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Simple Summary: Merkel cell carcinoma is a deadly skin cancer with few treatment options. When
the tumor has spread, less than 18% of patients survive past five years, and the mortality rate
is 3-times higher than melanoma. Cancer immunotherapy is a promising field, harnessing the
patient’s immune system to fight cancer and offering hope to many patients. However, ineligibility
or resistance to immunotherapy is a critical challenge; half of all MCC patients are ineligible, and
many treated patients either stop responding after an initial positive response or don’t respond at all.
In this study, we tested a promising drug based on genomic information from MCC patient tumors.
We found that it was highly effective in killing MCC cells and MCC tumors grown in mice; we also
observed that MCC genetic characteristics partly predicted how well the drug worked. These results
provide strong evidence for its potential clinical application in MCC patients.

Abstract: Merkel cell carcinoma (MCC) is an often-lethal skin cancer with increasing incidence and
limited treatment options. Although immune checkpoint inhibitors (ICI) have become the standard
of care in advanced MCC, 50% of all MCC patients are ineligible for ICIs, and amongst those treated,
many patients develop resistance. There is no therapeutic alternative for these patients, highlighting
the urgent clinical need for alternative therapeutic strategies. Using patient-derived genetic insights
and data generated in our lab, we identified aurora kinase as a promising therapeutic target for
MCC. In this study, we examined the efficacy of the recently developed and highly selective AURKA
inhibitor, AK-01 (LY3295668), in six patient-derived MCC cell lines and two MCC cell-line-derived
xenograft mouse models. We found that AK-01 potently suppresses MCC survival through apoptosis
and cell cycle arrest, particularly in MCPyV-negative MCC cells without RB expression. Despite the
challenge posed by its short in vivo durability upon discontinuation, the swift and substantial tumor
suppression with low toxicity makes AK-01 a strong potential candidate for MCC management,
particularly in combination with existing regimens.

Keywords: Merkel cell carcinoma; neuroendocrine skin cancer; aurora kinase; AK-01; LY3295668

1. Introduction

Compared to major skin cancers (melanoma, basal cell carcinoma, and squamous cell
carcinoma), Merkel cell carcinoma (MCC) is a rare but highly aggressive neuroendocrine
cancer of the skin with increasing incidence [1,2]. The disease-associated mortality rate
of MCC exceeds that of melanoma, with a five-year survival rate of <18% in advanced
diseases [3]. Between 2000–2013, there was a 95% increase in reported cases of MCC, as
compared to a 15% increase in all solid tumors, and its incidence has quadrupled during
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the past 20 years [4]. Merkel cell polyomavirus (MCPyV) [5], ultraviolet (UV) exposure [6],
and immuno-suppression [7] are known major risk factors. Although immune checkpoint
inhibitors (ICIs) targeting programmed cell death protein one and its ligand (PD1/PD-L1)
have become the standard of care for advanced MCC, resistance develops in the majority
of treated patients [8–11]. Importantly, there is no effective therapeutic alternative for these
patients or for 50% of all MCC patients who are ineligible for ICIs due to comorbidities [10].

Over the years, efforts to develop targeted therapy for MCC have not been fruitful.
Unlike other solid tumors, inhibitors of tyrosine kinases of growth factors and oncogenes
have little clinical effect on MCC [2,12,13]. Moreover, the Wnt signaling pathway is not acti-
vated in MCC [14]. One of the significant observations from us and others is the consistent
activation of the PI3K/Akt/mTOR pathway in MCC that is independent of the MCPyV
status [15–18]. We have demonstrated that inhibition of the PI3K/Akt/mTOR pathway
suppressed MCC tumor growth both in preclinical studies and in the patient [18–21]. More-
over, a clinical trial designed to restore normal p53-related function in MCC is currently
underway (NCT03787602) [22].

