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Common species shape the world around us, and changes in their common-

ness signify large-scale shifts in ecosystem structure and function. However,

our understanding of long-term ecosystem response to environmental forcing

in the deep past is centred on species richness, neglecting the disproportional

impact of common species. Here, we use common and widespread species of

planktonic foraminifera in deep-sea sediments to track changes in observed

global occupancy (proportion of sampled sites at which a species is present

and observed) through the turbulent climatic history of the last 65 Myr. Our

approach is sensitive to relative changes in global abundance of the species

set and robust to factors that bias richness estimators. Using three indepen-

dent methods for detecting causality, we show that the observed global

occupancy of planktonic foraminifera has been dynamically coupled to past

oceanographic changes captured in deep-ocean temperature reconstructions.

The causal inference does not imply a direct mechanism, but is consistent

with an indirect, time-delayed causal linkage. Given the strong quantitative

evidence that a dynamical coupling exists, we hypothesize that mixotrophy

(symbiont hosting) may be an ecological factor linking the global abundance

of planktonic foraminifera to long-term climate changes via the relative extent

of oligotrophic oceans.
1. Introduction
True species richness can be elusive even in well-studied ecosystems, because

most species are very rare, and relatively few species account for most of the

total abundance [1,2]. For example, only approximately 1.4% of the estimated

tree species account for half of the biomass of the Amazon forest and control

the cycling of water, carbon and nutrients [3]. Similarly, a recent survey of

eukaryotic plankton diversity in the global ocean found that approximately

0.24% of the taxa accounted for half of the total number of rDNA reads [4].

The relative richness of major trophic groups in the plankton is similar across

ocean basins, and codiversification of protistan parasites, mutualistic symbionts

and their hosts suggests an important role for ecological (‘biotic’) interactions in

driving global plankton diversity [4,5]. Oceanographic (‘abiotic’) factors, on the

other hand, such as differences in nutrient levels among ocean basins, are more

clearly reflected in the abundance of major groups [4,5]. For example, the

species richness of diatoms is comparable across nutrient-rich coastal waters

and oligotrophic oceans, but their abundance is strikingly different in high-

and low-nutrient settings [6]. These first-order patterns of richness and

abundance in global eukaryotic plankton suggest that long-term environmental
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forcing of global abundance, such as an increase in the global

abundance of low-nutrient adapted groups in response to an

expansion of oligotrophic conditions, can be independent of

any change in richness.

Major oceanographic regime changes, linked to climatic

and tectonic processes, have occurred on geological time

scales. Geological archives may thus provide insights into

how global environmental changes have impacted ocean

biomes, as preserved in the sedimentary record. Declining

abundance of common species may have dramatic impacts

on ecosystem functioning [7–9], with potential cascading

effects onto biogeochemical cycling and biotic mitigation of

environmental perturbations. However, efforts to link past cli-

matic and oceanographic changes to planktonic biota in deep

time have remained focused on temporal changes in species

richness [10–12], and the importance of common species as

tracers of past ecosystem response has been neglected.

We seek to redress the situation by targeting species that

are globally common and widespread at any given time,

using the Summed Common species Occurrence Rate

(SCOR). SCOR sums the observed occupancy (the proportion

of sampled sites at which a species is present and observed)

across a species set and is driven by the most widespread

species in the set [13]. In general, widespread species are

also abundant [14], and a positive relationship between

global abundance and occupancy is found in the global

ocean plankton [4], including the planktonic foraminifera

(electronic supplementary material, figure S1a). Here, we

define commonness as high global site occupancy, and show

that if the global abundance–occupancy relationship is posi-

tive (albeit noisy), then SCOR is a proxy for relative changes

in global abundance integrated over the total set of species

included. We do not consider local abundances or geographi-

cal ranges of individual species. A species contributes to SCOR

only if and when it is widespread, which accommodates the

geological transience of commonness; in the fossil record,

species and higher taxa generally show a gradual expansion

and contraction of their spatial extent of occurrence, being

rare (restricted) in the early and late stages of their known stra-

tigraphic range [15–17]. Furthermore, species that make up the

bulk of the fossil record, and biostratigraphically useful species

in particular, tend to be common and widespread.

