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An estimated 400 million people in the world are infected with any of the four types

of dengue virus (DENV) annually. The only licensed dengue vaccine cannot effectively

prevent infection with all of the four DENVs, especially in those immunologically naïve at

baseline. In this study, we explored a mosaic vaccine approach, which utilizes an artificial

recombinant sequence for each serotype to achieve maximum coverage of variant

epitopes in the four DENVs. We determined the immunogenicity and cross-reactivity of

DNA plasmids encoding individual mosaic sequences or the natural sequences in mice.

We show that the mosaic vaccines, particularly those targeting DENV serotype 1 and

2, improved vaccine immunogenicity by increasing the percentage of antigen-specific

IFNγ- or TNFα-secreting CD4 and CD8T cells, and titers of neutralizing antibodies.

The mosaic vaccine diversified and broadened anti-dengue T cell responses and

cross-reactive neutralizing antibodies against all four serotypes. The mosaic vaccines

also induced higher level of antigen-specific B cell responses. These results suggest that

mosaic vaccines comprising of DENV serotype 1 and 2 variant epitopes could stimulate

strong and broad immune responses against all four serotypes.

Keywords: dengue viruses, mosaic vaccine, T cell responses, neutralizing antibodies, cross-reactivity

INTRODUCTION

Dengue is a mosquito-borne viral disease caused by dengue viruses (DENV). DENVs are a
single stranded, positive sense RNA virus belonging to the flavivirus genus of the flaviviridae
family (1, 2). There are four antigenically distinct, but closely related types of DENV (3,
4). Based on the viral envelope (Env) protein amino acid sequences, these four serotypes
share 60–80% homology (5, 6). Exposure to any one of the four DENVs induces life-long,
type-specific immunity. However, cross-reactive immunity to the other DENVs is only partial
and short-lived (7–10). Subsequent infections with a different DENV may instead result in
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increased risk of severe dengue, which is characterized by
hypovolemic shock from vascular leak, internal hemorrhage
or organ dysfunction. This increased risk of severe disease
during secondary DENV infection could be contributed, at least
in part, by antibody-dependent enhancement (ADE) (11), by
which cross-reactive non- or sub-neutralizing levels of antibodies
induced from the first infection bind heterotypic DENV to enable
virus entry into target cells via Fc-gamma receptors (FcγR)
(12–14). Other factors, such as viral factors and host genetic
susceptibility also contribute toward dengue pathogenesis (15).
Consequently, a dengue vaccine that can prevent infection with
all four DENVs remain a public health need.

Efforts to develop safe and effective dengue vaccines are
presently at various stages of progress. Six vaccine candidates are
currently in clinical trials, including live-attenuated viruses (16,
17), recombinant proteins (18), DNA (19–21), and inactivated
viruses (22). Additional candidates, such as virus-vectored and
virus like particle (VLP)-based vaccines (23, 24), are under pre-
clinical evaluation. To date, only a live attenuated tetravalent
vaccine, Dengvaxia (CYD-TDV), has been approved in a limited
number of countries. Although Dengvaxia exhibited good
protection against DENV3 (∼80%) and DENV4 (∼90%), the
protection was 50–60% for DENV1 and 35–59% for DENV2
(25–27). These type-specific vaccine efficacies were observed
despite similar type-specific geometric mean virus neutralization
titers from Dengvaxia vaccination (25). Moreover, follow up
studies have since suggested increased risk of hospitalized dengue
among vaccinated children who were seronegative at baseline
compared to the placebo arm. Consequently, the World Health
Organization (WHO) has recommended that this vaccine should
only be used in people who had prior dengue infection. There is
thus an urgent need to develop vaccines that can stimulate strong
protective immunity against all four DENV serotypes.

