adaptive hypotheses, such as
Muller’s ratchet, genomic streamlining, and avoidance of
free radicals, may be plausible mechanisms for promot-
ing transfer from small mitochondrial genomes such as
in animals and bacteria [34], except that “beneficial mu-
tations” may play a role in gene transfer events of plant
mitochondria [3]. Berg and Kurland [35] proposed a
neutral model of gene transfer, which suggested that
mitochondrial DNAs were frequently transferred to the
nuclear genome, but only certain genes were activated
by acquiring presequences and regulatory elements in
the nuclear genome, and fixation of beneficial mutations
allowed the nuclear copy to outcompete its mitochon-
drial counterpart [3, 35]. Liu et al. [15] provided a de-
tailed portrayal of structural and sequence evolution for
mitochondrial genes transferred to the nucleus by per-
forming comparative analyses of 77 transferred genes in
various angiosperms and found that many of them con-
tain mitochondrial targeting presequences and poten-
tially 5′ cis-regulatory elements. In addition, due to that
gene transfer/loss is punctuated, why are mitochondrial
genes retained in mitochondrial genome? To investigate
this question, Johnston and Williams [1] analyzed more
than 2000 eukaryotic mitochondrial genomes and found
that mitochondrial genes with high GC content and high
hydrophobicity are prone to be retained in the mitogen-
ome. Mitochondrial gene transfer/loss is an ongoing
process in land plants [1–3]. However, previous studies
on mitochondrial gene content variation in land plants
focused primarily on angiosperms and earlier land plants
[36, 37]. The study of more samples, especially from
gymnosperms, is essential to understand why gene con-
tent is variable in plant mitochondria.
In this study, we investigated the mitochondrial gene

content variation and the fate of missing mitochondrial
genes in gymnosperms represented by all 13 families
and 19 genera using both DNAs and cDNAs generated
from high-throughput sequencing. Then, the mecha-
nisms underlying mitochondrial gene transfer were stud-
ied. Moreover, the possible factors related to the
variation of mitochondrial gene content were explored
based on an analysis of all available data of land plant
mitogenomes.

Results
Basic information of mitochondrial draft genome
assembly
The raw data generated from each species were roughly
equal to their genome size. After assembly, 15 to 532
mitochondrial scaffolds were obtained from different
samples with average k-mer coverage from 6.59 to
180.37. In total, the size of the draft mitogenome ranged
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from 0.34 to 6.17 Mb with GC contents from 44.08 to
53.20% (Additional file 1: Table S1).

Mitochondrial gene content variation in gymnosperms
We searched the 41 mitochondrial protein-coding genes
present in the common ancestor of seed plants [25] from
the studied gymnosperm species. All 41 genes were
found in cycads (Cycas revoluta and Zamia furfuracea),
Ginkgo (Ginkgo biloba), and Pinaceae (Abies firma,
Cedrus deodara, Picea smithiana, and Pinus armandii).
In Conifer II, 32 genes were present in all species. Arau-
cariaceae (Araucaria cunninghamii) and Podocarpaceae
(Podocarpus macrophyllus) also contained a sdh3 gene,
and Sciadopityaceae (Sciadopitys verticillata) had a rpl10
gene. Notably, many fewer mitochondrial protein-coding
genes occurred in Gnetales. Gnetum montanum and
Welwitschia mirabilis contain 29 genes, whereas E. prze-
walskii has only 22 genes. It is interesting that intact or
partial sequences of an additional 6–8 homologs of
mitochondrial genes were exclusively found in the tran-
scriptomic and/or genomic data of Conifer II and Gne-
tales (Fig. 1a and Additional file 2: Table S2), which
were inferred to be lost in certain species of Conifer II,
and Welwitschia and Gnetum among Gnetales in previ-
ous studies [24–26].
To identify whether these homologs have been trans-

ferred to the corresponding species’ nuclear genome,
depth of sequencing coverage and real-time PCR were
applied in this study. Analysis of average sequencing
depth showed that these genes have the same sequen-
cing depth as the single-copy nuclear gene LEAFY in
Conifer II and Gnetales (Fig. 1b and Additional file 3
Figure S1). In addition, the real-time PCR experiments
confirmed that the relative amounts of gene copies of
these genes were consistent with LEAFY, less than those
of the mitochondrial genes (Fig. 1c).

