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Abstract: Finding the critical factor and possible “Newton’s laws” in financial markets has been an
important issue. However, with the development of information and communication technologies,
financial models are becoming more realistic but complex, contradicting the objective law “Greatest
truths are the simplest.” Therefore, this paper presents an evolutionary model independent of micro
features and attempts to discover the most critical factor. In the model, information is the only
critical factor, and stock price is the emergence of collective behavior. The statistical properties of the
model are significantly similar to the real market. It also explains the correlations of stocks within an
industry, which provides a new idea for studying critical factors and core structures in the financial
markets.

Keywords: econophysics; financial complexity; collective intelligence; emergent property; stock
correlation; detrended cross-correlation analysis

1. Introduction

With the massive use of information and communication technologies, we can collect
traceable data from almost anyone. The rise of network science [1] and computational
social science [2] have provided opportunities for innovative research in econophysics and
sociophysics. In particular, econophysics regards the financial market as a complex system
and attempts to depict it more realistically, such as the interactions between investors by
network dynamic evolution. Econophysics describes the economic system with many
interacting heterogeneous entities (people, firms, institutions, etc.), and expects to find
similar laws to the physical system. However, humans are not ideal gas molecules, it is
unclear how many and which quantities would be needed for determining and anticipating
a given macroscopic, in the sense of collective, observable [3]. Moreover, because human
beings are adaptable, the study of economic systems is bound to be a difficult problem.

Researchers have proposed numerous different mechanisms to model the microstruc-
ture of financial markets. They pursued the most detailed descriptions, such as creating
diverse agents and setting rules for interactions between agents and trading rules. Re-
searchers collected data about investors’ behavior through information technology to deal
with the variables of different individuals. But individuals rely on different risk preferences
and reference points. Even if we can reasonably describe the behavior of a single individual,
we cannot directly generalize to a group. Investors’ decisions in financial markets are not
always rational; their buying and selling decisions are affected by emotion, personality, and
bias [4,5]. People are different, and they are not rational to some extent. For individuals,
faith may be stronger than reason, personal interest may be stronger than the good of
the team, etc. Meanwhile, the COVID-19 disease is a new and dreaded event [6], and in
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the process of keeping the virus under control, people’s cognitive functioning has been
enhanced, and their behavior has been changed to some extent. For example, more people
are willing to wear a mask after the epidemic outbreak and so on. In the stock market, there
are so many unpredictable fluctuations. When new information is generated, what does it
mean for the stock market? That would hardly be positive for the stock market because
investors are different, and their cognitive processes and cognitive environment are fickle
and changeable. In the face of changes in the information environment, different investors
have different reaction capacities and speeds. After thinking about the information, even
for a specific investor, they will understand the information from a new perspective and
form their own judgment slowly. Thus, in a financial system, microstructure models are
not enough to consider the variable adaptability of investors.

Although investors are different and unpredictable, research exhibits that pieces of
statistical evidence remain stable, accordant to the stability of the statistical properties
of particle motion in physics models [7,8]. Therefore, in the studies of financial markets,
statistical results of different micro models exhibit universal characteristics. The classical
percolation model [9–11] simulates herd behavior. For any pair of agents i and j, they
are connected with a probability, and then agent i makes the buying or selling decision
with another probability. The model explains the power-law distribution of stock price
returns appropriately. The two-dimensional Ising model [12] considers investors’ imitation
of neighbors, the influence of public information, and personal traits. Here the influence
of public information is a Gaussian distribution. The investor’s decision function also
has a probability form, and the returns of the model are “fat-tailed” [13,14]. The financial
models with network topology [15] also produce the universal characteristics of real stock
markets by setting the link probability of nodes and performing decision functions. These
models share common features. First, they generate a stock trading environment in the
form of probability. Second, investors make buy-sell decisions with probability or decision
functions. More details are introduced to depict a more realistic financial market based
on these basic models and their common features. Over the past century or so, stock
trading information flow has changed from slow to intensive, investors’ literacy from
low to high, relationship from simple social relationships to complex social networks.
Individual characteristics of investors and the market environment have dramatically
changed. Stock trading rules also varied in different countries; for example, China has a
10% price limit [16]. Nevertheless, no matter what changed the environment or rules, it is
observed that universal characteristics are robust on different timescales and in different
stock markets. Therefore, in the study of the macro laws, statistical properties of the stock
market, the critical factor should not be the relationship network of investors, the speed of
information flow, or the level of literacy of investors, which researchers want to introduce.
On the other hand, collective intelligence results from intelligence, which emerges out
of collaboration and coordination of many individual agents [17]. Collective intelligence,
which Wooley et al. [18] define as the ability of a group to perform a wide variety of
tasks. They studied “collective intelligence” and demonstrated that the critical factor
characterizing “collective intelligence” is not the group members’ average or maximum
individual intelligence. Here, we view the ability of investors to make buying and selling
decisions. Investors gamble in the stock market, where supply and demand determine the
stock price, i.e., the result of their behavior is reflected in the price of the stock. Investors’
collective intelligence is the emergence of investors’ collective behavior. In this paper,
we abstract all the factors that impact the market to the only value of information. In
given information, the behavior of investors emerging with probabilities results in the
evolution of stock markets. Here, unlike the micro model that pursues a realistic and
detailed structure, we discard individual features and interaction. We present a stock price
evolution model with emergence properties in the given information in Section 2 and verify
its rationality using real market data in Section 3. We aim to find the critical factor and
capture stable macroscopic law in the ever-changing stock market.
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The paper is organized as follows: Section 2: A detailed description of the stock market
model with delayed information impact. Section 3: Statistical analysis and nonlinear
behavior of the proposed model. Section 4: Correlation analysis between stocks in the
industry.