A potential limitation in the current pipeline of dengue
vaccine candidates is the assumption that immunity generated
by each of the four vaccine strains would protect against all
DENVs despite the genetic heterogeneity within each type of
DENV. Indeed, recent studies raise the possibility that re-
infection with the same type of DENV is possible possibly due
to antigenic variation. To address this possible limitation, we
explored in this study a “Mosaic Vaccine” approach (28, 29).
This approach relies on in silico algorithms to select vaccine
sequences to include the maximal diversity of potential T cell
epitopes from the natural sequences to more closely match
and maximally represent the sequence of natural virus strains
(29). The mosaic strategy has been applied to development
of vaccines against HIV (30, 31), HCV (32), influenza virus
(33), and bovine viral diarrhea virus (34). The mosaic vaccine
augments breadth and depth of the HIV antigen-specific T cell
responses in monkeys (30) and human (35). Here, we designed,
constructed and evaluated four mosaic vaccines using the
precursor membrane (prM) and envelope (Env) gene sequences
from each DENV serotype in a DNA vaccine formulation.
Our results indicate that the mosaic DENV1 and DENV2
DNA vaccine approach improves both the homotypic and
heterotypic cellular and humoral immune responses to all four
DENV serotypes.

MATERIALS AND METHODS

Mosaic Vaccine Design
Three thousand three hundred and forty five sequences
were collected from ViPR database (as of September 2015)
that included all four serotype dengue virus strains with full
length prM and Env sequences. The collected sequences were
submitted to an online mosaic vaccine designer (https://
www.hiv.lanl.gov/content/sequence/MOSAIC/makeVaccine.
html) to generate four mosaic sequences, one for each
DENV serotype. Wild type sequences from four clinical
dengue strains (DENV1/2402DK1, GenBank: EU081230.1;
DENV2/3295DK1, GenBank: EU081177.1; DENV3/863DK1,
GenBank: EU081190.1; and DENV4/2270DK1, GenBank:
GQ398256.1), which were isolated from dengue cases in
Singapore (36), were selected as controls.

Construction and Production of DNA
Vaccines
Four mosaic DNA sequences and four wild type DNA sequences
were synthesized using humanized codons and cloned into
NTC7482vector (Nature Technology) (37) under the control
of an optimized chimeric promoter SV40-CMV-HTLV-1 and a
bovine growth hormone polyadenylation signal. A consensus
Kozak sequence was added at −6 nucleotides to maximize
protein translation. The DNA plasmids were prepared by
Endotoxin-free Giga Plasmid Kit (Qiagen). All DNA vaccines
were aliquot and stored at−80◦C until use.

Mice and Immunization
Eight-week-old female C57BL/6J mice were used for all
experiments. Mice were bred and housed at the Animal
Facility, National University of Singapore (NUS). To investigate
immunogenicity of individual mosaic candidate of each serotype
(labeled as pMosaic 1–4), 10 mice per group were immunized
with 3 doses of 50 µg plasmid DNA intramuscularly, 2 weeks
apart. In parallel, mice were immunized with plasmid DNA
containing wild type sequences of each serotype (named as
pDengue 1–4). Table 1 lists plasmids and abbreviations. All
animal procedures and care were approved by the NUS Research
Ethics Committee.

Intracellular Cytokine Staining
Cytokine production by splenocytes from immunized mice was
assessed by intracellular cytokine staining as described previously
(38). Briefly, 1 million splenocytes were stimulated with prM and
Env peptide cocktails (one prM peptide [RALIFILL] and two Env
peptides [MTMRCIGI and VSWTMKIL]) that were previously
demonstrated to be dominant epitopes (39) (final concentration
of each peptide was 5µg/ml) for each DENV serotype or mock
control for 6 h at 37◦C in the presence of Brefeldin A (Golgi
plug, BD Biosciences). Cells were surface stained with anti-CD3
(Clone 145-2C11), anti-CD4 (Clone RM4-5), anti-CD8 (Clone
53-6.7) antibodies, and viability dye FSV780 (BD Biosciences)
on ice for 30min. Cells were fixed and permeabilized with
Fix/Perm buffer (BD Biosciences) for 30min at 4◦C in the dark
and then incubated with anti-IL2 (Clone JES6-5H4), anti-TNFα
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TABLE 1 | The annotations of plasmids.

