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Abstract: Carotenoids have antioxidant properties, and the accumulation of advanced glycation end
products (AGEs) is associated with reactive oxygen species production; they have attracted attention
as factors predictive of the onset and progression in glaucoma. Fingertip measurement is applicable
for carotenoids and AGEs due to its noninvasiveness and simplicity. The study included 663 eyes of
663 Japanese subjects (357 males, 306 females). The mean age was 69.9 years with a standard deviation
of 11.0. The study population comprised participants with primary open-angle glaucoma (PG)
(n = 358), exfoliation glaucoma (EG) (n = 168), and controls (n = 137). Multivariate models suggested
that lower skin carotenoid (SC) levels were associated with male gender (standard β = −0.14), AGE
scores (−0.24), and a history of intraocular surgery (−0.22). Higher SC levels were associated with
higher vegetable intake scores (0.21 for score 3) and diabetes (0.10). However, no association was
seen between SCs and glaucoma type. AGEs levels were negatively associated with carotenoid
scores (−0.25), PG (−0.15), and smoking habits (−0.26) and positively correlated with EG (0.14).
SCs and AGEs were negatively correlated in the single regression analysis (r = −0.20, p < 0.0001). In
conclusion, higher levels of AGEs may be candidates for systemic biomarkers of glaucoma associated
with the exfoliation syndrome. SC levels can reflect self-reported daily vegetable intake.

Keywords: skin carotenoid; fingertip sensor; Veggie Meter; advanced glycation end products (AGEs);
AGE sensor; reactive oxygen species; oxidative stress; antioxidants; primary open-angle glaucoma;
exfoliation glaucoma

1. Introduction

Glaucoma is a group of ophthalmic neurodegenerative diseases, and its progression
is irreversible [1,2]. More than 70 million people in the world have glaucoma, making it
the leading cause of low vision and blindness [3,4]. Elevated intraocular pressure (IOP)
is a major risk factor, and lowering the IOP through medication or surgery is the main
therapeutic option. Numerous risk factors, such as genetics, inflammation, ocular blood
flow, and oxidative stress have been proposed by diverse nonclinical and clinical studies;
however, the only reliable parameter used in clinical practice is IOP [5,6]. Elevated IOP
levels are associated with retinal ganglion cell (RGC) death and inhibit blood flow, leading
to oxidative stress [7–9]. Oxidative stress increases with the overproduction of reactive
oxygen species (ROS) and dysfunction of the antioxidant system. Dysfunction of the
mitochondria in glaucoma enhances ROS production and causes inflammatory injury
of the RGCs [10,11]. Antioxidants suppress inflammation caused by ROS and improve
RGCs in experimental glaucoma [12]. Neurodegeneration caused by ROS is considered a
modifiable factor of glaucoma onset and progression [13,14]. ROS is mainly generated by
the metabolism of the mitochondria and neutralized by antioxidants [15]. We previously
reported that lower levels of serum biologic antioxidant potential were correlated with
higher levels of IOP and with greater visual field loss in primary open-angle glaucoma
(PG) [16–18].
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Carotenoids, such as lutein and zeaxanthin, exist in the retina, especially in the fovea,
and they are antioxidants [19–22]. These carotenoids scavenge free radicals to reduce oxida-
tive stress and absorb visible light to inhibit the generation of light-induced ROS. Because
humans cannot produce carotenoids in the body, they must be ingested [23]. The preva-
lence of glaucoma was lower in groups with high vegetable/fruit intake in epidemiologic
studies [24,25]. Several clinical trials have been conducted to identify the neuroprotec-
tive benefits of carotenoids in glaucoma [26]. Macular pigment optical density (MPOD),
which is the density of carotenoids, is lower in patients with glaucoma [27], and lutein
supplementation increased carotenoid levels in the macular pigment [28–31]. Studies of
dietary carotenoid supplementation in randomized controlled trials of glaucoma have been
conducted; however, no significant effects were observed [32–34]. Even though carotenoids
are supposed to play an important role in glaucoma, accurate monitoring of carotenoids
is not yet possible. Percutaneous fingertip measurements may be suitable for monitoring
carotenoids multiple times. These methods are noninvasive and convenient because they
do not require blood sampling or difficult measurement procedures. The subjects place
their fingers on the measurement device for only about 10 s for the measurement. The
skin carotenoid (SC) levels obtained using the pressure-mediated reflection spectroscopy
(RS) method were correlated with serum carotenoid levels measured by high-performance
liquid chromatography (HPLC) [35]. The instrument can measure in the 350–850 nm range,
which includes the absorption wavelengths of carotenoids around 480 nm. The association
between skin melanin content and carotenoids is weakly correlated, indicating that SC
levels are not affected by melanin absorption [35,36].

