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Vitamin C: should we supplement?

Angélique M.E. Spoelstra-de Man, Paul W.G. Elbers,
and Heleen M. Oudemans-Van Straaten

Purpose of review

Hypovitaminosis C and vitamin C deficiency are very common in critically ill patients due to increased
needs and decreased intake. Because vitamin C has pleiotropic functions, deficiency can aggravate the
severity of illness and hamper recovery.

Recent findings

Vitamin C is a key circulating antioxidant with anti-inflammatory and immune-supporting effects, and a
cofactor for important mono and dioxygenase enzymes. An increasing number of preclinical studies in
trauma, ischemia/reperfusion, and sepsis models show that vitamin C administered at pharmacological
doses attenuates oxidative stress and inflammation, and restores endothelial and organ function. Older
studies showed less organ dysfunction when vitamin C was administered in repletion dose (2-3 g
intravenous vitamin C/day). Recent small controlled studies using pharmacological doses (6-16 g/day)

suggest that vitamin C reduces vasopressor support and organ dysfunction, and may even decrease

mortality.

Summary

A short course of infravenous vitamin C in pharmacological dose seems a promising, well tolerated, and
cheap adjuvant therapy to modulate the overwhelming oxidative stress in severe sepsis, frauma, and
reperfusion after ischemia. Large randomized controlled trials are necessary to provide more evidence
before wide-scale implementation can be recommended.
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INTRODUCTION

Many of us will associate vitamin C deficiency with
sailors dying from scurvy during the ‘Age of Explo-
ration.” However, it has now become evident that
vitamin C deficiency is certainly not a thing of the
past, but develops during extreme circumstances. In
fact, deficiency (normal plasma vitamin C levels
>23 pmol/l) is frequently encountered in critically
ill patients [1%]. A recent study found that 88% of the
septic patients had hypovitaminosis C (i.e.
<23 pmol/l), whereas 38% had scurvy levels (i.e.
<11 pmol/l) [2*"]. The physiologic importance of
vitamin can be observed in pond turtles, which
possess particularly high concentrations of vitamin
C in the brain. These animals exhibit a high toler-
ance for oxygen depletion during diving, and vita-
min C may help to prevent oxidative damage to
neurons during re-oxygenation following a hypoxic
period [17]. In analogy to these freshwater turtles [3],
evidence suggests that vitamin C could protect
patients against overwhelming oxidative stress,
and that early administration might improve out-
come [4].
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WHY IS VITAMIN C DEFICIENT?

The acute vitamin C deficiency is probably caused by
increased metabolic consumption due to critically
illness-induced oxidative stress with reduced recy-
cling of dehydroascorbic acid (DHA), oxidized vita-
min C. Most animals are capable of synthesizing
vitamin C from glucose-6-phosphate, and their
endogenous synthesis increases during stress [5].
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KEY POINTS

e Vitamin C deficiency is frequently encountered in
critically ill patients due to increased needs, and may
persist, despite (par)enteral nutrition.

e Vitamin C has pleiotropic effects as key circulating
antioxidant with anti-inflammatory and immune-
supporting effects, and as cofactor for mono and
dioxygenase enzymes.

e An intravenous dose of 2-3 g/day is needed to restore
normal plasma concentrations (repletion dose), as
enteral uptake is insufficient due to maximum enteral
absorption capacity.

e Vitamin C in repletion dose reduced organ failure in
older studies, and recent small controlled studies suggest
that vitamin C used in pharmacological doses (6-16g/
day) reduces vasopressor support, fastens recovery from
organ failure, and may even reduce mortality.

o A short course of pharmacological dose vitamin C
seems well tolerated, and may, despite increased
oxalate excretion, even improve kidney function.