Plasmid Type Serotype Abbreviation

pDengue 1 Wild type Serotype 1 pDen1

pDengue 2 Wild type Serotype 2 pDen2

pDengue 3 Wild type Serotype 3 pDen3

pDengue 4 Wild type Serotype 4 pDen4

pMosaic 1 Mosaic Serotype 1 pMos1

pMosaic 2 Mosaic Serotype 2 pMos2

pMosaic 3 Mosaic Serotype 3 pMos3

pMosaic 4 Mosaic Serotype 4 pMos4

(Clone MP6-XT22) and anti-IFNγ (Clone XMG1.2) monoclonal
antibodies. Samples were acquired on an LSR II flow cytometer
(BD Biosciences) and data analyzed using FlowJo version 9.5.2
(Tree Star).

ELISA Assay
The levels of DENV-specific antibodies were assessed by serotype
specific ELISAs (40). Recombinant EDIII was produced in E. coli
in-house and Env protein of each serotype was purchased from
CTK Biotech. 96-well plates were coated with 1µg/ml protein
and kept at 4◦C overnight. The next day, plates were washed 5
times with PBST (0.05% Tween 20) and blocked with 5% BSA
at 4◦C overnight. After washing, serum samples were added to
plates in dilution from 1:200 to 1:25600 and incubated for 2 h in
37◦C. Secondary HRP-labeled anti-mouse IgG diluted to 1:5000
was added to plates and incubated for 1 h at 37◦C. TMB substrate
was added and the absorbance was read at 450 nm. The cut-off
threshold was set at least two times higher than the result of
negative sera sample. The titer was determined by the last dilution
giving value above the cut-off threshold.

Dengue Plaque Reduction Neutralization
Test (PRNT)
Neutralizing antibody (nAb) titer was determined by PRNT as
previously described (41, 42). Briefly,mouse sera were inactivated
at 56◦C for 30min and serially diluted with RPMI-1640
supplemented with 2% FBS. Diluted sera were mixed with equal
volume of one target virus (30–50 PFU/well): DENV1/2402DK1,
DENV2/3295DK1, DENV3/863DK1, or DENV4/2270DK1, and
incubated at 37◦C for 1 h. The mixtures were transferred onto
a monolayer of BHK21 cells and allowed to absorb for 1 h
at 37◦C. Cells were overlaid with 1% CMC with 2% FBS,
antibiotics, and NaHCO3. After 6 to 7 days of incubation at
37◦C, 5% CO2, the CMC layer was removed and fixed in
7.5% formalin for 1 h. After removal of formalin and wash,
the cell layers were fixed by running tap water and stained
with 1% crystal violet solution for 1 h. The plates were then
washed in water and air dried. The plaques were counted.
The highest serum dilution that resulted in 50% or more
reduction of the average number of plaques as compared to the
virus control wells was considered as the neutralizing endpoint
titer (PRNT50).

B Cell Assays
To identify antigen-specific B cells, Env proteins (CTK Biotech)
were conjugated with Alexa Fluor dye. The recombination
Dengue 1 and 2 Env proteins (∼50 kDa) were cloned
fromDENV1/VN/BID-V949/2007 and DENV2/GWL39 IND-01
strains, respectively. The proteins with deletion of C-terminus
transmembrane domains were expressed in the Drosophila S2
insect cell line and purified up to 95% purity. The recombinant
Env proteins were then conjugated with Alexa Fluor 647 (AF647)
and Alexa Fluor 548 (AF548), respectively, by protein labeling
kits (Thermo Fisher Scientific). One million splenocytes were
incubated with DENV1/Env-AF647 and DENV2/Env-AF548
probes on ice for 30min in the dark. The cells were surface
stained with fluorescence conjugated anti-CD90.2, anti-F4/80
(Clone BM8), anti-CD11c (Clone N418), anti-CD4 (Clone
GK1.5), anti-CD8 (Clone 53-6.7), anti-Ly6G (Clone RB6-8C5),
anti-NK1.1 (Clone PK136), anti-IgM (Clone R6-60.2), anti-IgD
(Clone 11-26c), anti-GL7 (Clone GL7), anti-CD45R (Clone RA3-
6B2), anti-CD38 (Clone 90), and FSV780 (BD Bioscience) on ice
for 30min. For the intracellular staining, cells were fixed and
permeabilized with Phosflow Lyse/Fix buffer (BD Bioscience)
for 10min at 37◦C in the dark and subsequently Phosflow
Perm/Wash buffer for 30min at room temperature. Cells were
incubated with anti-Ig(H+L) and anti-Bcl6 (Clone K112-91) for
30min at 4◦C in the dark. Samples were acquired on an X20
flow cytometer (BD Biosciences) and data analyzed using FlowJo
version 9.5.2 (Tree Star).