AGEs are generated by nonenzymatic glycation of proteins, nucleic acids, and lipids
(Maillard reaction), followed by rearrangements and oxidative steps [37,38]. AGEs accu-
mulate in ocular tissue and enhance ROS generation via the receptor for AGEs (RAGE). In
the glaucomatous retina and optic nerve, the accumulation of AGEs is increased, and the
expression of RAGE is upregulated. Upregulation of RAGE might cause early cell death of
the RCGs [39]. AGEs levels were also measured percutaneously by the previously reported
procedure using fingertip-measured skin autofluorescence (sAF) [40]. Among the AGEs,
Nε-(carboxymethyl)-lysine (CML) was considered to be strongly involved in the pathogenic
role, but it was difficult to detect directly because of the nonfluorescent feature of CML. sAF
was correlated not only with fluorescent AGEs (Nδ-(5-hydro-5-methyl-4-imidazolone-2-
yl)-ornithine, pentosidine, and collagen-linked fluorescence) but also with non-fluorescent
AGEs (CML) [41,42]. This suggested that fluorescent and nonfluorescent AGEs had similar
distributions, and that sAF can be used as a marker of AGE accumulation [41,42].

As part of our ongoing research program directed toward the analysis of the rela-
tionship between ophthalmologic disorders and stress markers measured by fingertip
measurements [16–18], we investigated the clinical factors including SC and AGEs levels
with glaucoma types. We previously reported AGEs levels in PG and EG [40]; however, the
relationship between SC levels and glaucoma has not been reported. Herein, we report a
comparison of the SC and AGEs levels in patients with and without glaucoma.

2. Materials and Methods
2.1. Subjects

The current study adhered to the tenets of the Declaration of Helsinki. The institutional
review board (IRB) of Shimane University Hospital approved the research (No. 20200228-2,
issued on 21 June 2021). The IRB approval did not require that each patient provide written
informed consent for publication; instead, the study protocol was posted at the study
institutions to opt the participants out of the study. Subjects were recruited consecutively
at the Department of Ophthalmology, Shimane University Hospital from November 2019
to January 2021. This study included 663 eyes of 663 Japanese subjects in total (357 males,
306 females). The mean age was 69.9 years with a standard deviation of 11.0. The study
population comprised participants with PG (n = 358), EG (n = 168), and controls (n = 137).
Each participant underwent measurement of the best-corrected visual acuity (BCVA), Gold-
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mann applanation tonometer-measured IOP, and slit-lamp and funduscopic examinations.
The highest IOP recorded, the lens status, and the number of glaucoma medications used
were collected from the previous medical charts. A combination medication was counted as
two drugs. Information about the current smoking status, amount of vegetable intake, and
history of diabetes and systemic hypertension was obtained during the medical interview.
The amount of vegetable intake was estimated by the forced choice scale using a four-point
rating system in which 0 indicated no or rarely, 1 indicated sometimes/small amount,
2 indicated frequent/sufficient amount, and 3 indicated very frequent/large amount. The
diagnosis of PG was determined by the following observations: iridocorneal angles open
in both eyes, distinctive appearance of glaucomatous optic neuropathy including the optic
disc cup enlargement or the focal neuroretinal rim thinning, visual field defects correspond-
ing to the optic disc appearance detected in at least in one eye, and no manifestation of
secondary glaucoma seen bilaterally. The diagnosis of EG was determined on the basis
of an open iridocorneal angle and distinctive pseudo-exfoliation material deposition on
the lens capsule and/or pupillary margin in one or both eyes. When both eyes met the
criteria, the eye with the worse visual field mean deviation (MD) was included in the PG or
EG evaluation. Visual field defects were determined by the automatic visual field tester
(Humphrey Visual Field Analyzer, Carl Zeiss Meditec, Dublin, CA, USA). The control sub-
jects had no remarkable ocular disorders other than age-related cataracts, clinical findings
of glaucoma, and glaucoma medication use. The highest IOP recorded was <21 mmHg
in the control subjects. For controls, the eye with the better BCVA was included in the
study. If the BCVA was the same in both eyes, the right eye was included. For all groups
in this study, eyes with ocular pathologies other than glaucoma and age-related cataract
were excluded. Patients with diabetic retinopathy were carefully excluded because a close
association of AGEs with diabetes or its complications has been reported [43–45].