However, humans have lost the ability to synthesize
vitamin C due to mutations in the L-gulono-y-lacton
oxidase which encodes the terminal step of the vita-
min C synthesis. During normal circumstances, die-
tary intake is sufficient to keep vitamin C levels
within normal range. However, during critical illness,
increased demands may lead to insufficiency. Lowest
vitamin C levels are seen in patients with multiple
organ failure [6], and plasma vitamin C levels are
inversely related to sequential organ failure assess-
ment (SOFA) scores and mortality [7]. Because vita-
min C has pleiotropic functions, deficiency can
aggravate the severity of illness and hamper recovery.
Therefore repletion, and perhaps pharmacological
dosing of vitamin C, could be an effective adjuvant
therapy in conditions with excessive oxidative stress.
Under these circumstances, it is essential that vita-
min C is administered intravenously, because during
critical illness, enteral uptake is both unpredictable
and limited. In this narrative review, we will summa-
rize the current knowledge of the pivotal role of
vitamin Cin critically ill patients. To meet this objec-
tive, we will discuss the clinical and preclinical stud-
ies published in the past 5 years investigating
repletion and pharmacological dosing of intravenous
vitamin C as adjuvant therapy in trauma, ischemia/
reperfusion injury, and sepsis.

PATHOPHYSIOLOGY

In multiple critical conditions, such as trauma,
ischemia/reperfusion injury, and sepsis, oxidative
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stress plays a crucial role. The original insult induces
a progressive inflammatory response by activation
of nuclear kappa-B with release of cytokines and
production of multiple reactive oxygen species
(ROS) by various inter-related pathways [8,9]
(Fig. 1) and leading to uncoupling of mitochondrial
phosphorylation, activation of nicotinamide ade-
nine dinucleotide phosphate oxidase, lipoxygenase,
cyclooxygenase and inducible nitric oxidase (iNOS),
and oxidation of catecholamines. The abundance of
ROS, especially when insufficiently opposed by anti-
oxidants such as vitamin C, leads to cellular injury,
widespread endothelial dysfunction, and progres-
sive organ dysfunction.

WHY VITAMIN C COULD WORK

During critical illness, vitamin C has pleiotropic
effects as key circulating antioxidant with anti-
inflammatory and immune-supporting effects,
and as cofactor for mono and dioxygenase enzymes
(Table 1). All of these crucial functions are based on
electron donation. The pleiotropic action could
decrease cellular and organ injury.

PHARMACOKINETICS

Dietary vitamin C is absorbed via the saturable
mucosal sodium-dependent vitamin C transporter
1 (SCVC1) of with maximum plasma vitamin C
levels after enteral intake of 220 wmol/l in volun-
teers. Supraphysiological levels can only be
attained by intravenous vitamin C supplementa-
tion [17]. Vitamin C is filtered by the glomerulus
and actively reabsorbed in the proximal tubule
(SVCT1). Urine excretion of vitamin C starts from
plasma levels around 55 wmol/l. Tubular reabsorp-
tion is saturable. Vitamin C is actively transported
into the tissue cells (SCVC2), leading to higher
intracellular concentrations than in plasma, espe-
cially in activated leucocytes and in neurons pro-
tecting them against ROS. Vitamin C enters the
brain both via SCVT2 and as DHA via glucose
transporter 1.

In critically ill patients enteral uptake is insuffi-
cient to normalize plasma levels, due to saturable
enteral transport, diminished mucosal function,
and increased needs. Deficiency persists, despite
receiving recommended intakes by (par) enteral
nutrition [1%,2",6]. To restore plasma levels in criti-
cally ill patients, a minimum of 2-3 g intravenous
(i.v.) vitamin C is necessary [18",19]. With 10g,
and respectively, approximately 16g i.v. vitamin
C/day [18"%,20] plasma levels of above 1000 pmol/
l can be achieved with a linear dose-response
relationship [18™].
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FIGURE 1. Pathophysiological pathways after a primary insult (trauma, ischemia/reperfusion injury, sepsis) which induces
oxidative stress and systemic inflammation, and can lead to remote organ dysfunction. IL-18, interleukin-18; IL-6, inferleukin-6;
NF-kB, nuclear factor-kB; NO, nitric oxide; TNF-«, tumor necrosis factor-c.

PRECLINICAL STUDIES

Many studies investigating the use of pharmacolog-
ical doses of vitamin C in preclinical models of sepsis
and ischemia/reperfusion showed attenuation of
oxidative stress and inflammation restoring endo-
thelial and organ function, as we reviewed in 2014
[11]. Since then, several new relevant studies in
preclinical models of trauma, ischemia/reperfusion
injury, and sepsis were performed.