Statistical Analysis
Statistical analysis was performed using the Mann-Whitney U-
test with Prism 7.0 software (GraphPad Software Inc.) or R
(version 3.4.3) to compare paired mosaic vaccine and wild-
type vaccine.

RESULTS

Mosaic Sequences Have a Higher Epitope
Coverage Than Wild-Type Sequences
Each of the four DENVs is composed of multiple different
genotypes with significant sequence diversity in the prM and Env
proteins. We thus used the Mosaic Vaccine Designer (28, 29)
to obtain maximum coverage of potential T cell epitopes in
prM and Env across diverse sequences in each serotype. The
mosaic sequences were designed from a set of reference prM and
Env sequences using a genetic algorithm to maximize potential
epitope coverage of highly diverse homologous antigens. We
obtained four mosaic prM and Env sequences, one for each
serotype (Supplement Figure 1). By comparing the mosaic prM
and Env sequences to their respective wild type sequences, the
mosaic sequences had a higher coverage of T cell epitopes than
wild type sequences at most of the positions (Figures 1A,B).
For example, the mosaic sequences showed higher epitope
coverages than the wild-type sequences at the amino acid
positions 40–60, 110–150, 200–250, and 320–350 (Figure 1A).
At the ranked 600 aligned positions, the coverage was up to
80% for the mosaic sequences compared to 60% in the wild type
sequences (Figure 1B).

Frontiers in Immunology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 1429

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hou et al. Dengue Mosaic Vaccines Are Immunogenic

FIGURE 1 | Comparison of amino acid sequences between the mosaic sequences and wild type sequences. (A) Matched 9-mers (epitopes) are shown by alignment

position. The proportion of 9-mers epitopes in the set of collected dengue sequences that are exactly matched by 9-mers in the mosaic and wild-type sequences are

across the alignment. Each x-value represents a column in the test set alignment; the y-values represent the proportions of the total input sequences. The red and

green line indicate the mosaic sequences and wild-type sequences, respectively. (B) Proportion of 9-mers in the test set that are exactly matched in the antigen sets

of mosaic and wild-type across the alignment. Each x-value represents a column in the test set alignment, sorted by y-value (descending); the y-values represent the

proportion of the total input sequences.

The pMos1 and pMos2 Stimulate Stronger
Homotypic and Heterotypic T Cell
Responses
To produce DNA vaccines, we cloned the four mosaic sequences
and their corresponding representative wild type sequences
into DNA vaccine vector NTC4782. The resulting plasmids are
referred to as pMos1 to pMos4 (for mosaic sequences) and
pDen1 to pDen4 (for wild type sequences) (Table 1). In this
vector, the expression of antigen gene is driven by an optimized
chimeric promoter SV40-CMV-HTLV-1, which has been shown
to drive significantly higher expression than the traditional
human cytomegalovirus (CMV) promoter (43, 44). In addition,
the encoded protein is shuttled into the secretory pathway using
an optimized tissue plasminogen activator (TPA) signal peptide
to stimulate humoral immune responses (45, 46).