2.2. Measurement of Carotenoids in the Fingertip Skin

SC levels were measured by pressure-mediated RS (Veggie Meter®, Longevity Link
Corporation, Salt Lake City, UT, USA). The Veggie Meter adopted pressure-mediated RS
using a white light-emitting diode (350–850 nm) [35]. Experienced examiners performed
all measurements. The measured scores were expressed as optical density (OD) units. The
calibration was performed with the manufacturer-provided reference materials before the
start of the morning and afternoon sessions. Participants inserted the left middle finger
into the device’s finger cradle to measure the SC. The SC index was determined as the
average of two consecutive measurements in 657 participants and by three measurements
six 6 participants.

2.3. Measurement of AGEs in the Fingertip Skin

AGEs levels were measured by the AGEs Sensor (Air Water Biodesign Inc., Kobe,
Japan). The sAF values were obtained at the excitation wavelength (365 nm) and emission
wavelength (440 nm). Experienced examiners performed all measurements. The measured
sAF was expressed as the AGE index in arbitrary units (AU). The AGE index was deter-
mined as the average of two consecutive measurements in 641 participants and by three
measurements in 21 participants. For the triple AGE measurements, the mean coefficient of
variation and Cronbach’s α intraclass correlation coefficient were 6.7% ± 7.3% and 0.938,
respectively, in our pilot study.

2.4. Statistical Analysis

The data were expressed as numbers and percentages for categorical parameters,
and as mean ± standard deviation (SD) with 95% confidence interval (CI) ranges for
continuous parameters. The decimal BCVA was converted into the logarithm of the
minimum angle of resolution (logMAR). Respective counting fingers, hand motions, light
perception, and no light perception values were considered as the decimal visual acuities
of 0.0025, 0.002, 0.0016, and 0.0013 [46]. For categorical parameters, group comparisons
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were performed using the G-test followed by Fisher’s exact probability test. For continuous
parameters, group comparisons were performed by one-way analysis of variance (ANOVA)
followed by unpaired t-tests. To correct for multigroup comparisons, using Bonferroni’s
correlation, p-values of 0.0167 and 0.0033 were regarded as the significance levels of 5%
and 1%, respectively, for the Fisher’s exact probability test or unpaired t-tests. Possible
correlations among AGEs, SCs, and other parameters were calculated by the unpaired
t-test for categorical variables, and by linear regression analyses with Pearson’s correlation
coefficient for continuous variables. To correct for vegetable intake score, which has
four categories, p-values of 0.0083 and 0.0016 for the Fisher’s exact probability test were
regarded as the significance levels of 5% and 1%, respectively. We conducted further
multiple regression analyses for possible associations among AGEs and SCs with assorted
parameters to adjust differences among groups. JMP Pro statistical software version 16.1.0
(SAS Institute, Inc., Cary, NC, USA) was used for all statistical calculations in this study.

3. Results

The demographic characteristics of the patients, i.e., age, sex, BCVA, IOP, highest
IOP, number of glaucoma medications, MD, lens status, current smoking status, diabetes,
hypertension, vegetable intake scores, history of intraocular surgery, AGE scores, and
SC scores, are shown in Table 1. Sex, current smoking status, diabetes, vegetable intake
score, and carotenoids did not differ among the three groups, while the other parameters
including AGE scores differed. The SC scores did not differ significantly among the three
groups. However, the AGE scores of EG (0.48 ± 0.10) were significantly higher than those
of the PG (0.44 ± 0.08, p < 0.0001) and control group (0.45 ± 0.08, p = 0.0012). No significant
difference was seen between the PG and control group. The data underlying this article
was described in Table S1.