Turning to the rich deep-sea sedimentary record of the

Cenozoic era (0–65 Ma), we apply SCOR to global occur-

rences of planktonic foraminifera, a calcifying unicellular

zooplankton group of central importance to our understand-

ing of Cenozoic climate history. The taxonomy of planktonic

foraminifera is based on test (shell) morphology, and despite

the presence of cryptic diversity, the validity of extant mor-

phological taxa is generally supported by ribosomal

sequence data [18,19]. Global patterns of morphospecies rich-

ness of extant planktonic foraminifera have been linked to

various environmental factors, including sea surface temp-

erature, mixed layer depth, productivity, geography and

ocean currents [20,21]. On Cenozoic time scales, fossil diver-

sity dynamics in planktonic foraminifera have been linked to

a combination of ecological traits and oxygen isotope records

via statistical model selection [10], or correlated to changes in

deep-sea sedimentation [22]. The dynamics of global

commonness, on the other hand, have remained unexplored.

We propose that changes in the commonness of the most

common species may represent a more tractable and meaning-

ful measure of past ecosystem response to environmental
forcing than those in the estimated total number of species.

As a measure of potential physical forcing, we use a recon-

struction of changes in deep-ocean temperature (DOT)

throughout the Cenozoic [23]. We use the DOT record because

it is a robust, globally meaningful signal of long-term changes,

compatible with our integrated, global-scale analysis. Tempera-

ture proxy records for the surface ocean show considerable

spatial heterogeneity [24] and would call for a spatially explicit

analysis, which is not considered here. Geological proxy

records are generally noisy mixtures of signals that represent

multiple processes and are derived from a sedimentary

record that is itself an active component of the Earth system.

Any causal connection detected between proxy records

would necessarily be indirect with respect to the underlying

processes of interest. Nonetheless, the DOT proxy record of

high-latitude and deep-water temperature reflects a set of inter-

linked, climate-related oceanographic variables, including

changes in geographical and vertical thermal structure, con-

sidered to be important physical controls on the long-term

evolution of planktonic foraminifera [10,22,25–27]. Here, we

find evidence of a dynamical coupling between planktonic for-

aminifera SCOR and DOT using three conceptually very

different methods for detecting causality in time series.
2. Material and methods
(a) Data
Occurrences of macro- and microperforate planktonic foramini-

fera were retrieved from the Neptune Sandbox Berlin (NSB)

database [28,29] (on 22 April 2015). SCOR was calculated using
1
3 Myr time bins, in order to maximize the number of temporal

observations for time-series analysis, but our results also hold

on a lower resolution of 1
2 Myr. In addition to a SCOR curve for

572 species in the original NSB taxonomy (updated in 2014 to

match the taxonomic name list of the International Ocean Dis-

covery Program), we calculated an ensemble of 20 SCOR

curves that included from 81 to 100 of the most common species.

To assess the robustness of SCOR to differences in taxonomic

opinion, we established the set of 100 most common species

using a different taxonomic scheme [30] and checked that the

time intervals of commonness for these species in NSB were con-

gruent with published stratigraphic ranges of each species after

this taxonomic re-mapping [30–32] (electronic supplementary

material, figure S2 and table S1).

DOT estimates were obtained from Cramer et al. [23], using

the Td2SL record (based on subtracting New Jersey sea-level esti-

mates from a benthic d18O stack) for the interval 9–65 Ma, and

the scaled d18O record for the interval 0–9 Ma, with their inter-

polation at 0.1 Myr resolution. The SCOR and DOT data are

available in the electronic supplementary material.

(b) Summed common species occurrence rate
We treat the observation of a specific number of individuals as a

Poisson-distributed variable with parameter l in each time bin.