To compare the immunogenicity of mosaic vaccines and
their corresponding wild type vaccines, we immunized C57BL/6J
mice with pMos or pDen plasmids intramuscularly at 2-weeks
interval for three times (Figure 2A). Mice were bled 2 weeks
after each immunization and sacrificed 2 weeks after the third
immunization. Splenocytes were stimulated ex vivo with four
serotype viruses individually and one peptide pool (containing
one peptide from prM and two peptides from the Env) (39) as
shown in Table 2. Expression of IFNγ, TNFα, and IL2 by CD4
and CD8T cells were quantified by intracellular staining and flow
cytometry (Supplement Figure 2) and mock immunization data
provided in Supplement Figure 3.

The immunization with pMos1 and pMos2 enhanced
homotypic CD4 and CD8T cell responses with serotype specific
or peptide stimulations than immunization with pDen1 and
pDen2, respectively. For example, the mean value of the
percentages of CD4 and CD8T cells expressing IFNγ were
∼2 and ∼3 times higher, respectively, from pMos1- than
pDen1-immunized mice following stimulation with DENV1
virus (Figures 2B,E). The percentages of CD4 (mean value 14.9
vs. 5.6%, p = 0.053) and CD8 (mean value 14.5% vs. 6%,
p = 0.046) T cells expressing TNFα were ∼5 times higher

(Figures 2C,F) for pMos1 compared to pDen1 following DENV1

stimulation. Moreover, pMos2 immunization induced higher
percentages of TNFα-expressing CD4 (Figures 2B,C) and CD8
(Figures 2E,F) T cells than pDen2 immunization (p = 0.007 and
0.012, respectively) when splenocytes were stimulated with the
consensus peptide pool.

The pMos1 and pMos2 immunization also induced stronger
heterotypic CD4 and CD8T cell responses. For example, the
percentages of CD4 and CD8T cells expressing TNFα were
∼4 and ∼3 times higher, respectively, in pMos2 than pDen2
immunized mice following stimulation with DENV1 virus
(Figures 2C,F, p = 0.029 and 0.044, respectively). Interestedly,
pMos1 reduced the anti-DENV2 heterotypic CD4 (Figure 2B)
and CD8 (Figure 2E) T cell responses as indicated by decreased
IFNγ expression. There was no significant enhancement in
the percentages of cytokine expressing CD4 and CD8T cells
following immunization with pMos3 and pMos4 compared with
pDen3 and pDen4, respectively (Supplementary Table 1). The
mosaic vaccine of each serotype did not improve the IL2 secretion
by CD4 and CD8T cells (Supplementary Table 1). However,
the pDen1 and pDen2 vaccines induced significantly higher IL2
expression in CD4 (p = 0.0003 for pDen1 vs. pMos1, p =

0.001 for pDen2 vs. pMos2), and CD8 (p = 0.0005 for pDen1
vs. pMos1, p = 0.01 for pDen2 vs. pMos2) T cells following
stimulation with DENV2 virus as compared with pMos1 and
pMos2 vaccines, respectively.

Together, these results suggest that pMos1 and pMos2
immunization, but not pMos3 and pMos4 immunization,
appears to induce stronger homotypic T cell response and
broaden the heterotypic T cell responses.

Mosaic DNA Vaccines Broaden
Cross-Reactive Neutralizing Antibody
Responses
We determined the induction of neutralizing antibodies (nAb)
2 weeks after each immunization by dengue plaque reduction
neutralization test (PRNT). As expected, the levels of nAb
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FIGURE 2 | Comparison of T cell responses induced by mosaic and non-mosaic vaccines. (A) Schematic diagram of experimental protocol. C57BL/6 mice were

inoculated with three doses of DNA plasmid intramuscularly every 2 weeks. Mice were bled 2 weeks after each immunization, and sacrificed 2 weeks after the third

immunization. Splenocytes were used for assaying cytokine expression by CD4 and CD8T cells following ex vivo stimulation with DENV or peptides. (B–G)

Comparison of the average percentages of CD4 or CD8T cells that express IFNγ, TNFα, and IL2. Vaccines used for immunization are labeled on the x-axis; and the ex

vivo stimulating antigens are indicted by different colors. N = 10 mice per group.