Table 1. Demographic subject data.

Group Control PG EG p-Value a

137 358 168
Age (years)

n 137 358 168
Mean ± SD 73.4 ± 10.9 66.1 ± 10.7 75.1 ± 8.6 <0.0001 **

95% CI 71.5 to 75.2 65.0 to 67.2 73.7 to 76.3
vs. control, p < 0.0001 b ## vs. control, p = 0.1322 b

vs. PG, p < 0.0001 b ##

Sex
Male, n (%) 64 (47) 203 (57) 90 (54) 0.1364

Female, n (%) 73 (53) 155 (43) 78 (46)

BCVA (logMAR)
n 137 358 168

Mean ± SD 0.16 ± 0.22 0.19 ± 0.42 0.35 ± 0.61 0.0003 **
95% CI 0.13 to 0.20 0.15 to 0.24 0.25 to 0.44

vs. control, p = 0.4680 b vs. control, p = 0.0010 b ##
vs. PG, p = 0.0008 b ##

IOP (mmHg)
n 90 357 168

Mean ± SD 15.0 ± 2.7 15.4 ± 7.0 18.0 ± 9.2 0.0004 **
95% CI 14.4 to 15.6 14.7 to 16.2 16.6 to 19.4

vs. control, p = 0.5504 b vs. control, p = 0.0030 b ##
vs. PG, p = 0.0006 b ##

Highest IOP (mmHg)
92 358 168

Mean ± SD 15.4 ± 3.5 21.4 ± 8.6 27.1 ± 11.4 <0.0001 **
95% CI 14.6 to 16.1 20.5 to 22.3 25.4 to 28.9
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Table 1. Cont.

Group Control PG EG p-Value a

vs. control, p < 0.0001 b ## vs. control, p < 0.0001 b ##
vs. PG, p < 0.0001 b ##

No. of glaucoma
medications

n 137 358 168
Mean ± SD 0 2.5 ± 1.3 2.5 ± 1.4 < 0.0001 **

95% CI 2.4 to 2.7 2.3 to 2.7
vs. control, p < 0.0001 b ## vs. control, p < 0.0001b ##

vs. PG, p = 0.8741b

MD (dB)
n 358 168

Mean ± SD – −15.9 ± 8.4 −18.0 ± 9.8 0.0114 **
95% CI −16.8 to −15.0 −19.4 to –16.7

Pseudophakia
Yes, n (%) 19 (14) 179 (50) 119 (71) <0.0001 **
No, n (%) 118 (86) 179 (50) 49 (29)

vs. control, p < 0.0001 b ## vs. control, p < 0.0001 b ##
vs. PG, p < 0.0001 b ##

Current smoking
Yes, n (%) 15 (11) 41 (12) 18 (11) 0.9586
No, n (%) 122 (89) 315 (88) 150 (89)

Diabetes
Yes, n (%) 21 (21) 53 (23) 26 (20) 0.8220
No, n (%) 78 (79) 177 (77) 102 (80)

Hypertension
Yes, n (%) 48 (49) 133 (55) 85 (65) 0.0449 *
No, n (%) 49 (51) 107 (45) 45 (35)

vs. control, p = 0.3366 b vs. control, p = 0.0205 b

vs. PG, p = 0.0764 b

Vegetable intake score
n 134 349 167

0, n (%) 11 (8) 25 (7) 16 (10) 0.8103
1, n (%) 23 (17) 48 (14) 28 (17)
2, n (%) 72 (54) 191 (55) 89 (53)
3, n (%) 28 (21) 85 (24) 34 (20)

Intraocular surgery
Yes, n (%) 19 (14) 223 (62) 122 (73) <0.0001 **
No, n (%) 118 (86) 135 (38) 46 (27)

vs. control, p < 0.0001 b ## vs. control, p < 0.0001 b ##
vs. PG, p = 0.0235 b

SCs (OD)
n 137 358 168

Mean ± SD 327.8 ± 125.7 336.2 ± 125.6 330.6 ± 114.0 0.7974
95% CI 306.6 to 348.9 323.2 to 349.3 313.2 to 347.9