Gene structure of mitochondrial and putative transferred
genes
The distribution pattern of introns in the gymnosperm
mitochondrial genes was similar to that reported in Guo
et al. [24]. In brief, the mitogenomes of two cycads con-
tained 21 cis- and five trans-spliced introns. Compared
to those of the cycads, the mitogenome of Ginkgo lost
only one intron (rps10i235). In Pinaceae, all 26 introns
were found, but eight of them were converted from cis-
to trans-spliced. In the mitogenomes of Conifer II, 14–
15 introns were found, of which six to seven changed
from cis- to trans-spliced. Compared with cycads, 11–12
introns were lost in Conifer II, of which two were lost
due to gene loss. In the mitogenomes of Gnetales, only
ten introns were found in Welwitschia, of which two
showed changes in the splicing mode. In the lost 16 in-
trons, two were lost with genes. In contrast, Gnetum

contains 22 introns, and only two introns displayed a
changed spliced mode. Most surprisingly, 1 (nad2i542)
cis- and 17 trans-spliced introns were found in Ephedra.
In addition, it is uncertain whether nad5i1477 and
nad5i1872 existed in Ephedra (Additional file 4: Table
S3). In the putative transferred genes, the rpl2 gene con-
tains one intron in all gymnosperm lineages excluding
Gnetales (no homolog was found in gnetophytes), but
this intron has different phases in Conifer II and cy-
cads+Ginkgo+Pinaceae. In the remaining genes, intron
gain was found in five genes (rps1, rps2, rps11, rps14,
and sdh3), whereas intron loss occurred only in rps10 in
Gnetales. One intron of rps2 was gained in both Conifer
II and Gnetales but with different phases, and one intron
of sdh3 was found in Taxus. For rps11, Gnetum and
Welwitschia obtained three and two introns, respectively,
whereas no intron was found in Ephedra. One and three
introns were found only in rps14 of Cephalotaxus and
Gnetum, respectively (Fig. 2).
The presequence of some putative transferred genes

derived from another nuclear gene encoding a mito-
chondrial protein. For example, the presequence of sdh3
encodes a mitochondrial chaperonin heat shock protein
in Cupressaceae and Cephalotaxaceae. In addition, some
putative transferred genes have a presequence acquired
from a nuclear gene encoding a nonmitochondrial pro-
tein or from an unknown source or have no presequence
(Additional file 5: Table S4).

Variation of RNA editing sites in the mitochondrial and
putative transferred genes
Due to the different expression levels of mitochondrial
genes at different developmental periods of plants [38],
it is difficult to identify the exact number of RNA editing
sites of mitochondrial genes. In this study, RNA editing
sites were found in all 17 species except Welwitschia, al-
though few RNA editing sites were identified in Wel-
witschia in a previous study of Fan et al. [39] (Additional
file 6: Table S5). In addition, we compared the RNA
editing pattern of eight putative transferred genes (rps1,
rps2, rps7, rps10, rps11, rps14, rpl2, and sdh3) in gymno-
sperms. No RNA editing sites were found in the putative
transferred genes of Conifer II and Gnetales, and a ma-
jority of sites corresponding to the RNA editing sites of
their mitochondrial homologous genes in Pinaceae, cy-
cads, and Ginkgo were changed from C to T in Conifer
II and Gnetales (Additional file 7: Figure S2).