The probability of finding an individual of species i in time bin

j is then pij ¼ 1 2 exp(2lij), and thus lij ¼ 2ln(1 2 pij). In prac-

tice, pij is estimated as yij/nj, where yij is the number of sites in

which species i is observed at time bin j and nj is the number

of sites in that time bin where at least one of the species included

in the analysis is observed. SCOR is the total density of a given

set of mj species in a time bin,

SCORj ¼
Xmj

i¼1

lij, ð2:1Þ
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Figure 1. Performance of SCOR and richness estimators in Poseidon simulations. (a) Simulated species richness and total abundance are decoupled. (b) Sampled
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and we estimate its variance by the delta method [33],

VarðSCORjÞ ¼
Xmj

i¼1

pij

ð1� pijÞnj
: ð2:2Þ

If species i occurs at all sites in time j, then lij is undefined.

As p approaches 1, l grows logarithmically, hence widespread

species dominate SCOR.

(c) Poseidon simulations
Here, we evaluate the sensitivity of SCOR to changes in (i) spatial

sampling completeness and (ii) the shape of the species rank-

abundance distribution (RAD). Our simulation model (Poseidon)

consists of a user-specified number of spatial cells (sites), number

of time steps, total number of species (richness) and total number

of individuals (abundance). In our simulations, we allow true

richness and abundance to vary independently (figure 1a), to

highlight the key point that SCOR is unaffected by changes in
richness. In each time step, we distribute individuals randomly

among species, obeying a lognormal RAD. The RAD shape

parameter (s) can be fixed or time-varying. We distribute

individuals randomly among sites, and we sample only a pro-

portion of the sites. This proportion increases from 0.1 to 0.4

through time (sampling coverage decreases with age), with any

short-term sampling variability superimposed on this trend

(figure 1b). Local preservation variability can be subsumed in

the spatial sampling, because the quantities we focus on here

are based on species occurrence (presence/absence) at sites,

not on local abundance of individuals.

To test our proposition that commonness can be more tract-

able than richness, we compare the performance of SCOR to

richness estimators commonly used in palaeobiology. Poseidon

therefore calculates raw richness (S), range-through richness

(RT; assuming a species existed in all time bins between its

first and last occurrence), Shannon entropy (H), and several

sampling-standardized richness metrics, including classic
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rarefaction (CR), occurrences-squared weighted (O2W) [34] and

two versions of shareholder quorum subsampling [35,36]: SQS

3.3 (R script downloaded from the SQS website on 26 August

2014) and SQS 4.3 (perl script kindly provided by J. Alroy on 3

September 2014). We ran SQS 3.3 on sampled individuals (abun-

dances) and SQS 4.3 on formatted Poseidon species occurrences,

with a quorum level of 0.6 in all runs. Both SQS versions yielded

very similar results when given the same type of data (abun-

dances or occurrences). We used 100 iterations/trials in all

subsampling methods (CR, O2W and SQS). Shannon H from

the SQS 3.3 R script was used to calculate Pielou’s J evenness.

Goodness of fit between true and estimated richness, and

between true abundance and SCOR, was measured by the coef-

ficient of determination (R2) between time series. A link to the

Poseidon R scripts is provided below.

(d) Time-series analysis
If we take seriously the notion that climate-related oceanographic

changes and planktonic ecosystems are interacting components

of the Earth system, then we need to approach the possible

long-term linkage between SCOR and DOT from a dynamical

systems perspective. However, SCOR and DOT are both indirect

proxy records that are not uniquely determined by any single

physical or ecological process, and a dynamical coupling detect-

able in the proxy records would be a result of transitive chains of

unobserved causal intermediates. In addition, the tectonic, cli-

matic, atmospheric and biotic boundary conditions have all

evolved over the Cenozoic. These challenges, combined with

uncertainty in the relative importance and scales of mechanisms,

limit the feasibility of explicit process modelling of a SCOR–DOT

interaction throughout the Cenozoic. Instead, our approach is to

test the hypothesis of a causal relationship using dynamical

information inherent in the observed records, which enables

us to advance beyond static correlations while avoiding

unwarranted mechanistic assumptions.