AGEs (AU)
n 137 358 168

Mean ± SD 0.45 ± 0.08 0.44 ± 0.08 0.48 ± 0.10 <0.0001 **
95% CI 0.43 to 0.46 0.43 to 0.45 0.46 to 0.49

vs. control, p = 0.6818 b vs. control, p = 0.0012 b ##
vs. PG, p < 0.0001 b ##

a p-Values were estimated by ANOVA for continuous variables and by G-test for categorical variables. b Post hoc
tests were performed by t-test or Fisher’s exact probability test. Significance levels at 5% (p < 0.05) *, 1% (p < 0.01)
**, and 1% (p < 0.0033) ##. PG, primary open-angle glaucoma; EG, exfoliation glaucoma.
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According to univariate analysis, no parameters of the continuous variables were
correlated with the SC scores (Table 2). Male (p < 0.0001) and current smoking status
(p < 0.0001) were associated with lower SC levels than their corresponding group (Table 3).

Table 2. Possible associations among SCs and various continuous parameters.

Parameters r Lower 95% CI Upper 95% CI p-Value

Age (years) 0.03 −0.05 0.10 0.4966
BCVA (logMAR) −0.06 −0.13 0.02 0.1359

IOP (mmHg) 0.03 −0.05 0.11 0.4243
Highest IOP (mmHg) −0.02 −0.10 0.06 0.6725

No. of glaucoma
medications 0.06 −0.02 0.14 0.1200

Pearson’s correlation coefficient (r).

Table 3. Possible association among SCs and various categorical parameters.

Parameters Mean ± SD (95% CI) Mean ± SD (95% CI) p-Value

Sex Male, 310 ± 122 (297 to 323) Female, 360 ± 118 (347 to 374) <0.0001 **
Pseudophakia Yes, 332 ± 122 (319 to 346) No, 334 ± 123 (321 to 347) 0.8133
Glaucoma type PG, 336 ± 126 (323 to 349) EG, 331 ± 114 (313 to 348) 0.6210

Intraocular surgery Yes, 340 ± 123 (326 to 353) No, 328 ± 123 (326 to 353) 0.2360
Current smoking Yes, 252 ± 84 (232 to 271) No, 344 ± 123 (333 to 354) <0.0001 **

Diabetes Yes, 342 ± 136 (315 to 369) No, 330 ± 119 (318 to 343) 0.4285
Hypertension Yes, 325 ± 128 (309 to 340) No, 341 ± 118 (325 to 358) 0.1284

The p-values were estimated by t-test between groups. Significance level at 1% (p < 0.01) **.

Age (p < 0.0001) and BCVA (p < 0.0001) were positively correlated with AGE scores in
the univariate regression analysis of continuous variables, whereas the IOP, highest IOP,
and number of glaucoma medications were not correlated with AGE scores (Table 4). PG
(p < 0.0001) and current smoking status (p < 0.0001) were associated with lower AGE levels
than their corresponding group (Table 5).

Table 4. Possible associations among AGEs and various continuous parameters.

Parameters r Lower 95% CI Upper 95% CI p-Value

Age (year) 0.17 0.10 0.24 <0.0001 **
BCVA (logMAR) 0.15 0.08 0.23 <0.0001 **

IOP (mmHg) 0.03 −0.05 0.10 0.5333
Highest IOP (mmHg) 0.00 −0.08 0.08 0.9929

No. of glaucoma
medications 0.01 −0.07 0.08 0.8753

Pearson’s correlation coefficient (r). Significance level at 1% (p < 0.01) **.

Table 5. Possible association among AGEs and various categorical parameters.

Parameters Mean ± SD (95% CI) Mean ± SD (95% CI) p-Value

Sex Male, 0.46 ± 0.09 (0.45 to 0.47) Female, 0.45 ± 0.09 (0.44 to 0.46) 0.1209
Pseudophakia Yes, 0.46 ± 0.09 (0.45 to 0.47) No, 0.45 ± 0.08 (0.44 to 0.46) 0.3183
Glaucoma type PG, 0.44 ± 0.08 (0.43 to 0.45) EG, 0.48 ± 0.10 (0.46 to 0.49) <0.0001 **

Intraocular surgery Yes, 0.46 ± 0.09 (0.45 to 0.47) No, 0.45 ± 0.08 (0.44 to 0.46) 0.2130
Current smoking Yes, 0.40 ± 0.09 (0.39 to 0.42) No, 0.46 ± 0.08 (0.45 to 0.47) <0.0001 **

Diabetes Yes, 0.46 ± 0.09 (0.45 to 0.48) No, 0.45 ± 0.09 (0.44 to 0.46) 0.2648
Hypertension Yes, 0.46 ± 0.09 (0.45 to 0.47) No, 0.45 ± 0.08 (0.44 to 0.46) 0.1284

The p-values were estimated by t-test between groups. Significance level at 1% (p < 0.01) **.