In a swine polytrauma model, i.v. vitamin C (50
and 200 mg/kg) significantly reduced proinflamma-
tory mediators [interleukin (IL)-1, IL-8, and plas-
minogen activator inhibitor-1) and greatly
reduced injury of the lung (hemorrhage, septal
edema, and inflammation), liver, and kidney
(microangiopathy and cellular infiltration) [21].

In a cardiac arrest rat model, vitamin C (50 and
100 mg/kg i.v.) decreased myocardial damage and
improved neurological outcome and survival [22].
However, in another study 250mg/kg vitamin C
compromised resuscibility, possibly due to the
much higher dose used [23]. In an isolated perfused
rat heart and isolated cardiomyocytes vitamin C
inhibited ROS generation, reduced infarct area,
and improved cardiac function by reducing calcium
overload and impeding the opening of the mito-
chondrial permeability transition pore [24]. In a
renal ischemia/reperfusion model in rats, i.v.
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50mg/kg vitamin C reduced renal injury and pre-
served renal tissue, especially when combined with
hydrocortisone [25].

In a cecal ligation/perforation sepsis model,
multiple organ dysfunction and mortality were
lower in wild-type mice compared to Gulo—/—
knockout mice, which are incapable to synthesize
vitamin C. Subcutaneous administration of 200 mg/
kg vitamin C improved cellular immunosuppression
and reduced organ dysfunction and mortality in
both Gulo—/— and Gulo+/+ mice, supporting addi-
tional benefit of supraphysiological plasma vitamin
C levels [26"]. In human lung endothelial cells with
lipopolysaccharide-induced hyperpermeability vita-
min C enhanced endothelial barrier function only
in combination with hydrocortisone [27"].

CLINICAL STUDIES

As previously reviewed by us [1%,11], two older
studies in trauma patients [one randomized con-
trolled trial (RCT) of 595 patients [28] and one
before/after study in 4294 patients [29] using reple-
tion doses of 3 gram i.v. vitamin C/day combined
with vitamin E] showed reduced organ dysfunction,
length of stay [28,29], and mortality [29]. In this
population, no new clinical trials have been per-
formed since. Similarly, in burn patients, no new
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Table 1. Pleiotropic effects of vitamin C

Pleiotropic effects

Antioxidative

Direct radical scavenger [10™%]

Reduction of ROS-production [11]

Regeneration of antioxidants [12]

Anti-inflammatory
Immune-supporting [13"%]
Improvement of chemotaxis

Stimulation interferon production

Enhancement of neutrophilic bacterial killing

Support of lymphocyte proliferation

Modulating regulatory T-cells

Inhibiting bacterial replication

Production of host defence peptides [14]
Cofactor/cosubstrate biosynthesis [15]

Dopamine

Norepinephrine

Vasopressin

Superoxide
Peroxynitrite

Inhibition of activation of NADPHoxidase
Inhibition of activation of xanthine oxidase

Reduction of leakage of electrons from the dysfunctional electron transport
chain in the mitochondria

Inhibition of iNOS expression, preventing abundant NO production and
peroxynitrite generation

a-tocopherol, protecting against lipid peroxidation
Glutathione

Urate

Tetrahydrobiopterin

Inhibition of NF-kB, reducing proinflammatory mediators

Recycling BHy, cofactor of tyrosine hydroxylase
Cofactor dopamine B-hydroxylase

Cofactor peptidylgylcine a-amidating monooxygenase

Serotonin

Cortisol

Collagen Type IV collagen hydroxylation
Oxidative protein folding

Increase of catecholamine sensitivity
Protection microcirculation [11]

Tightening endothelial barrier

Binding to adrenergic receptors

Inhibition PP2A activation, increasing phosphorylated occludin crucial for

maintenance of tight junctions
Inhibition of apoptosis of endothelial progenitor cells

Improving microcirculatory patency

Inhibition of TNF-« -induced ICAM expression, reducing leucocyte stickiness

and sludging

Decrease of endothelial permeability and protection against  Prevention eNOS uncoupling and eNO depletion

pathological vasoconstriction
Improvement of wound healing [16]

eNO, endothelial nitric oxide; eNOS, endothelial nitric oxide synthase; NADPH, nicotinamide adenine dinucleotide phosphate oxidase.

clinical studies have been performed since 2014.
That leaves us with two old small studies performed
with huge doses of vitamin C (66 mg/kg/h for 24 h)
which reduced fluid requirements and increased
urine output [30,31].