2. Stock Price Model with Delayed Information Impact

The analysis of financial stock market prices has been found to exhibit some universal
characteristics similar to those observed in physical systems with many interacting units,
and several microscopic models have been developed to study them. Examples include
percolation models, Ising models, network models, and their extensions to social interac-
tions. Though these models are very different, they all can be used to simulate the stock
market. Because the simulation results are consistent with the statistical properties of real
market price fluctuations, these models may generate the “Newton’s laws” in financial
markets. Thus, we aim to find the possible “Newton’s laws” in these models and try to
prove it.

The classical percolation model is generated with the connection probability of neigh-
bor nodes. The Ising model is a random field with a probability, and the evolution of the
swing is closely related to the structure of space and initial state. The network model is
also generated with a probability. We find the common feature that they generate is stock
trading in the form of probability.

Mitchell and Mulherin [19] studied the relation between the number of news announce-
ments reported daily by Dow Jones & Company and aggregate measures of securities
market activity, including trading volume and market returns. They employed a distinctive
proxy for the information, i.e., the number of announcements released daily by Dow Jones
& Company. Meanwhile, the social sciences have obtained access to huge datasets based
on the internet activity of millions of users all over the world. Among the most frequently
utilized providers of data, social media such as Twitter and Facebook and search engines
Google and Yahoo play the most important roles. For example, the frequency of searched
terms has been shown to provide helpful information for forecasting various phenomena
ranging from trading volumes [20] to consumer behavior [21] and finance [22]. In summary,
information is too complicated to be considered fully in a theoretical model, let alone de-
layed information in stock markets. In previous studies, Albers et al. [23] studied “delayed
information.” In the paper, the time when relevant information is available and the time
that a decision has an effect could be decoupled. Investors might not have access to the
latest exchange rates or stock prices. They refer to this as the delayed information model.
However, we define a new concept of delayed information here. In the stock market,
information comes in various ways and at different influence levels. In general, there is
a small amount of super good news and bad news. Most of the news is ordinary. In our
model, the influence of information is an abstract concept. The influence of information
will last for some time, and the disappearance time of influence will be delayed. This is
what we refer to as delayed information.

We propose the stock price model of delayed information impact based on the common
feature and abstract information. It includes two components, i.e., the generation and
delay of market information and the emergence of collective decision-making in the given
information.

2.1. Information Generation and Delay

• Suppose the initial stock price is P0. The stock market environment is fickle daily and
is influenced by a series of stochastic events, including supply and demand, macroe-
conomic, political factors, corporate finances and performance, market sentiment, etc.
We coarse-grain all the stochastic events by information into just a single influence
value. The impact of information is an abstract concept, which is a random variable
that is normally distributed with mean 0 and standard deviation σ1, here σ1 = λP0.
Any theoretical normal distribution has a maximum of infinity and a minimum of
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minus infinity. There is an infinite range. In our model, the impact of information
is normally distributed, and it must be finite. Thus, there must be a truncation. The
truncation interval should be large enough and reasonable. The information has an
impact on the stock price, so the truncation interval has a relation with the stock price
P0. It cannot stand alone. Here, considering the extreme cases (terrible information,
great information), we set the truncation interval to be [−4σ1,+4σ1]. New informa-
tion sequence It can be obtained by random sampling from the truncated Gaussian
distribution.