Table 6 shows the association between vegetable intake scores with AGEs scores and
SC scores. SC scores differed depending on vegetable intake scores. The SC score of
vegetable intake score 3 group (393 ± 124) was significantly higher than that of the score
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0 (282 ± 112, p < 0.0001), 1 (267 ± 94, p < 0.0001), and 2 (323 ± 118, p < 0.0001) groups.
The SC score of vegetable intake score 2 group was also significantly higher than that of
the score 0 (p = 0.047) and 1 (p < 0.0001) groups. There was no significant difference in
SC scores between vegetable intake score 1 and 0 groups. The AGE scores did not differ
among the vegetable intake score groups.

Table 6. Possible association between vegetable intake scores with SCs and AGEs.

Vegetable Intake Score

0 1 2 3

n 52 99 352 147

Parameters Mean ± SD
(95% CI)

Mean ± SD
(95% CI)

Mean ± SD
(95% CI)

Mean ± SD
(95% CI) p-Value a

SCs (OD) 282 ± 112
(255 to 317)

267 ± 94
(249 to 286)

335 ± 118
(323 to 347)

393 ± 124
(373 to 413) <0.0001 **

vs. 0, p = 0.1731 b vs. 0, p = 0.0047 b # vs. 0, p < 0.0001 b ##
vs. 1, p < 0.0001 b ## vs. 1, p < 0.0001 b ##

vs. 2, p < 0.0001 b ##

AGEs (AU) 0.47 ± 0.10
(0.45 to 0.50)

0.45 ± 0.09
(0.44 to 0.47)

0.45 ± 0.09
(0.45 to 0.46)

0.44 ± 0.08
(0.43 to 0.46) 0.1956

a p-Values were estimated by G-test. b Post hoc comparisons were performed by Fisher’s exact probability test.
Significance levels at 1% (p < 0.01) **, 5% (p < 0.0083) #, and 1% (p < 0.0016) ##.

The multiple regression model analysis of SCs scores and various parameters is
shown in Table 7. Male (female, standard β = −0.14, p = 0.0045), AGE scores (AU, stan-
dard β = −0.24, p < 0.0001), and a history of intraocular surgery (no, standard β = −0.22,
p = 0.0359) were negatively correlated with lower SC scores, while diabetes (no, standard
β = 0.10, p = 0.0376) was positively correlated with higher SC scores (Table 7). A vegetable
intake score of 3 was correlated with higher SC scores (0, standard β = 0.21, p < 0.0001);
however, the vegetable intake score 1 was correlated with lower SC scores (0, standard
β = −0.16, p = 0.0014).

Table 7. Possible associations among SCs and various parameters analyzed by multiple
regression analysis.

Parameters Estimate Lower 95% CI Upper 95% CI p Value Standard β

Age (year) 0.64 −0.62 1.91 0.3200 0.06
Male (female) −16.98 −28.65 −5.30 0.0045 ** −0.14

BCVA (logMAR) −7.91 −33.16 17.33 0.5380 −0.03
IOP (mmHg) −0.56 −2.63 1.52 0.5984 −0.04

Highest IOP (mmHg) 0.80 −1.12 2.72 0.4121 0.06
No. of glaucoma medications 6.70 −2.96 16.38 0.1733 0.09

AGEs (AU) −346.64 −484.02 −209.26 <0.0001 ** −0.24
Phakia (pseudophakia) −17.92 −43.48 7.63 0.1686 −0.14

Intraocular surgery, yes (no) −27.17 −52.54 −1.79 0.0359 * −0.22
PG (control) −4.08 −23.08 14.93 0.6734 −0.02
EG (control) 9.98 −11.09 31.05 0.3524 0.05