TABLE 2 | The amino acid sequence comparison between peptides used for ICS

assay and the corresponding epitopes in each vaccine.

M60-67 (Kb 8-mer) E2-6 (Kb 8-mer) E451-458 (Kb 8-mer)

Peptides used RALIFILL MTMRCIGI VSWTMKIL

pMos1 KGIIFILL MAMRCVGI VSWIMKIG

pDen1 KGIIFILL MAMRCVGI VSWTMKIG

pMos2 RALIFILL MTMRCIGI VSWTMKIL

pDen2 RVLIFILL MTMRCIGI VSWTMKIL

pMos3 KVVIFILL MTMRCVGI VSWTMKIG

pDen3 KVVIFILL MTMRCVGI VSWVMKIG

pMos4 RVLIFILL MAMRCVGI VSWVMKIG

pDen4 RTVFFVLM YGMRCVGI VSWMVRIL

The amino acids differ from the reference sequences were annotated as bold.

increased with each immunization (Figures 3A–C). Overall,
immunization with pMos DNA vaccines induced higher titers of
nAb than pDen DNA vaccines, especially after the first and the
third immunization. Strikingly, mosaic vaccines pMos2 induced

higher titers of cross-reactive nAb against DENV3 and 4 post
the 1st and against DENV1 after the 3rd immunization. For
example, all four pMos vaccines induced higher titers of anti-
DENV1 nAbs than immunization with corresponding pDen
vaccines after the 3rd dose, although the differences between
pMos1 and pDen1 or between pMos3 and pDen3 were not
statistical significance (Figure 3C). pMos1 and pMos2 vaccines
induced higher homotypic and heterotypic nAb than pDen1 and
pDen2 vaccines, respectively, after the 1st dose. Although some
comparisons did not reach statistical significance, e.g., pMos1
vs. pDen1 with DENV1 stimulation after the 1st dose (p =

0.08), the mean PRNT values were dramatically elevated in the
mice immunized with pMos1 compared with pDen1 immunized
mice (386 vs. 84 with DENV1, 270 vs. 32 with DENV2, 172
vs. 32 with DENV3 and 60 vs. 14 with DENV4 stimulation).
After the 3rd dose, the pMos2 developed nAb cross-reactive
with DENV1, and the pMos1 induced nAb cross-reactive with
DENV4 virus.

We also measured the total IgG Ab titers specific for Env
protein and domain III of Env (EDIII) of all four serotypes.
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FIGURE 3 | Mosaic vaccines induced stronger and more cross-reactive nAb responses. C57BL/6 mice were inoculated with three doses of DNA plasmid

intramuscularly every 2 weeks. Mice were bled 2 weeks after each immunization, and sera were used for assaying antibody responses. (A–C) Neutralizing Ab titers in

the sera after the 1st (A), 2nd (B), and 3rd (C) immunizations were determined by PRNT assay. Four DENV serotypes were used to determine the cross-reactivity of

nAbs. PRNT50 was the Ab dilution that gave 50% reduction of the average number of plaques. (D,E) IgG Ab titers in the sera after the 3rd immunization specific for

Env protein (D) and EDIII (E) as measured by ELISA. The data shown are mean ± SEM (n = 10 per group).

Each serotype vaccine tended to generate stronger homotypic
than heterotypic antibody responses, i.e., both pDen1 and pMos1
induced higher proportion of anti-DENV1 Ab than the other
serotype vaccines (Figure 3D). But all of them induced high
titers of IgG to DENV2 Env. Furthermore, the pMos1 vaccine
induced significantly higher titers of anti-EDIII antibodies than
pDen1 vaccine (Figure 3E). The mean values of anti-EDIII titer
were 21,000 for pMos1 vs. 500 for pDen1. The pMos2 vaccine
also enhanced the anti-EDIII titer compared with pDen2 vaccine
(mean value 26,000 vs. 8,200). In contrast, no difference in
anti-EDIII titer was detected between pMos3 and pDen3 or
between pMos4 and pDen4. These results suggest that the mosaic
vaccines, especially pMos1 and pMos2, induce stronger nAb
responses and broaden the cross-reactivity of nAbs.