Phylogenetic analysis and ancestral state reconstruction
The phylogenetic analyses of gymnosperms based on
mitochondrial protein-coding genes supported the “Gne-
pine” hypothesis that Gnetales and Pinaceae are sister
groups, whereas the phylogenetic relationship con-
structed using the putative transferred genes and their
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homologs supported the “GneCup” hypothesis (Gnetales
sister to Conifer II) (Additional file 8: Figure S3). The
single-gene trees of the putative transferred genes and
their homologs showed different topologies. In the rps2,
rps10 and rps14 gene trees, Conifer II and Gnetales were
clustered together, whereas in the rps1 and rps11 gene

trees, these two lineages did not form a monophyletic
group (Additional file 9: Figure S4).
The result of the ancestral state reconstruction indi-

cated that complicated transfer and loss events of mito-
chondrial genes occurred in gymnosperms. For example,
rps1, rps2, rps10, rps11, and rps14 may have undergone

Fig. 1 Patterns of loss and transfer of mitochondrial protein-coding genes in gymnosperms with sequencing depth and relative amount of gene
copies of these genes. LEAFY was used as a reference (c) for mitochondrial and transferred genes in gymnosperms. Black color (b) indicates gene
loss. Purple and black indicate mitochondrial and transferred genes, respectively
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intracellular transfer events in ancestors of Conifer II
and Gnetales, respectively, while rpl2 and rps7 were
transferred to the nucleus in the ancestor of Conifer
II but lost in the common ancestor of Gnetales.
Transfer of sdh3 may have occurred in Conifer II, ex-
cluding Araucaria and Podocarpus, and the common
ancestor of Gnetales (Additional file 10: Figure S5). In
addition, in Conifer II, the mitochondrial rpl10 gene
was only found in Sciadopitys. Furthermore, rpl5,
rpl16, rps13, and rps19 were lost in the common an-
cestor of Gnetales, and ccmB, matR, mttB, rpl10,
rps3, and rps4 were not found in Ephedra (Fig. 1a).

Variation of evolutionary rates between mitochondrial
and putative transferred genes
The synonymous and nonsynonymous substitution rates
(dS and dN) of mitochondrial protein-coding genes and
putative transferred genes were significantly different
among different lineages of gymnosperms. All genes of
cycads, Ginkgo, Pinaceae, and Conifer II have lower syn-
onymous substitution rates than Gnetales, and nonsy-
nonymous substitution rates are lower in cycads, Ginkgo,
and Pinaceae than in Conifer II and Gnetales. In
addition, the rates of synonymous and nonsynonymous
substitutions of putative transferred genes significantly

Fig. 2 Structure of eight transferred genes and their mitochondrial homologs in gymnosperms. Exons are indicated with boxes, and
microsyntenic relationships between orthologous genes are shown with gray shadows. Introns are indicated with lines; the dashed lines indicate
that the intron lengths are uncertain and the cross lines indicate that the intron lengths are too long to be shown. Numbers between boxes and
lines represent phases of intron. a rps1, b rps2, c rps7, d rps10, e rps11, f rps14, g rpl2, and h sdh3

Fig. 3 Sequence variation parameters of mitochondrial and transferred genes for each taxon using the LEAFY gene as a control. a dN and dS. b RN
and RS. mt, that the mitochondrial genes did not transfer to the nuclear genome in all taxa; t, the transferred genes in Conifer II and Gnetales and
their mitochondrial homologs in other gymnosperms; n, the LEAFY gene
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increased (Fig. 3a). The pattern of absolute substitution
rate of mitochondrial protein-coding genes is consistent
with the relative substitution rate. The absolute syn-
onymous substitution rates of putative transferred genes
were significantly accelerated in Conifer II and Gnetales,
and the absolute nonsynonymous substitution rates were
only accelerated in Gnetales (Fig. 3b). Furthermore, the
evolutionary rates of both mitochondrial and putative
transferred genes were lower than that of the nuclear
gene LEAFY (Fig. 3).

GC content and hydrophilicity of mitochondrial and
putative transferred genes
The GC contents of mitochondrial protein-coding and
putative transferred genes in different lineages of
gymnosperms were compared. For the mitochondrial
protein-coding genes, the GC2 contents were similar
in different lineages, and the GC and GC3 contents
were higher in Conifer II and Gnetales than in cy-
cads, Ginkgo and Pinaceae. For the putative trans-
ferred genes, the GC, GC2 and GC3 contents were
significantly higher than those of mitochondrial genes
in Conifer II and Gnetales, as well as their homolo-
gous genes in the mitochondrial genome of cycads,
Ginkgo and Pinaceae (Fig. 4).
All putative transferred genes (except sdh3) encode

hydrophilic proteins. In addition, hydrophilic mitochon-
drial protein-coding genes are more common in Conifer
II and Gnetales than in cycads, Ginkgo and Pinaceae
(Fig. 5).