We used three different time-series analysis methods to test for

a causal relationship between SCOR and DOT: (i) convergent cross

mapping (CCM) [37,38], based on the concept of state space

reconstruction from time-delay embedding [39]; (ii) information

transfer (IT) analysis [40,41], based on the concept of directional

information flow [42]; and (iii) Bayesian inference of causal connec-

tions based on linear stochastic differential equations (SDEs)

[43,44]. To distinguish unidirectional forcing from bidirectional

causality, we calculated CCM for different time lags of the original

time series. If there is a discernible delay between cause and effect,

then CCM is expected to peak for negative time lags in the direc-

tion(s) of true causality (past predicts future). If true causality is

unidirectional but with synchrony (inducing two-way predictabil-

ity), then any CCM skill in the non-causal direction is expected to

peak for positive lags (future predicts past). IT analysis has pre-

viously been applied to geological records [13,41,45]. Here, we

expand on earlier applications by using time lags analogously to

the lagged CCM. If there is a causal delay, then IT is expected to

peak for negative time lags in the direction(s) of true causality

(past! future), and any IT in the non-causal direction is expected

to peak for positive lags. In the analysis of SCOR and DOT, lagged

CCM and IT are both reported as median values and 95% ranges at

each lag calculated by iterative sampling across an ensemble of

SCOR curves, with significance evaluated against a distribution

of surrogate time series. SDE analysis is a model-based approach.

Here, we first determined the most probable stochastic models

for SCOR and DOT separately, including possible hidden (unob-

served) process layers, then we determined the most probable

connections between these two models, distinguishing correlations

from causal connections and inferring the relative strength, direc-

tion and response time of causal connections [43]. A more

detailed description of each time-series analysis method is

provided in the electronic supplementary material.
3. Results
(a) Poseidon numerical experiments
We find that SCOR is robust to variability in both spatial

sampling and RAD shape (figure 1d ), as well as variability

in the abundance–occupancy relationship (electronic sup-

plementary material, figure S1). As expected, raw S decays

rapidly with increasing sampling variability, but is insensi-

tive to changes in RAD shape (s). RT is relatively robust to

both factors, as the species pool and/or sampling is sufficient

to avoid severe edge effects. Shannon H reflects both richness

and evenness, and, with increasing s variability, H becomes

more sensitive to s than to changes in richness. O2W shows

overall poor agreement with true richness. CR and SQS,

being sampling standardization methods, are robust to the

isolated effect of spatial sampling variability on richness, all

else being equal. However, both CR and SQS are highly sen-

sitive to changes in RAD shape. As with Shannon H,

increasing s variability causes CR and SQS to lose track of

richness (figure 1d ) and to respond to changes in s instead

(electronic supplementary material, figure S3). In Poseidon,

s variability is a white noise, entirely random with respect

to both richness and abundance. Hence, the sensitivity of

subsampling methods to RAD shape exists independently

of how one might choose to measure sample evenness.

Estimates of SQS richness in the NSB data confirm the sen-

sitivity to RAD shape found in Poseidon. Indeed, SQS richness

can be reproduced by simply combining the raw richness and

evenness curves, a relationship that holds for different taxa in

NSB and across all Poseidon simulations (electronic sup-

plementary material, figure S4). Changes in RAD shape are

thus a significant confounding factor, at least for the specific

subsampled richness algorithms tested here.

A data source like NSB, in which species occurrences were

originally recorded for biostratigraphic purposes, is well suited

for SCOR, because SCOR is only sensitive to common and

widespread species, and biostratigraphically useful species

are typically common and widespread. Nevertheless, we

have included a Poseidon experiment where the recording of

species (presence/absence) is random with respect to global

commonness (electronic supplementary material, figure S5).