• In the stock market, the influence of information is in a state of change and eventually
disappears. Thus, we introduce the delayed information. The progress of influence
disappearance is a different matter from the memory deterioration. That the influence
of information eventually disappears does not mean that the people forget the informa-
tion; it is just that the information is a dead issue. Considering that significant events
have a sustained impact on the investors, and the impact strength of the information
will delay over time, we assume that the information influence It delays linearly with
time simply, and the information influence after the i-th day I′i is expressed as

I′i =
{

It − ai, It > 0
It + ai, It < 0

(1)

where a is the delay coefficient.

2.2. Stock Price Evolution Process

The given information determines the theoretical stock price P′t .

P′t = Pt−1 + It + ∑i=t−1
i=0 I′i (2)

Investors participate in the game and make decisions based on the given information. Their
collective behaviors result in actual stock prices. As the investors vary from radicals or
conservatives, daredevils, or followers, etc., statistical properties of the final actual stock
price series are stable in the ever-changing stock market. The actual stock price Pt in day t
has emergence properties of collective intelligence, which is a random sampling from a
truncated Gaussian distribution Pt ∼ N

(
P′t , σ2

2
)
. As the price fluctuation is related to the

information, here σ2 = 1
3 × |P′t − Pt−1|. Considering the extremes, we set the truncation

interval as [−4σ2,+4σ2].
Figure 1 shows the simulated stock price series Pt and the corresponding return series

rt, P0 = 3000,σ1 = 20, a = 5. In Figure 1, volatility clustering is easily observable. High-
volatility tends to follow high-volatility, and low-volatility tends to follow low-volatility.

Figure 1. Stock price series of the proposed model and its corresponding return.
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3. Descriptive Statistics and Nonlinear Behavior Analysis

This section discusses the stock price model’s descriptive statistics and nonlinear
behavior with delayed information impact and verifies the simulation results with the
real stock market. We use real daily closing price data from 1 January 2010 to 3 December
2020 (T ≈ 2700), including the SSE (Shanghai Composite Index), SZES (Shenzhen Stock
Exchange Index), and S&P500 (S&P 500 Index) (https://finance.yahoo.com, 3 May 2021).
The simulated data length T = 3000 matches with the real data (T ≈ 2700).

3.1. Descriptive Statistics of Returns

The “Fat-tailed” characteristic of returns has been verified in extensive empirical
studies [24–26]. It is an important criterion for the reasonableness of price dynamics in the
stock model research. Here, the definition of price return is rt = lnPt − lnPt−1 [27]. The
probability density distributions of three simulated and real market returns are shown
in Figure 2a. Simulated and real return distributions are almost identical. Compared to
the Gaussian distribution, they both exhibit distinct “fat-tailed” characteristics. Table 1
shows the statistics: mean, standard deviation, maximum, minimum, skew, kurtosis, the
results of Kolmogorov–Smirnov test (K-S test) and power-law fit, where the kurtosis of
all returns is larger than three that is the kurtosis of the Gaussian distribution [28]. In
the K-S test, all p-values are very small, and all the H-values are 1, so we reject the null
hypothesis that the distribution follows the Gaussian distribution at a 5% significance level.
Figure 2b shows that the cumulative probability distributions of simulated and real market
returns follow power-law distribution P(|rt| > x) ∼ x−α, α is the power-law exponent.
The corresponding power-law exponent values in Table 1 approximately equal to 3, it
obeys the “Inverse cubic law” [29].

Figure 2. (a) The probability density distributions of simulated and empirical returns (semi-log); (b)
The cumulative distributions of simulated and empirical returns (log-log).

https://finance.yahoo.com
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Table 1. Descriptive statistics, power-law fit, and K-S test of returns.

Data Mean Std Max Min Skew Kurtosis
K-S Test

α
p-Value H

x1 0.00004 0.0172 0.1294 −0.1240 0.2987 6.6543 8.1208 × 10−9 1 3.5784
x2 −0.00002 0.0217 0.1601 −0.2125 −0.3848 9.3611 1.8554 × 10−10 1 4.0968
x3 0.00005 0.0182 0.1520 −0.1367 −0.0234 8.3799 4.2418 × 10−10 1 3.8109

S&P500 0.00004 0.0111 0.0934 −0.1066 −0.9710 15.2922 4.0739 × 10−18 1 3.4624
SSE 0.00002 0.0136 0.0060 −0.0887 −0.8969 6.1958 1.6704 × 10−10 1 3.5277

SZSE 0.00001 0.0164 0.0625 −0.0895 −0.7368 3.7987 5.8053 × 10−7 1 3.4777

3.2. Nonlinear Statistical Analysis of Returns

Some studies have investigated the nonlinear properties of financial markets [30–32].
Hsieh [30] discussed some of the methodological issues in detecting chaotic and nonlinear
behavior. Alves et al. [31] focused on the Dow Jones Index to determine the chaotic
dynamics. Zhu et al. [32] revealed the long-term memory of financial time series. Here, we
compare the nonlinear behavior of the simulated return series with the real market series.