Published reports hint that cell cycle regulators are potential therapeutic targets in
MCC [23]. However, the therapeutic efficacy of FDA-approved CDK4/6 inhibitors in MCC
is limited due to frequent loss of RB1 function in MCC either by an inactivating mutation
or MCPyV large antigen integration. Of note, aurora kinases (AURK) are a family of ser-
ine/threonine kinase (AURKA, AURKB, and AURKC) involved in cell cycle progression,
most importantly during mitosis [24]. AURKA is upregulated in a variety of tumors and
has been associated with poor prognosis [25–30]. Moreover, it has been reported that
AURKA drives the evolution of resistance to EGFR inhibitors in lung cancer [31], and the
aberrant activation of AURKA contributes to the highly aggressive nature of lymphoprolif-
erative disorders [32]. Most Aurora kinase inhibitors developed are pan-Aurora or Aurora
B/C inhibitors [33–38]. The most advanced Aurora inhibitor alisertib (MLN8237) has
narrow Aurora A selectivity and has demonstrated anti-tumor activities when combined
with various drugs in several human cancers [39–41]. Recently, a highly Aurora A-selective
inhibitor, AK-01/LY3295668, developed by Eli Lilly (Eli Lilly, Indianapolis, IN, USA), has
demonstrated over 1000-fold selectivity versus AURKB and has anti-tumor activities in
a broad panel of cancer cell lines as well as in animal models [42]. Moreover, AURKA
inhibition has synthetic lethality in cancer cells possessing RB1 mutation [43]. Impor-
tantly, AK-01 has demonstrated anti-tumor activities in patients with locally advanced or
metastatic solid tumors with a manageable toxicity profile in phase I clinical trials [44]. In
relevance to MCC, inactivation of RB1 either by RB1 mutation or integration of MCPyV
genome is commonly detected in MCC [45–47]. Additionally, RNA-seq data from patient
tumors revealed that cell cycle regulatory genes are the top expressed genes in MCC (data
will be presented elsewhere). Notably, a high-throughput drug screen identified aurora
kinase as one of the top candidate targets across a panel of six MCC cell lines (data will be
presented elsewhere).

We chose the recently developed AK-01 for further in vitro and in vivo investigations.
We found that AURKA inhibition by AK-01 has potent anti-MCC activities in three of six
MCC cell lines independent of MCPyV status. Moreover, AK-01 retains synthetic lethality
in MCPyV-negative cells lacking RB expression. Consistent with published studies, AK-01
induces G2-M cell cycle arrest and apoptosis in MCC cells. Moreover, AK-01 significantly
debilitated MCC xenograft tumor growth in vivo. However, the MCC xenograft tumor
relapsed upon discontinuation of treatment, and re-treatment with AK-01 failed to repress
the tumor growth. This evidence suggests that AK-01, in addition to its potential as a single-
agent therapy, has clinical potential in combination with other therapies to maximize
anti-tumor activities in advanced MCC.



Cancers 2021, 13, 3708 3 of 15

2. Materials and Methods
2.1. Critical Reagents and Compounds

Aurora Kinase A (AURKA) specific inhibitor, AK-01, was purchased from Chemietek
(Indianapolis, IN, USA). AK-01 stock solution was prepared in sterile DMSO at a final
concentration of 10 mM and stored at −80 ◦C in small aliquots. Primary antibodies
to cyclin-B1 (cat. no. 4135) and cleaved poly (ADP-ribose) polymerase (PARP) (cat.
no. 9542), as well as horseradish peroxidase (HRP) conjugated secondary antibodies for
rabbit (cat. no. 7074) and mouse (cat. no. 7076) were purchased from Cell Signaling
Technology (Danvers, MA, USA). Antibodies for histone-3 (cat. no. ab1791) and α-tubulin
(cat. no. T6199, clone DMIA) were purchased from Abcam (Cambridge, MA, USA) and
Millipore Sigma (St. Louis, MO, USA), respectively. RPMI-1640 and Dulbecco’s Modi-
fied Eagle’s Medium (DMEM) were purchased from American Type Culture Collection
(ATCC, Manassas, VA, USA). Fetal bovine serum (FBS) and tissue culture supplements
were obtained from Atlanta Biologicals (Flowery Branch, GA, USA) and Life Technologies
(Houston, TX, USA), respectively. Additional reagents include Radioimmunoprecipitation
assay (RIPA) buffer (cat. no. R0278, Millipore Sigma) and enhanced chemiluminescence
(ECL) detection reagent (cat. no. WBULS0100, Millipore Sigma).