Factors influencing mitochondrial gene content in land
plants
To test the factors that can influence the mitochondrial
gene content, we downloaded almost all published mito-
genomes of land plants from NCBI and calculated the
gene length, GC content, dN and dS values, and hydro-
philicity for all the downloaded genes. The results
showed that mitochondrial genes with longer length,
higher GC content and stronger hydrophobicity were
more likely to be preserved in the mitogenome (Add-
itional file 11: Figure S6a,b,c). The number of mitochon-
drial genes has a notably weak, moderate, and weak
correlation with GC content (R2

(GC) = 0.0300) (Add-
itional file 11: Figure S6d), synonymous substitution rate
(R2

(dS) = 0.3467), and nonsynonymous substitution rate
(R2

(dN) = 0.1079) (Additional file 11: Figure S6e,f),
respectively.

Discussion
A high frequency of ancient mitochondrial gene transfer
to the nucleus was found in both Conifer II and Gnetales
Based on analyses of both DNA and cDNA sequences
generated from high-throughput sequencing, we

investigated the variation of mitochondrial gene contents
and the fate of missing mitochondrial genes by sampling
representative species from all families of gymnosperms.
Although a few fast-evolving mitochondrial genes might
be difficult to identify from the draft genomes, our re-
sults should be reliable when compared with the pub-
lished mitogenomes of gymnosperms and the study of
Guo et al. [24]. Similar to previous studies, all 41 mito-
chondrial protein-coding genes were found in cycads
(Cycas and Zamia), Ginkgo and Pinaceae (Abies, Cedrus,
Pinus and Picea), whereas many were not found in the
mitogenomes of Conifer II or Gnetales [24–26, 30–32].
Notably, we found that gene transfer was common but
that gene loss was rare in Conifer II, whereas both gene
transfer and loss commonly occurred in Gnetales (Fig.
1a). For example, in the ancestor of Conifer II, seven
mitochondrial genes (rpl2, rps1, rps2, rps7, rps10, rps11,
and rps14) were transferred to the nucleus, but only
rpl10 was lost in the descendants. In contrast, six genes
were lost and another six genes were transferred to the
nuclear genome in the ancestor of Gnetales, followed by
the additional loss of six genes (ccmB, matR, mttB,
rpl10, rps3, and rps4) and intracellular transfer of one
gene (rps12) in Ephedra (Fig. 1a).
Interestingly, five of the genes that have been transferred

to the nuclear genome are shared between Conifer II and
gnetophytes, including rps1, rps2, rps10, rps11, and rps14.
This phenomenon, together with the fact that the phylo-
genetic tree inferred from these five genes suggests a sister
relationship between Conifer II and gnetophytes (Add-
itional file 8: Figure S3), seems to support the Gnecup hy-
pothesis. However, the nucleotide substitution rates of
transferred genes in Conifer II and gnetophytes are much
higher than those of their homologs in cycads, ginkgo, and
Pinaceae, which may have led to long-branch attraction in
phylogenetic reconstruction [40, 41]. Although the evolu-
tionary rates of putative transferred genes were still lower
than that of the LEAFY gene, it could be because these
genes had evolved under functional constraints from
mitochondria after transfer to the nucleus. In addition, the
Gnepine hypothesis is highly supported by the phylogen-
etic tree inferred from the mitochondrial protein-coding
genes. Although One Thousand Plant Transcriptomes Ini-
tiative [42] reported that the placement of Gnetales con-
flicted among the ASTRAL, supermatrix, and plastome-
based trees and both Gnecup and Gnepine hypotheses
were supported by the calculation of gene-tree quartet fre-
quencies; Ran et al. [28] reconstructed a robust phylogeny
of seed plants based on 1308 nuclear genes, supporting
the Gnepine hypothesis. Therefore, it is very likely that
the five genes were transferred to the nuclear genome in
the ancestors of Conifer II and Gnetales, respectively. This
inference is also supported by the ancestral state recon-
struction of gene transfer/loss events (Additional file 10:
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Figure S5). It is interesting that the presequence of sdh3
encodes a mitochondrial chaperonin heat shock protein in
Cupressaceae and Cephalotaxaceae, supporting the occur-
rence of an ancient gene transfer event (Additional file 5:
Table S4). However, the presequences of most putative
transferred genes are diverse, which could have resulted
from separate gene activations or from extensive recom-
bination events in different lineages after a single ancient
gene activation following transfer to the nucleus [15].
Our analysis of mitochondrial gene content variation