Current smoking, yes (no) −41.72 −61.15 −22.30 <0.0001 ** −0.21
Diabetes, yes (no) 15.79 0.91 30.67 0.0376 * 0.10

Hypertension, yes (no) −7.97 −19.73 3.79 0.1837 −0.06
Vegetable intake score 1 (0) −41.04 −66.06 −16.03 0.0014 ** −0.16
Vegetable intake score 2 (0) 10.60 −7.17 28.36 0.2415 0.05
Vegetable intake score 3 (0) 48.79 26.75 70.83 <0.0001 ** 0.21

p-Values were estimated by a multiple regression model. Significance levels at 5% (p < 0.05) * and 1% (p < 0.01) **.

The multiple regression model analysis of the AGE scores and various parameters is
shown in Table 8. SC scores (OD, standard β = −0.25, p < 0.0001), PG (control, standard
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β = −0.15, p = 0.0112), and smoking status (no, standard β = −0.26, p < 0.0001) were
negatively correlated with the AGE scores level, while EG (control, standard β = 0.14,
p = 0.0173) was positively correlated with the AGE scores level.

Table 8. Possible associations among AGEs and various parameters analyzed by multiple
regression analysis.

Parameters Estimate Lower 95% CI Upper 95% CI p-Value Standard β

Age (year) 0.001 −0.00009 0.002 0.0784 0.10
Male (female) 0.078 −0.0005 0.016 0.0661 0.09

BCVA (logMAR) 0.003 −0.015 0.021 0.7230 0.02
IOP (mmHg) −0.002 −0.002 0.013 0.8295 −0.02

Highest IOP (mmHg) −0.003 −0.002 0.001 0.6913 −0.03
No. of glaucoma medications 0.057 −0.001 0.013 0.1040 0.10

Phakia (pseudophakia) 0.019 0.0008 0.037 0.2203 0.22
Intraocular surgery, yes (no) 0.014 −0.004 0.032 0.1315 0.16

SCs (OD) −0.0002 −0.0002 −0.001 <0.0001 ** −0.25
PG (control) −0.018 −0.031 −0.004 0.0112 * −0.15
EG (control) 0.018 0.003 0.033 0.0173 * 0.14

Current smoking, yes (no) −0.036 −0.050 −0.022 <0.0001 ** −0.26
Diabetes, yes (no) 0.008 −0.002 0.019 0.1237 0.08

Hypertension, yes (no) 0.004 −0.005 0.012 0.4099 0.04
Vegetable intake score 1 (0) −0.006 −0.024 0.012 0.5120 −0.03
Vegetable intake score 2 (0) −0.008 −0.021 0.005 0.2181 −0.06
Vegetable intake score 3 (0) −0.005 −0.021 0.012 0.5814 −0.03

p-Values were estimated by a multiple regression model. Significance levels at 5% (p < 0.05) * and 1% (p < 0.01) **.

The scatterplot in Figure 1 shows the correlation between AGE scores and SC scores.
According to regression analysis, they were significantly correlated with each other. The
correlation coefficient (r) was −0.20, and the p-value was less than 0.0001.
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4. Discussion

To the best of our knowledge, this study is the first to simultaneously estimate the
AGE and SC levels using fingertip sensors in patients with glaucoma. This study found
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that low SC levels were associated with male gender, history of intraocular surgery, current
smoking status, diabetes, low vegetable intake score, and high levels of AGEs by multiple
regression analysis; however, no significant association with glaucoma type was detected.
On the other hand, AGEs levels were higher in EG than PG and controls. In addition, a
negative association was found between SC and AGEs levels.