2.2. Generation of MCC Cell Line Derived Xenograft Models in Mice

MCC cell-line derived xenograft mouse models were generated using 6-to-8-week-old
immunodeficient NOD/SCID/IL2r-ynull (NSG) mice (Strain #5557; Jackson Laboratory,
Bar Harbor, ME, USA) [48–50]. Briefly, 2 × 107 MCC cells in logarithmic growth were
prepared in Matrigel (cat. no. 354248; Corning Life Sciences, Tewksbury, MA, USA)
and subcutaneously inoculated on the right rear flank of each mouse. Palpable tumor
growth appeared within 3 to 5 days of inoculation, and a treatment regimen was initiated
when all xenografts reached a minimum tumor volume of 100 mm3. Tumor-bearing mice
were randomized into control and treatment groups (n ≥ 4 for each condition), with the
treatment group receiving 50 mg/kg AK-01 by oral gavage twice daily (formulated in
100 mM phosphoric acid, pH 2.5–3) and the control group receiving an equivalent dose
of the vehicle. All animals were monitored daily, and tumor volume was measured using
digital calipers and calculated as L × W2/2, where L is the longer dimension (length),
and W is the shorter dimension (width). All animal experiments were conducted under
protocols approved by the Institutional Animal Care and Use Committee (IACUC) at the
Veterans Affairs Long Beach Healthcare System (VALBHS), in accordance with laboratory
animal care and use guidelines set by the Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC) International.

2.3. Cell Culture

Patient-derived MCC cell lines (MCC-3, MCC-5, MCC-9, MCC-16, and MCC-21)
were established in our lab under study protocols first approved by the Institutional
Review Board (IRB) at the University of Arkansas for Medical Sciences, and are currently
maintained under study protocols approved by the VALBHS IRB, in accordance with the
Declaration of Helsinki and relevant regulations. MKL-1 is a classical MCPyV-positive
MCC cell line [6] that was gifted by Dr. Becker (Department of Dermatology, University
Hospital Essen, Essen, Germany). Suspension cultures of MCC cells were maintained in
RPMI-1640 medium supplemented with 10% FBS, penicillin-streptomycin (100 U/mL),
and L-glutamine (4 mM) at 37 ◦C in a humidified atmosphere with 5% CO2. Cells were
fed with fresh complete media every 48 h and split 1:2 weekly to maintain logarithmic
growth. Cell lines were authenticated via STR-profiling (Genetica, Burlington, NC, USA),
comparing each cell line with its respective primary tumor as described previously [19].

2.4. Cell Proliferation and Viability Assay

Cell proliferation and viability were measured by Cell Counting Kit-8 (cat. no. 96992,
Millipore Sigma) and trypan blue exclusion staining (cat. no. T8154, Millipore Sigma)
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per manufacturer’s protocols. In brief, cells were plated at 8 × 105 density per well in
96-well plates, allowed to recover for 4 h, and exposed to serial dilutions of AK-01 (0–10 µM
dose range) at 37 ◦C for 72 h. CCK-8 (10% of culture volume) was added to each well
and incubated for an additional 4 h at 37 ◦C. Absorbance at 450 nm was measured, and
half-maximal growth-inhibitory dose (GI50) was calculated by setting the mean control
absorbance as maximal cell proliferation for each cell line, respectively and using nonlinear
regression analysis (GraphPad Prism v6.07, San Diego, CA, USA; “log (inhibitor) vs.
normalized response” dose-response equation) to identify the concentration at which 50%
of maximal cell proliferation was suppressed. Cell viability upon AK-01 treatment was
also assessed by trypan blue exclusion staining. In brief, MCC cells were plated in 6-well
plates at 5 × 105 density per well, followed by 4 h recovery and AK-01 treatment at 37 ◦C
for 72 h. Cells were then collected, washed, and stained with trypan blue; live cells in each
treatment condition were quantified and are presented as a percentage of DMSO control.