Even in this scenario, which is designed to be particularly

biased against it, SCOR still performs better than richness esti-

mators. This experiment shows that we do not have to capture

every abundant species for our approach to be meaningful.
(b) Planktonic foraminifera summed common species
occurrence rate

Planktonic foraminifera SCOR converges rapidly as species

are added in rank order of decreasing commonness

(figure 2a). The SCOR curve for the 572 original NSB species

is statistically indistinguishable from the SCOR curve of the

approximately 100 most common species, because SCOR is

driven by the most common and widespread species. We

based our final analyses on an ensemble of 20 SCOR

curves, including from 81 to 100 of the most common species,

after taxonomic remapping (electronic supplementary

material, figure S2 and table S1). This SCOR ensemble was

then compared with the Cenozoic DOT reconstruction

(figure 2b) and subjected to a series of analyses designed to

formally detect dynamical causal coupling.
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(c) Causal analyses
Although the net trends are inversely related, fluctuations in

SCOR and DOT do not show consistent negative or positive

covariation throughout the Cenozoic (figure 2b; for first-

differenced data at zero lag, Spearman’s r ¼ 0.11, p ¼ 0.13).

However, CCM skill from foraminifera SCOR to DOT peaks

at a negative lag, indicating that the SCOR signal carries a

response to past changes captured in the DOT record

(‘SCOR xmap DOT’; figure 3a). CCM skill in the opposite

direction peaks at positive lags, but this skill is not significant

relative to the surrogates (figure 3a). This result is consistent

with a unidirectional forcing of SCOR by DOT, where pre-

dictability potentially goes both ways, but the causal

direction peaks at negative lags [38]. IT analysis supports

this causal directionality: predictive information flow is sig-

nificant from past DOT to SCOR, peaking at a negative lag

of two to four time bins (approx. 1 Myr; figure 3b). In the
opposite direction, IT peaks at the corresponding positive

lags, also consistent with unidirectional forcing. Both IT

and CCM indicate a time-delayed coupling, but age model

noise and the indirect nature of proxy records imply that

the absolute magnitude of the lags cannot be given a strict

physical interpretation. We therefore limit our interpretation

to the sign of the peak lag to infer the directionality of the

causal relationship.

Using a series of linear SDEs to model correlation and

causality between the two records, we recover relatively

strong evidence that SCOR responds to changes in DOT,

with a time lag of 0.33–1.1 Myr, in agreement with the

CCM and IT analyses. Linear SDE analyses on SCOR and

DOT individually show that the best descriptions for SCOR

and DOT are a single-layer and a three-layer model, respect-

ively (electronic supplementary material). We allowed for the

possibility of a two-way connection in a statistical sense,
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because both proxies derive from the deep-sea carbonate

record, which is a responsive component of the climate

system and could, in principle, impart a shared signal. Con-

sequently, there are 15 possible connection models,

including the null hypothesis of no relationship (electronic

supplementary material, figure S6). Posterior model probabil-

ities provide substantial evidence for a causal connection

between SCOR and DOT (electronic supplementary

material). In the two most probable models (figure 3c),

although a two-way connection is statistically established,

the influence of DOT on SCOR is overwhelmingly dominant

(electronic supplementary material). The third most likely

model is a simple one-way connection from DOT to SCOR

(figure 3c), consistent with the overall causal inference.

4. Discussion
Occurrences in the NSB database stem from ocean drilling

expedition shipboard data, and the presence of taxonomic

and stratigraphic errors can be problematic for constructing

range-based richness or phylogeny [30]. Our approach is

much less sensitive to taxonomic and stratigraphic noise.
Furthermore, we do not use local abundance data in NSB,

which may be influenced by local fluxes and preservation,

to reconstruct global abundance. Instead, SCOR is based

only on global occupancy, integrated across widespread

species, because globally widespread species are typically

globally abundant (electronic supplementary material,

figure S1a) [4]. As predicted from the hollow shape of

species-abundance distributions, our results are reproducible

with fewer than 100 of the most common species (figure 2a).