indicates that the basal groups in both gymnosperms
and angiosperms encode almost the complete set of
mitochondrial protein-coding genes, similar to the com-
mon ancestor of seed plants [25, 30, 33, 43], and genes
encoding small and large subunit ribosomal proteins and
succinic acid dehydrogenase are more prone to be

transferred/lost (Fig. 1a) [2–4, 8, 9, 20, 21]. However,
during the evolution of angiosperms, gene transfer/loss
events generally occurred in a genus or even in a species
except for a few genes [2, 3, 8, 9, 12, 20, 21], whereas in
gymnosperms, except for Ephedra, most of the mito-
chondrial gene transfer/loss events occurred in the com-
mon ancestors of Conifer II and Gnetales, respectively
(Fig. 1a).

The two-step transfer mechanism may be the method of
mitochondrial gene transfer in Conifer II and Gnetales
During plant evolution, the phenomenon of mitochon-
drial gene transfer to the nuclear genome is very com-
mon, but the mechanism of intracellular gene transfer is
still controversial [13, 44–46]. Three main mechanisms
were proposed for intracellular gene transfer in plants:

Fig. 4 GC content variation in the genes of the sampled species. a All positions of the codon, b first position of the codon, c second position of
the codon, and d third position of the codon. Ang, angiosperms; C&G, Cycads and Ginkgo; Pin, Pinaceae; Gne, Gnetales; Con, Conifer II. Blue
indicates the transferred genes in Conifer II and Gnetales and their mitochondrial homologs in other taxa, and red indicates the conserved
mitochondrial genes
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direct DNA-mediated, direct RNA-mediated, and two-
step transfer mechanisms (retroprocessing and subse-
quent DNA-mediated gene transfer) [13, 45]. If these
DNAs were directly transferred from organellar DNA to
the nuclear genome, then gene introns with the same
phases and positions and RNA editing sites similar to
their mitochondrial homologs can be found. Theoretic-
ally, the existence of RNA editing sites and group II in-
trons in mitochondrial genes would impede the
expression of transferred genes. In this study, the trans-
ferred rpl2 gene lost the mitochondrial intron in all taxa
of Conifer II (Fig. 2). In addition, in the transferred rps1,
rps2, rps10, rps11, rps14 and rpl2 genes, most RNA edit-
ing sites found in cycads, Ginkgo, and Pinaceae were
converted from C to T in Conifer II and Gnetales (Add-
itional file 7: Figure S2). Therefore, these genes could
have been transferred via a direct RNA-mediated mech-
anism or the two-step transfer mechanism. However,
previous studies have shown that direct transfer of or-
ganelle DNA to the nuclear genome is notably frequent,
while direct transfer of organelle RNA to the nuclear
genome is quite rare [47, 48]. Moreover, Ran et al. [49]
found that the rps3 gene underwent a “retroprocessing”

event in Conifer II, resulting in the loss of introns and
RNA editing sites, and thus may represent an initial
stage of gene transfer. Considering the above informa-
tion, coupled with the fact that the mitochondrial in-
trons and RNA editing sites were lost in Conifer II and
Gnetales, we deduce that retroprocessing and the follow-
ing DNA-mediated gene transfer pathway may be re-
sponsible for mitochondrial gene transfer in Conifer II
and Gnetales.
In addition to the counterparts encoded by the nuclear