SC levels measured by the Veggie Meter® were strongly correlated with serum
carotenoid levels detected by HPLC [35]. The meter, using pressure-mediated RS, de-
tects skin chromophores between 400 and 750 nm. Most carotenoids, such as α- and
β-carotenes, β-cryptoxanthin, lycopene, lutein, and zeaxanthin, have a maximal absorption
wavelength of around 480 nm; therefore, the carotenoid score reflects the bulk of these
carotenoid molecules. Intraocular levels of lutein, (3R,3′R)-zeaxanthin, and meso-(3R,3′S)-
zeaxanthin, the only carotenoids present in macular pigment [22], and their antioxidant
activity are difficult to estimate directly. Although the carotenoid levels reflect previous
intake of vegetables, this lifestyle factor is also difficult to determine. Given that SC levels
were mainly associated with vegetable intake for about 1 month [47], SC can be a good
endpoint to assess the roles of carotenoids in various diseases in clinical situations. In this
study, the role of SCs in the differentiation of glaucoma types or the suitability of SCs in
glaucoma management was not determined. Ophthalmic neurodegeneration in glaucoma
occurs over several decades [1,4]; therefore, the risk factors for disease onset and progres-
sion should be affected by time course. Fluctuation in each patient’s vegetable intake over a
long period of years would be one explanation for the absence of a correlation between SC
and glaucoma. Because of the bulked estimation of various carotenoids, the roles of specific
carotenoid molecules might be masked in our methodology. Several factors were correlated
with SCs by multiple regression analysis (Table 7). The results for smoking status [48] and
gender [23] were consistent with previous reports, suggesting the proper estimation of
carotenoid levels by this study. Several epidemiologic studies reported that the group with
higher fruit/vegetable intake had a lower prevalence of glaucoma [24]. Administration of
carotenoid-containing supplements to healthy subjects increased carotenoid levels in serum
and MPOD [29,31,49]. Serum levels of carotenoids have not been evaluated in previous epi-
demiologic and carotenoid administration studies in glaucoma, although MPOD has been
measured [26]. The literature did not contain any relevant previous studies that assessed
the association between SC levels and the type of glaucoma (PG, EG). Fingertip-measured
carotenoid levels would be beneficial for use in future studies due to its compatibility.

Significant differences in AGEs were observed by glaucoma type, with higher AGEs in
EG and lower AGEs in PG (Table 8). The result of AGEs in EG was consistent with our pre-
vious report [40]. Exfoliation products are produced by the aggregation of microfibrils [50],
and the effect of AGEs via RAGE may enhance the production. Tezel et al. reported that
AGE deposition and RAGE upregulation were observed in the retina and optic nerve head
in glaucoma. The RAGE upregulation in RGCs and glia might be involved in early optic
nerve degeneration [39]. Since the production of AGEs enhanced by ROS was irreversible
and this accumulation proceeded over years, short-term fluctuations were small; therefore,
AGEs measured by fingertip would reflect AGEs in the eye [37]. The reason why AGEs were
lower in PG was unclear but suggested that the background factors of the disease differed
from those of EG. SCs and AGEs were negatively correlated with each other (Figure 1).
Dietary intake of carotenoids would be involved in modifying AGE accumulation in the
body. The formation process of AGEs includes oxidative reactions [38]; therefore, the
antioxidant effect of carotenoids suppressed these oxidation steps to reduce the production
of AGEs accordingly [13]. This was supported by a report that administration of chestnut
(Tarpa bispinosa Roxb.) extract and lutein decreased the AGEs levels [51].

The current study had several limitations. The subject demographic data (Table 1)
differed significantly in age, BCVA, IOP, highest IOP, number of glaucoma medications,
MD, phakia status, hypertension, and history of intraocular surgery. These factors might
have affected the results, although we attempted to minimize the effect using multivariate
analyses (Tables 7 and 8). Current smoking habits, diabetes, hypertension, and vegetable
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intake scores were collected by interviews, which might lower the power of detection.
Although the vegetable intake score was not obtained using a standard questionnaire [52],
our method would be beneficial because it was correlated with SC levels. Since the Veg-
gie Meter® detects carotenoids as mixtures, it might not be able to extract the specific
carotenoids associated with glaucoma pathotypes. Long-term measurements and more
accurate methods are desirable to elucidate the relationship between carotenoid levels
measured by fingertip and glaucoma. Given its easy-to-measure nature, estimation of
both SCs and AGEs by fingertip can be applicable for exploring the biomarkers of various
pathologies other than eye diseases.

5. Conclusions

In conclusion, this study did not detect an association between SC levels and glaucoma
types, although SC levels were associated with vegetable intake scores. Furthermore,
higher levels of AGEs may be useful candidates as systemic biomarkers of glaucoma
associated with exfoliation syndrome; AGEs might be useful to distinguish two types of
open-angle glaucoma.
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