The overwhelming majority of species in NSB thus do not

contribute to SCOR, and the use of different taxonomic

schemes does not affect our results. SCOR does not depend

on knowing true times of speciation and extinction; a species

only contributes to SCOR if/when it is widespread, and stra-

tigraphic outliers or long tails of occurrences, erroneous or

not, have no impact. Hence, we need not distinguish between

a species having gone truly extinct and it having become a

rare, ecological ‘ghost’, like the coccolithophore Tergestiella/

Cyclagelosphaera, recently found living 54 Myr after its pre-

sumed extinction [46]. In addition, even if morphospecies

do not conform strictly to biological species, they may rep-

resent successful phenotypes and/or traits that potentially
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link global abundance to ecosystem functioning. We use

SCOR for its simplicity and consider it a starting point for

more sophisticated occupancy-based approaches [47].

The planktonic foraminifera SCOR does not show posi-

tive covariation with a Cenozoic SCOR curve for the

coccolithophores, another important calcifying plankton

group. Instead, their raw patterns are negatively correlated

(Spearman’s r ¼ 20.28) and first differences are not signifi-

cantly correlated (r ¼ 0.15, p . 0.06). Although preservation

can affect the local relative abundance of these two groups

in the sediment [48], it does not explain the different SCOR

patterns, because expansion or contraction of the global

extent of deep-sea carbonate deposition would cause the

preserved global occupancy of both calcifying groups to

increase or decrease in similar ways. Aspects of the Cenozoic

coccolithophore SCOR pattern have been linked to proxy

records of atmospheric CO2 [13] and suggest that these calci-

fying phytoplankton could thrive in a high-CO2 world [49].

Cooling and CO2 decline across the Eocene–Oligocene

transition were accompanied by a lowering of the carbonate

compensation depth, which has been attributed to changes

in the supply of weathering products to the ocean [50]. Like

the coccolithophores [13], however, planktonic foraminifera

show declining SCOR across this transition, which is opposite

to that expected if SCORs were biased upwards by enhanced

deep-sea preservation. On the other hand, if species absence/

presence were random with respect to global abundance,

then SCOR would suffer from increased short-term volatility,

but Poseidon experiments show that even under such

conditions, SCOR can track relative changes in global abun-

dance (electronic supplementary material, figure S5). For

the 25 sites common to both databases, the age models

for the NSB data may deviate from those in the DOT

record, but the age models are not systematically offset

(electronic supplementary material, figure S7); hence, the

presence of age model noise should weaken any statistical

associations and bias against our results. Finally, we note

that although the number and global coverage of sites in

the NSB data decrease with age, this temporal decay of

spatial sampling coverage in itself does not create a sys-

tematic bias in SCOR (electronic supplementary material,

figure S8).

The congruence of our three independent analyses pro-

vides strong quantitative evidence of a dynamical coupling

between the observed global occupancy of planktonic forami-

nifera and past climatic and oceanographic changes captured

in the DOT proxy record. A Cenozoic increase in ocean thermal

stratification due to polar cooling has long been proposed as a

secular abiotic forcing of plankton evolution [27], or even a

‘universal driver’ of planktonic cell size [26,51]. Assimilating

a Cenozoic DOT proxy in models of planktonic foraminifera

diversification has also been found to increase model support

[52], on time scales comparable with the predictive lags

found here. However, we caution against reducing the

DOT–SCOR coupling to any single mechanism operating

through the evolving biotic, tectonic and atmospheric bound-

ary conditions of the Cenozoic. Rather than attributing

process to temporal correlations or net trends, we use infor-

mation inherent in the data to demonstrate a dynamical

coupling, while avoiding mechanistic assumptions. The mag-

nitude of the predictive lag cannot be interpreted as a direct,

physical process–response delay, but accommodates an indir-

ect, heterogeneous causal pathway between DOT and SCOR.
Our results instead open up new questions on the long-term

dynamics of commonness and its linkage to environmental

change. As an example, we briefly consider the ecological

characteristics of the species responsible for the SCOR pattern.