genome, the homologs of chloroplast genes or
chloroplast-derived genes encoded by the nuclear gen-
ome can also function in mitochondria [2, 21, 22, 46]. In
Conifer II and Gnetales, certain genes were not found in
either the mitochondria or the nuclear genome. For ex-
ample, in Conifer II, the rpl10 gene only exists in the
mitochondrial genome of Sciadopitys, and in Gnetales,
six genes (rpl2, rpl5, rpl16, rps7, rps13, and rps19) were
lost in the common ancestor of Gnetales, and another
six genes (ccmB, matR, mttB, rpl10, rps3, and rps4) were
lost from the mitogenome of Ephedra. Considering that
most of the above genes participate in important physio-
logical processes such as protein synthesis and energy

Fig. 5 Grand average of hydropathicity (GRAVY) of mitochondrial genes and their transferred homologs in gymnosperms. Black indicates
gene loss
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metabolism [25, 50], these genes might have been func-
tionally replaced by chloroplast genes or cytosol-derived
genes encoded in the nuclear genome [21, 22]. However,
recent studies have found that a larger number of mito-
chondrial genes (e.g., nad1, nad2, nad3, nad4, nad4L,
and nad5) were lost in select angiosperms, such as Vis-
cum (Viscaceae) [5, 17, 19], and hence, we cannot rule
out the possibility that certain mitochondrial genes of
Gnetales have been lost directly.
It is intriguing that the matR gene was not found in

the mitochondrial genome of Ephedra (Fig. 1a). The
mitochondrial matR gene has a conserved domain with
mature enzyme activity and a degenerated domain with
reverse transcriptional activity involved in the splicing of
mitochondrial group II introns [51]. Generally, the matR
gene of seed plants is located in the fourth intron of
nad1 (nad1i728) [11, 25, 30]. Nevertheless, the matR
gene was lost in certain angiosperms, such as Malpigh-
iales (Croizatia brevipetiolata and Lachnostylis bilocu-
laris) and Viscaceae (Viscum and Phoradendron) [5, 17,
19, 52]. Currently, it is unclear why these plants do not
need the matR gene and what effect may result from the
loss of matR. Grewe et al. [11] found that matR was
transferred to the nuclear genome and split into two
genes with respective reverse transcriptional activity and
mature enzyme activity in Pelargonium. In addition, the
nuclear genome can encode four mature enzymes that
are transported to the mitochondria, such as nMAT1
participating in the trans-splicing of nad1i394 in Arabi-
dopsis [51]. Furthermore, among the few hundreds of
currently available mitogenome sequences, there is no
loss of mttB and the loss of ccmB only occurred in Vis-
cum scurruloideum [4, 5]. Therefore, in Ephedra, the
matR, mttB, and ccmB genes could also have been trans-
ferred to the nuclear genome, but we did not find their
nuclear homologs due to great sequence divergence, al-
though it is possible that these genes have been com-
pletely lost.

Several factors may be related to mitochondrial gene
content variations in land plants
In gymnosperms, almost all gene transfer/loss events are
notably ancient, and it is difficult to know why a large
number of mitochondrial genes were transferred/lost
hundreds of millions of years ago, but the gene content
of the mitochondrial genome has remained stable in the
later period. Therefore, the gene content variation in
gymnosperms could be more likely to be related to the
question “why mitochondrial genes are retained in mito-
chondrial genome”. Based on the newly generated data
from a complete sampling of gymnosperm families in
combination with plant mitochondrial genomes in pub-
lic databases, we conducted a comparative analysis to
find the factors that might influence mitochondrial gene

content variation in land plants and obtained the follow-
ing findings. First, the easily transferred genes are gener-
ally small and hydrophilic with low GC content,
supporting the hypothesis that relatively small, low GC
content, and soluble proteins such as ribosomal proteins
can be easily transported from the nucleus to mitochon-
dria (Additional file 11: Figure S6a,b,c) [1, 2]. Second, in
land plants, the higher the GC content, the fewer the
mitochondrial genes, implying that mitochondria with
high GC content contain fewer genes (Additional file 11:
Figure S6d). Third, more mitochondrial genes can be
transferred or lost when the nucleotide substitution rates
of extant mitochondrial genes are high (Additional file
11: Figure S6e,f). The synonymous and nonsynonymous
substitutions of mitochondrial genes are higher in Coni-
fer II and Gnetales than in cycads, Ginkgo and Pinaceae
(Fig. 3). In conclusion, four factors, including gene
length, GC content, hydrophobicity, and nucleotide sub-
stitution rates, may be related to mitochondrial gene
content variation in land plants.