The pMos1 and pMos2 Vaccines Stimulate
Cross-Reactive Memory B Cell Responses
and Bcl-6 Expression
We labeled DENV1 and 2 Env proteins with different Alexa

Flour dyes and used them to identify antigen-specific B cell

subsets. B cells were divided into class-switched (IgM−IgD−),
IgM+ and IgG1+ B cells; and the latter were further

divided into germinal center (CD38−GL7+) and memory B

cells (CD38+GL7−) subsets (Figure 4A). The pMos1 plasmid
immunization stimulated a higher percentage of DENV1 Env-

reactive class-switched B cells than pDen1 plasmid immunization
(Figure 4B, top panel). Additionally, pMos1 also induced higher
percentages of DENV2 Env-specific and DENV1+DENV2+
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FIGURE 4 | pMos1 and pMos2 promote antigen-specific cross-reactive B cell responses. C57BL/6 mice were inoculated with three doses of DNA plasmid

intramuscularly every 2 weeks. Mice were sacrificed 2 weeks after the third immunization. Splenocytes were stained with fluorescence conjugated DENV1 and DENV2

Env proteins plus antibodies specific for different B cell surface markers. (A) Representative flow cytometry plots showing gating strategies to identify antigen-specific

(Continued)
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FIGURE 4 | B cells that are class-switched, IgM+ or IgG+. The CD90.2, F4/80, CD11c, CD4, CD8, Ly6G, and NK1.1 antibodies were used for dump gating. The

MBC refer to memory B cells, the GC refer to germinal center, and AP refer to activated precursors. Comparison of percentages of DENV1 Env-reactive (B), DENV2

Env-reactive (C), and cross-reactive (D) B cells that are class-switched (top row), IgM+ (middle row) and IgG1+ (bottom row). (E) Comparison of percentages of the

class-switched, IgM+ and IgG1+ B cells that express Bcl-6 in splenocytes of mice immunized with pDen1, pMos1, pDen2, or pMos2. The data are mean ± SEM (n =

10 per group). The statistical comparison was assessed by Mann-Whitney U test.

Env-specific class-switched (top panel), IgM+ (middle panel)
and IgG1+ (bottom panel) B cells than pDen1 immunization
(Figures 4C,D). The pMos2 plasmid immunization induced
higher percentages of DENV2 Env-reactive B cells than
pDen2 plasmid immunization (Figure 4C), without enhancing
heterotypic B cell responses (DENV1+DENV2+), except class-
switched memory B cells (Figure 4D). These results suggest that
pMos1 induces stronger heterotypic B cells responses, but pMos2
immunization trends to enhance homotypic B cell responses.

We also measured expression of transcriptional factor Bcl-
6 in germinal center B cell subsets, because it is required for
B cell activation, proliferation and differentiation. As expected,
Bcl-6 expression was higher in germinal center of the class-
switched, IgM+ and IgG1+ B cell subsets from pMos1 and pMos2
immunized mice than from pDen1 and pDen2 immunized mice
(Figure 4E). Thus, enhanced Bcl-6 expression on B cell subsets
in the germinal center could have contributed to stronger B cell
responses after pMos1 and pMos2 immunization.

DISCUSSION

Stimulating potent immune responses against DENV1
and DENV2 serotypes has been a challenge in Dengvaxia
development. Although Dengvaxia confers good protection
against DENV3 and DENV4, protection against DENV2 is poor.
In this study, we investigated cellular and humoral immune
responses generated by serotype specific natural and mosaic
DNA vaccines in mice. The pMos1 and pMos2 were significantly
more effective than pDen1 and pDen2, respectively, in inducing
stronger and broader T cell and antibody responses. Higher
percentages of CD4 and CD8T cells expressed IFNγ and
TNFα following both homotypic and heterotypic stimulations.
Similarly, higher titers of homotypic and heterotypic nAbs
were induced. The pMos1 and pMos2 also induced higher
titers of EDIII-reactive Abs. The enhanced Ab responses were
correlated with the presence of class-switched, IgM+ and IgG1+

memory B cells that expressed Bcl-6. These results suggest
that epitope-optimized mosaic sequences can elicit higher and
broader cellular and humoral immune responses in vivo and
therefore provide an approach to enhance immune responses
against DENV1 and DENV2.