Planktonic foraminifera inferred to host symbionts in the

open-ocean mixed layer (Ecogroup 1 in [30]) are among the

most widespread species that contribute to high SCOR

during intervals of relative DOT warmth (i.e. positive

deviations from the net DOT trend), especially the early

Eocene and the late Miocene–Pliocene (figure 2a; electronic

supplementary material, figure S2). By contrast, deeper-

dwelling species not known to host symbionts contribute

most to SCOR during intervals of relative DOT cooling,

such as the latest Eocene–Oligocene and, in the case of

thermocline-dwelling species, the mid-Miocene. Symbiont-

hosting (mixotrophic) rhizarian protists are surprisingly

abundant in oligotrophic oceans today [53,54]. If oligotrophic

realms expand with surface warming in the near future [55],

then the global abundance of mixotrophs could increase.

Greater global abundance of mixotrophs might enhance the

efficiency of the biological carbon pump in the ocean,

through net increases in body size and faster sinking rates

[56]. Although the global biogeochemical impact of plank-

tonic foraminifera may be limited, their outstanding fossil

record makes them a prime candidate for studying a plank-

tonic ecosystem response to global environmental changes

in the past. Despite the opposite net trends, long-term fluctu-

ations in SCOR and DOT show intervals of positive

covariation, suggesting that planktonic foraminifera prolifer-

ated in periods of relative DOT warmth. To the extent that

long-term patterns in the DOT record reflect Cenozoic

mean states of surface water temperature (e.g. early Eocene

warming followed by long-term Eocene cooling), and if, on

average, warmer water conditions correspond to lower nutri-

ent levels, then mixotrophy may have allowed the global

abundance of planktonic foraminifera to increase in a

warmer ocean. In the warm early Eocene, for example, oligo-

trophic open-ocean ecosystems may have reached mid- and

high latitudes [57]. If higher global abundance of mixotrophic

plankton was associated with greater efficiency of the biologi-

cal carbon pump [56], then the SCOR pattern would be

consistent with the sharpened d13C depth gradients observed

in the warm early–mid–Eocene [58], and the reduction of

d13C depth gradients from the warm Pliocene to the cooler

Pleistocene [59]. We propose that mixotrophy has been an

ecological factor linking the global abundance of planktonic

foraminifera to the relative extent of oligotrophic oceans. Test-

ing this hypothesis calls for spatially resolved proxy data and

spatially explicit occupancy modelling, which are out of the

scope of this study.

In this paper, we have: (i) highlighted the importance of

widespread species as indicators of global ecosystem

response; (ii) shown that a simple measure of global occu-

pancy can be used to track changes in global abundance,

because widespread species are typically globally abundant

(i.e. commonness, as we define it); (iii) shown that in the

fossil record, commonness is more tractable than richness,

because the same fundamental ecological property that

lends power to commonness (i.e. only a few species are abun-

dant and widespread) can be a weak spot for richness

estimators; (iv) used dynamical information in global-scale

proxy records to rigorously test the coarse-grained hypoth-

esis of a causal relationship between observed global
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occupancy of planktonic foraminifera and long-term climate

changes captured in DOT records; and (v) based on the quan-

titative evidence for a causal connection, put forward a more

fine-grained hypothesis on the possible role of mixotrophy

that we hope deserves future scrutiny.

Data accessibility. The datasets used in this article are included in the
electronic supplementary material. The Poseidon code is available
on GitHub (https://github.com/bhannis/Poseidon).

Authors’ contributions. B.H. and L.H.L conceived, designed and coordi-
nated the study. L.H.L. wrote the Poseidon code and scripts for
querying the NSB and TARA Oceans databases. K.A.H. and D.D.
performed CCM analysis. T.R. performed SDE analysis. B.H. carried
out the Poseidon simulations, taxonomic remapping, IT analysis and
all additional analyses, and drafted the manuscript. All authors dis-
cussed results and interpretations, commented on drafts of the
manuscript and gave final approval for publication.

Competing interests. We declare we have no competing interest.

Funding. This work is funded by the Research Council of Norway grant
nos. 231259 (B.H.) and 235073 (L.H.L.), and by the Bergen Research
Foundation (B.H.).

Acknowledgements. We acknowledge the many contributors to the NSB
database. We thank Tom Ezard and Dave Lazarus for comments on
earlier versions of this manuscript. Thanks to John Alroy for sharing
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