Conclusions
In this study, we investigated the variation of mitochon-
drial gene contents and the fate of missing mitochon-
drial genes by an integrated analysis of the high-
throughput sequencing data of DNA and cDNA of rep-
resentative species from all 13 families and 19 genera of
gymnosperms. We found a high frequency of ancient
mitochondrial gene transfer to the nucleus in both Coni-
fer II and Gnetales and deduced that retroprocessing
followed by DNA-mediated gene transfer could be re-
sponsible for mitochondrial gene transfer in Conifer II
and Gnetales based on the fact that the mitochondrial
introns and RNA editing sites were lost in transferred
genes. In addition, we explored the possible factors re-
lated to the variation of mitochondrial gene content in
land plants based on a combined analysis of the data
generated in the present study that cover all gymno-
sperm families and the available plant mitochondrial
genome sequences.

Methods
Taxon sampling, DNA extraction, and sequencing
A total of 19 species representing all families of gymno-
sperms were sampled. The high-throughput sequences
of both DNA and cDNA of Taxus cuspidata were taken
from Kan et al. [26]. In addition, the transcriptional and
DNA data of the other 18 samples were downloaded
from NCBI [28, 53] and sequenced in this study. For
high-throughput DNA sequencing, leaf buds were col-
lected for DNA extraction using a modified CTAB
(cetyltrimethylammonium bromide) procedure Porebski
et al. [54]. Total DNA was sonicated using the Covaris
M220, and DNA fragments 500–600 bp in length were
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purified using the TIANgel Midi purification kit (Tian-
gen, Beijing, China). A sequencing library was con-
structed using the NEBNext® Ultra ™ DNA Library Prep
Kit for Illumina® (New England Biolabs Inc.), according
to the manufacturer’s introductions, and sequenced on
an Illumina HiSeq 2500 instrument using the 250 bp
paired-end protocol. Additionally, because the mito-
chondrial genome of Ephedra przewalskii was difficult to
assemble, we also used long-read sequencing (Oxford
Nanopore) technology, following the protocol of Kan
et al. [26]. Detailed information is shown in Table S6
(Additional file 12).

Sequence assembly and mitochondrial gene identification
Due to difficulties in the complete assembly of plant
mitogenomes [29], we did not try to assemble all the
mitochondrial genes into a single contig. Instead, we
used the known mitochondrial genes of gymnosperms as
queries to retrieve their homologs from all samples using
TBLASTN [55]. The raw reads were trimmed and fil-
tered by Trimmomatic [56] and assembled by SOAPde-
novo2 [57] and SPAdes v 3.13.2 [58]. The assembly of
the E. przewalskii mitochondrial genome was referred to
Kan et al. [26]. All mitochondrial genes were retrieved
from the assembled contigs and transcriptomes using
the mitochondrial genes of Cycas taitungensis [30], Pinus
strobus, and Araucaria heterophylla as queries. If one
gene was not found in the DNA or transcriptome data-
bases of Gnetum and Taxus obtained in this study, we
first searched it in the published genome databases and
then designed multiple primer pairs to amplify it from
total DNA or RNA [59, 60]. If one gene was not found
in the other species, we amplified it from total DNA or
RNA. Total RNA extraction, purification, and first-
strand cDNA synthesis were performed following the
protocols of Ran et al. [49]. The primers are shown in
Table S7 (Additional file 13).