3.2.1. Correlation Dimension Analysis

The correlation dimension method measures the complexity of dynamical systems
that distinguishes deterministic systems (including low-dimensional chaos) and stochastic
systems [33]. According to the method of Grassberger et al. [34], the correlation dimension
can be calculated when the appropriate embedding dimension m and time lag τ are selected
for the phase space reconstruction. For an m-dimensional phase space, the correlation
integral C(r) is calculated by

C(r) = lim
N→∞

2
N(N − 1)

N

∑
i,j=1,i 6=j

Θ
(
r−

∣∣Xi − Xj
∣∣) (3)

where Θ is the step function. The appropriate choice of r enables the correlation dimension
of the system D to describe as

D = lim
r→0

log2C(r)
log2r

(4)

A common method is to fit the log2C(r) and log2r using least squares, and the slope
is the correlation dimension D. For random sequences, D increases linearly with the
embedding dimension m with no saturation. While for deterministic chaotic sequences,
D increases with m to a certain position to reach saturation, and the saturation m is the
correlation dimension D of the time series attractor. Figure 3 shows the correlation integral
log2C(r) and log2r in different embedding dimensions m. Figure 4 shows the correlation
dimension. It is observed that all correlation dimensions increase with m and reach
saturation at a certain position. It can be seen that all the returns have deterministic
noise, which means the systems are chaotic. The simulated data from the proposed model
coincide with the real market data.
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Figure 3. Correlation integral results of return series from SSE (a), the model (b).

Figure 4. Correlation dimension of returns from SSE and five simulated data.

3.2.2. Lyapunov Exponent Analysis, Sample Entropy Analysis, and Hurst Exponent

We further compare the nonlinear behavior of simulated and empirical rates of return
in this section. The maximal Lyapunov exponent (MLE) determines the predictability of
a dynamical system. A positive MLE is usually taken as an indication that the system is
chaotic. Consequently, any system with MLE > 0 is considered to be chaotic. We calculate
the MLE of each stock price series using the algorithm of Rosenstein et al. [35]. In Table 2,
the simulated and real returns have similar positive MLE, and indicate they are not totally
stochastic. They have a similar chaotic property to some extent.

Table 2. The maximum Lyapunov exponent (m = 10), Sample Entropy (m = 2) and Hurst exponent of
returns from the model and empirical market.

Data MLE Sample Entropy Hurst Exponent

Data1 0.0778 1.7497 0.6281
Data2 0.0762 1.6832 0.6364
Data3 0.0773 1.7033 0.6478
Data4 0.0757 1.7401 0.6152
Data5 0.0575 1.4901 0.5840
SSE 0.0628 1.7889 0.5238

SZSE 0.0842 1.8750 0.5176
S&P500 0.0639 1.4902 0.5022

Hurst exponent is used as a measure of the “long memory” of a time series, which
measures how the range of fluctuations in a time series varies over time. H ranges between 0
and 1 (excluding 0 and 1). Where H = 0.5, the time series indicates a completely uncorrelated
series. When H > 0.5, the time series has long-term memory, and when H < 0.5, the time
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series has inverse persistence, it exhibits stronger fluctuations than totally random. We
calculate the Hurst exponent by the rescaled range analysis [36]. In Table 2, the Hurst
exponent is slightly larger than 0.5, which means that the simulated and real returns have
similar long-term memory.

Sample entropy is a measure of the complexity of time series. The smaller the sample
entropy, the higher the sequence self-similarity; the larger sample entropy, the more
complex the sample sequence. We calculate the sample entropy method following Richman
et al. [37]. In Table 2, the simulated and real returns have similar sample entropy values
that indicate their similar complexity.

4. Correlation Analysis of Stocks

Portfolio theory is a framework for assembling a portfolio of assets such that the
expected return is maximized and the level of risk is minimized. Investors can reduce risk
by holding a portfolio of stocks that are not perfectly positively correlated. Diversification
can help to construct optimal investment portfolios. Charu et al. [38] use mutual infor-
mation for measuring stock correlations and construct the stock network. Sun et al. [39]
applied DCCA coefficients to construct the correlation matrix of assets. Thus, the corre-
lation between stocks is an important criterion to weigh the correlation of stock market
risk level and portfolio rationality. Studies on the properties of stock correlation show
that the stronger correlations between stocks are, the higher risk in the corresponding
asset portfolio [40]. Usually, stocks belonging to the same industry are more correlated
because they are influenced by the same external information, including natural climate,
macro policies, raw materials, and other factors [41]. The stocks in an industry have strong
positive correlations and risky portfolios, so sound investments usually cover different
industries. In our model, stock rises or falls are affected by external information; thus, the
model can be considered to study the correlation between stocks.