With regard to ischemia/reperfusion injury no
clinical studies have been performed in critically
ill patients after cardiac arrest or stroke. Patients
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with ST-elevation myocardial infarction receiving
i.v. vitamin C prior to percutaneous coronary inter-
vention and achieving plasma levels above 1 mmol/l
had significantly better left ventricular function and
microvascular function than patients with levels
below 1mmol/l [32]. In a RCT of 532 patients,
infusion of 3 g vitamin C before elective percutane-
ous coronary intervention showed a significant
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FIGURE 2. Pathways of oxalate biosynthesis.

decrease of myocardial injury and blunted the
increase of 8-hydroxy-2-deoxyguanosine — an oxi-
dative stress marker [33].

Several recent clinical studies applying pharma-
cological doses of vitamin C focussed on sepsis. In a
small RCT in 24 patients with severe sepsis and septic
shock, 50 and 200 mg/kg/day reduced the inflamma-
tory response, decreased circulating levels of cell-free
and mitochondrial DNA, increased levels of antimi-
crobial proteins [14], and reduced the SOFA score, all
to a larger extent in the 200 mg/kg/day group [20]. In
second small RCT in 28 surgical ICU patients with
septic shock, 100mg i.v. vitamin C/kg/day reduced
vasopressor requirements and mortality [34%]. A very
recent before and after study investigating the ‘cock-
tail’ of vitamin C, hydrocortisone, and thiamine
amazed not only the critical care community but also
the lay press due to the considerable effect on mor-
tality (40 in the standard care group vs. 8% in the
vitamin C/hydrocortisone/thiamine group). In addi-
tion, the duration of vasopressor therapy was signitfi-
cantly reduced (54.9 vs. 18.3h) and SOFA score
decreased faster. Importantly, kidney function was
better in the vitamin C group, which is reassuring
with regard to the potential risk of oxalate nephrop-
athy. However, acknowledged limitations of the
study are the low number of patients, the historical
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control group (although well matched), and the sin-
gle-center design [35™"].

ADVERSE EFFECTS

Potential side effects of pharmacological doses of i.v.
vitamin C are oxalate nephropathy, pro-oxidative
activity, and factitious hyperglycemia in point- of-
care glucose measurements [36].

Vitamin C is mainly metabolized (reversibly) to
DHA and (when not recycled) subsequently to 2,3-
diketo-1-gulonic acid and oxalate (Fig. 2). Oxalate is
excreted in the urine. In primary hyperoxaluria,
oxalate nephropathy takes months to years to
develop. Prolonged supplementation of high-
dose vitamin C can increase the risk of oxalate
nephropathy. In the recent controlled studies in
critically ill patients with high doses for a short
period, no oxalate nephropathy was reported [17],
and kidney function even improved [35]. Few case
reports describe oxalate nephropathy in burn
patients after vitamin C administration (101 and
224 g <24 h) much higher than used in most clinical
trials [36].

High concentrations of vitamin C can affect
blood glucose measurements by some, not all,
point-of-care glucometers, leading to falsely higher
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results [37]. This can lead to hypoglycemia if aggres-
sive insulin therapy is erroneously applied. There-
fore, glucose measurements after the administration
of pharmacological doses of vitamin C should be
performed at the central laboratory or with blood
gas analysis [38].

Vitamin C can induce pro-oxidative effects.
When donating one electron to ROS, vitamin C
converts to the ascorbate radical, which can be
pro-oxidant, but frequently has substituted a much
stronger and unstable radical. Furthermore, vitamin
C can reduce the ion status of metals like copper and
iron, and by the Fenton reaction lead to production
of superoxide and hydrogen peroxide. A recent
review showed that vitamin C in vivo predominantly
reduced oxidative damage, despite the described in-
vitro pro-oxidative effects [39]. High-dose i.v. vita-
min C should be avoided in patients with glucose-6-
phosphate deficiency, who can develop hemolysis.