Identification of genes transferred to the nuclear genome
and mitochondrial scaffolds
Similar to Kan et al. [26], we used two methods, i.e.,
depth of sequencing coverage and real-time PCR, to
identify mitochondrial genes that have been transferred
to the nuclear genome. In the real-time PCR analysis,
single-copy nuclear gene LEAFY was used as an experi-
mental control. All putative mitochondrial and trans-
ferred genes were amplified in three species, Pinus
armandii, Gnetum montanum, and Podocarpus macro-
phyllus, representing Pinaceae, Gnetales and Conifer II,
respectively, and we found that the results were the
same as that generated by using the depth of sequencing
coverage. Therefore, we only used nad2 or nad5 as the
mitochondrial gene control to identify the putative
transferred genes inferred from the depth of sequencing

coverage in other species. The primers are also listed in
Table S7 (Additional file 13).
If a scaffold contains identified mitochondrial genes or

introns, it is considered to be a mitochondrial scaffold,
and its average GC content and k-mer coverage are used
as the criteria for screening the mitochondrial scaffolds
that do not encode mitochondrial genes [24]. The mito-
chondrial scaffolds were annotated and deposited in
GenBank (MW354079–MW354511).

Identification of the RNA editing sites and analysis of
gene structure variations
The DNA and corresponding cDNA sequences of each
gene were compared for each species to identify the
RNA editing sites in the coding regions. In addition, we
identified the positions and number of introns of each
gene by comparing the assembled DNA and cDNA se-
quences. According to the criteria proposed by Guo
et al. [24], the splicing mode of mitochondrial intron
was determined. Multiple primer pairs were further de-
signed for the determination if the splicing mode of an
intron cannot be identified. The cDNA sequence was
first amplified to verify the reliability and amplification
efficiency of the primer pairs, and then the primer pair
with the highest amplification efficiency was used to
amplify the DNA sequence to confirm the splicing mode
of the intron Table S7 (Additional file 13). In addition,
the published genome data of Taxus chinensis and Gne-
tum montanum were also used to determine structure of
the transferred genes [59, 60]. Moreover, we used
BLAST to annotate the N-terminal presequences of pu-
tative transferred genes in gymnosperms.

Evolutionary rate variations between mitochondrial and
transferred genes
The evolutionary rate variations between mitochondrial
and transferred genes were compared using the LEAFY
gene as a control. To avoid the influence of RNA editing
sites, cDNA sequences were used in the phylogenetic
analysis. Two basal angiosperms with all 41 mitochon-
drial genes, i.e., Amborella trichopoda and Liriodendron
tulipifera, were selected to represent angiosperms [33,
61], and two ferns, i.e., Ophioglossum californicum and
Psilotum nudum, were selected as outgroups [62]. All
mitochondrial genes were concatenated directly. If one
gene was proven to be transferred to the nucleus in a
species, we first reconstructed the single-gene trees so
that we could infer when and how many times this gene
was transferred to the nuclear genome. The GTRGAM
MA and PROTGAMMAAUTO models were used in the
nucleotide and AA matrices, respectively, and RaxML v.
8.2.12 was used to reconstruct the phylogenetic relation-
ships with 100 bootstrap replicates [63].
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The nucleotide substitution rates (dS and dN) of each
gene were calculated using PAML 4.9e [64]. Absolute
rates of substitutions per branch (RS and RN) were calcu-
lated by dividing the nucleotide substitution rates by
their divergence times. The divergence times of the seed
plants were obtained from Ran et al. [28] and Ran et al.
[53], the Angiosperm Phylogeny Website (http://www.
mobot.org/mobot/research/apweb/) and the TimeTree
web service (http://www.timetree.org/).

GC content calculation and hydrophobicity prediction
We used a python script to separately calculate the GC
content of conserved mitochondrial genes and the trans-
ferred genes in Conifer II and Gnetales and their mito-
chondrial homologs in other gymnosperms in all
lineages (ferns, Angiosperms, cycads, Ginkgo, Pinaceae,
Gnetales, and Conifer II). The hydrophobicity of each
protein in each species was predicted using the Prot-
Param Tool (https://web.expasy.org/protparam/).
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