This section investigates the correlation of stock returns within per industry in China
using the detrended cross-correlation analysis (DCCA) [42,43] and calculates their dis-
tributions. The DCCA coefficient measures the correlation level between non-stationary
series such as financial series. ρ is the DCCA coefficient, −1 ≤ ρ ≤ 1. ρ = 1 indicates
that two time series are perfectly correlated; ρ = −1 indicates that the two time series
are perfectly anti-correlated; ρ = 0 indicates that the two time series are uncorrelated
processes. There are 28 industries in the Shenwan Industry Classification Standard. We
selected 16 industries from 1 January 2016 to 10 December 2020 (T ≈ 1200), which contain
a sufficient number of stocks (the number of stocks N > 30). We then simulated stock
data in an industry: As the initial stock price is the same, to avoid the sensitivity to initial
conditions, we selected the data from 6000 to 7500 steps in the simulation (T = 1500), then
we obtained 100 stocks under the same historical information series.

Figure 5 shows the distribution of the correlation of stock returns within an industry.
Figure 5a–c are three empirical data examples, and Figure 5d–f are three simulated ones
that are generated in different historical information series. It can be seen in Figure 5 that ρ
distributions within each of the 16 industries show a regular single-peaked distribution.
The most probable correlation coefficients ρm are around 0.3, which indicates that the model
is consistent with the real market, and most stocks have weak positive correlations within
an industry. Figure 6 shows the most probable correlation coefficients ρm within the 16
industries and the three simulated data. The three simulated data peaks are 0.34, 0.33, and
0.32; all are lying within the peak range from 0.21 to 0.43 in the real market. Moreover, since
each set of simulated data is generated in given the same historical information series, there
is probable that the stock market evolution will recur when there is similar information
series. In our model, the correlation of the simulated stock with the same historical
information can be analogized statistically to the correlation of the stocks within China’s
industry. It is a supplement method of stock correlation research that helps investors obtain
a better portfolio strategy.
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Figure 5. The distribution of ρ from Chemicals (a), Real Estate (b), Electronics (c), and three simulated data (d–f).

Figure 6. The ρm of stocks in 16 industries and three simulated data.

5. Conclusions

“Greatest truths are the simplest” is an objective law. The principles also apply to
the stock market. With the development of the stock market, the spread of information
is faster. It is easier to get information, the literacy level of the investors has improved.
They are closer to each other; their relationships are more complicated than ever, society’s
wealth has increased, etc. The empirical studies show that no matter how the stock market
environment changes, the universal characteristics (the crashes, the skewed distributions
with specific kurtosis values, the fat tails, etc.) remain stable. It means that the “Greatest
truths in stock market remain stable.” In this paper, we aim to find the “Greatest truths in
the stock market.”

We analyze three typical models (the percolation model, Ising model, and network
topology financial model) and their extensions that are used for stock market research. We
find that these models can represent the universal characteristics successfully. It means
that these models should contain the “Greatest truths in the stock market.” We find that
“they generate a stock trading in the form of probability.”

The stock market environment is variable daily and is influenced by a series of stochas-
tic events (supply and demand, macroeconomic, political factors, corporate finances and
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performance, market sentiment, etc.). We coarse-grain all the stochastic events by informa-
tion just a single influence value. The information can influence investors’ performance.
The stock price is the result of all investors’ performance. We model the progress in
probability and find that it can represent the universal characteristics.

Our model is based on the idea of “Greatest truths in the stock market.” Our results
suggest that the investors’ individual characteristic is not the critical factor; the stock
market’s micro-specialties are not the greatest truths. In the stock market, the critical
factor is information, and the stock price is the emergence of collective performance of
all investors. Besides, the model can generate different stock price series in the same
historical information, analogous to the stocks in the same industry. Similar single-peaked
distribution proving that the model can be effectively used in stock correlation research
and history recur rules. It opens a new way of selecting rational portfolios, complementing
current industry correlation research methods, and providing theoretical support. The
paper provides a helpful framework for understanding stock price evolution through the
emergence of collective performance. We find the possible critical factor and the essence of
the financial market at a macro level.
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