We detected high titers of DENV2 Env-reactive Abs in all
immunizations, however, DENV2-specific nAb titers were lowest
(Figures 3C,D). Similarly, pMos2 induced high titers of DENV2
EDIII-reactive Abs, but the titer of DENV2 nAb was low. Our
results are consistent with previous studies showing that the titers
of nAbs are not proportional to total Env-reactive or EDIII-
reactive Ab titers. The poor induction of DENV2 nAb by mosaic
DNA vaccines is also consistent with the poor induction of

nAb by attenuated DENV2 virus in Dengvaxia. It is notable
that mosaic vaccines were designed by maximize the CD8T cell
epitopes, but they still induced nAb responses. This is likely due
to the high sequence identity/homology between the mosaic and
wild type sequences.

However, the mosaic approach did not significantly improve
the immunogenicity of pMos3 and pMos4 candidates. Based on
the T cell response (e.g., TNFα expressed by CD4 and CD8T
cells, Figures 2C,F) and nAb titers (Figure 3), the wild type
pDen3 and pDen4 have the abilities of generating comparable
homotypic immunity as pMos3 and pMos4 did. Therefore, the
improvements on the pDen3 and pDen4 through the mosaic
approach were limited. Even though, we still find the pMos4
enhanced the homo- and heterotypic nAbs titers after the 3rd
immunization (Figure 3C). Moreover, based on the clinical
trial outcomes of licensed Dengvaxia (47) vaccine and vaccines
TV003/005 (48) and TDV (49) that were in clinical trials,
they are able to either provide high efficacy or induce high
nAbs/seroconversion against DENV3 and DENV4. It seems
that induction of sufficient antibody responses to DENV3 and
DENV4 rather than DENV1 and DENV2 is easier. Therefore,
further improving pMos1 and pMos2 could help to overcome
the challenge of inducing strong protection immune responses
to DENV-1 and DENV2 infections.

The mosaic strategy strikes to globally modify antigenic
epitopes. The pMos1 and pMos2 vaccines improve CD4 and
CD8T cell responses (Figure 2) by peptide stimulation compared
to the pDen1 and pDen2 vaccine, respectively. According to the
epitope alignments (Table 2), the mosaic and wild-type vaccines
were highly matching on the corresponding epitopes but slightly
differ from the peptide sequence used in ex vivo ICS assay. For
instance, even though the epitope similarities were high with
only one amino acid variance in E451-458 peptide between the
wild type and mosaic DNA vaccines, but only pMos1 not pDen1
was able to induce higher T cells responses. This observation
would indicate that the elevated T cell responses induced by
mosaic vaccine could be induced by the known epitopes as well
as unknown epitopes. Further studies involving epitope mapping
are required to fully understand the observed benefits of mosaic
DENV vaccines.

Mosaic antigens represent a potential strategy to improve
humoral and cellular immune responses against diverse dengue
serotypes and genotypes. It appears that T cell responses were
improved with mosaic sequences compared to natural sequences.
Given this observation, the DNA vaccine design could be
expanded to include NS3 and NS5 proteins, which are known
to induce efficient T cell responses. The capacity of the vaccine
to induce neutralizing antibodies, particularly to DENV2, needs
to be improved. The improved germinal center and memory
B cell responses for pMos1 and pMos2 compared to pDen1
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and pDen2 are promising and warrant further investigation.
Overall, the mosaic vaccine strategy as a proof-of-concept offers
an opportunity to overcome the hurdle of producing sufficient
anti-DENV1/DENV2 immunity.
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