SYNERGISM WITH THIAMINE AND
HYDROCORTISONE

Vitamin C can reverse the oxidation of the gluco-
corticoid receptor and restore the activity of gluco-
corticoids. Vice versa, glucocorticoids stimulate the
expression of SVCT2, which actively transports vita-
min C into the tissue cells, but is down-regulated
in sepsis.

Thiamine deficiency frequently occurs in septic
patients due to increased consumption [40] and can
enhance reduction of glyoxylate to oxalate instead
of oxidation to CO, (Fig. 2), increasing hyperoxa-
luria. In addition, thiamine is an important cofactor
in the energy metabolism, and thiamine deficiency
causes mitochondrial dysfunction and oxidative
stress [41,42]. Supplementation of thiamine could
reduce hyperoxaluria and act synergistically with
hydrocortisone and vitamin C to reduce organ dys-
function and improve outcome [35].

DISCUSSION

When considering all the available evidence, i.v.
vitamin C - in repletion dose, but maybe even more
in pharmacological dose — is a promising potential
adjuvant therapy for critical illnesses with increased
oxidative stress, such as trauma, ischemia/reperfu-
sion injury, and sepsis. There is a good pathophysi-
ological rationale supported by an increasing
number of (pre)clinical studies.

Preclinical studies, however, do not show univ-
ocal results, and the clinical studies are mostly small,
single-centered, and not all are randomized. Doses
differ widely and are often combined with other
antioxidants or hydrocortisone. Therefore, requests
for immediate wide-scale implementation of
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vitamin C in pharmacological doses should not be
honored at this time. Several large, double-blinded
RCTs in the sepsis population are under way, but
other ICU populations might benefit, such as
patients after cardiac arrest, trauma, or burn. They
are necessary to provide more evidence.

If vitamin C does indeed benefit critically ill
patients, there still remain many unanswered ques-
tions such as the follows:

(1) Is my patient deficient? First of all, we need a
reliable screening of vitamin C status for clinical
practice. At present, determination of plasma
vitamin C levels is complicated and expensive,
and not available for daily practice.

(2) Should we provide repletion or pharmacological
doses? There are no comparative studies show-
ing that 1.5g q 6 hourly is optimal as was
recently suggested [35™]. Because pharmacolog-
ical doses are possibly needed to optimize the
antioxidant effects of vitamin C [43], the clini-
cal effect of these doses might be stronger
[20,32,34%,35"]. However, large studies on side
effects are not available.

(3) What is the optimal timing and duration of
supplementation? Probably, vitamin C should
be administered as soon as possible after the
primary insult, when oxidative stress is maxi-
mal. The optimal duration probably differs per
patient. We think that high-dose vitamin C
should be stopped after the acute phase to allow
the beneficial signaling function of ROS neces-
sary for cell survival.

(4) Should we use bolus or continuous administra-
tion? The antioxidant effect is dose-related, thus
temporarily high peaks might be beneficial.

(5) What is the relevance of co-administration of
thiamine and hydrocortisone? Pathophysiolog-
ically, this is plausible in septic patients, but no
data are available for patients after trauma or
cardiac arrest. At this moment, at least eight
RCTs are being performed with either vitamin
C alone, or combined with hydrocortisone or
thiamine (ClinicalTrials.gov), which will answer
some of these questions.

CONCLUSION

Many critically ill patients, especially those exhibit-
ing oxidative stress, are vitamin C-deficient, because
needs are increased and intake diminished. An intra-
venous dose of 2-3 g/day is needed to restore normal
plasma concentrations, as enteral uptake is insuffi-
cient due to maximum enteral absorption capacity.
Several older studies suggest less organ failure when
vitamin C is administered in repletion dose. Some
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recent small controlled studies suggest that vitamin C
used in pharmacological doses (6-16 g/day) reduces
vasopressor support, fastens recovery from organ
failure, and may even reduce mortality. In addition,
it may, despite increased oxalate excretion, even
improve kidney function. Whether the combination
with thiamine and hydrocortisone is even more ben-
eficial needs to be confirmed. Large RCTs are neces-
sary to provide more evidence and safety data before
wide-scale implementation can be recommended.
Up to now, a short course of vitamin C seems well
tolerated, making this cheap and widely available
substance extremely promising to modulate the over-
whelming oxidative stress in severe sepsis, trauma,
and reperfusion after ischemia.
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