2.5. Cell Cycle Analysis by Flow Cytometry

Propidium iodide (PI) staining was used to analyze cell cycle distribution in MCC
cells treated with AK-01 or vehicle control. MCC cells seeded at 5 × 105 per well in 6-well
plates were treated with 300 nM of AK-01 for 48 h, followed by washing and fixation per
manufacturer’s protocol. Upon staining with PI/RNAse staining buffer (cat. no. 550825; BD
Pharmingen, San Diego, CA, USA), cell cycle progression was analyzed using the ACEA
NovoCyte flow cytometer (Agilent, Santa Clara, CA, USA) and NovoExpress (v1.4.1)
software (Agilent, Santa Clara, CA, USA) at the Institute for Immunology flow cytometry
core facility (University of California, Irvine, CA, USA).

2.6. Immunoblotting

MCC cells treated with vehicle or AK-01 for 24 h or 72 h were harvested and pro-
cessed for immunoblotting analysis as described previously [19–21]. Briefly, whole-cell
lysates were prepared with 1× RIPA lysis buffer (cat. no. R0278, Millipore Sigma,
Burlington, MA, USA) containing cOmplete EDTA-free Protease Inhibitor Cocktail (cat.
no. 4693159001; Roche), incubated on ice for 30 min, and clarified by centrifugation at
14,000 rpm for 15 min at 4 ◦C. Whole-cell protein lysates (10–30 µg per lane) were re-
solved by 8%, 10% or 12% Tris-Glycine SDS polyacrylamide gel electrophoresis and
transferred onto 0.45 µm PVDF membranes (cat. no. IPVH00010, Millipore Sigma,
Burlington, MA, USA) using Trans-Blot® SD Semi-Dry Transfer Cell (cat. no. 1703940, Bio-
Rad, Hercules, CA, USA). Membranes were blocked with 5% fat-free milk (cat. no. 170-6404,
BioRad, Hercules, CA, USA) in 1× Tris-buffered saline pH 7.4 at room temperature (RT)
for 1 h, followed by incubation with specific primary antibodies at 4 ◦C overnight. Af-
ter washing in 1× Tris-buffered saline and 0.2% Tween-20 (cat. no.161-0781, BioRad,
Hercules, CA, USA), membranes were probed with HRP-conjugated secondary antibod-
ies for 1 h at RT and immunoreactive proteins were visualized on X-ray films (Kodak,
Rochester, NY, USA) using the ECL kit (cat. no. WBULS0100, Millipore Sigma) as per
manufacturer’s instructions. Alpha-tubulin was used as the loading control, and all data
are presented on contiguous lanes.

2.7. Statistical Analysis

All measurements were made in triplicate, and all values are represented as mean ± SD
or mean ± SEM, as noted in figure legends. Statistical analyses were performed with
a Student’s t-test or one-way analysis of variance (ANOVA) using GraphPad Prism software
(v6.07; San Diego, CA, USA), and p-values < 0.05 were considered statistically significant.

3. Results
3.1. AK-01 Suppresses MCC Cell Proliferation and Viability In Vitro

Based on prior reports of anti-tumor effects of AK-01 on other cancers and our high-
throughput drug screening data, we examined the effect of AK-01 treatment on a panel
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of six MCC cell lines (MCPyV-negative cell lines MCC-3, -5, and -9; MCPyV-positive cell
lines MCC-16, -21, and MKL-1). MCC cells were exposed to serial concentrations of AK-01
(0–10 µM) for 72 h, and DMSO (vehicle) treated cells served as respective controls for
each cell line. Cell viability was measured using CCK-8 cell viability assay as described
previously [19]. Half maximal growth inhibitory concentration (GI50) was calculated by
nonlinear regression analysis using GraphPad Prism v6.07 (“log (inhibitor) vs. normalized
response” dose-response curve equation) with average control cell proliferation set as
maximal cell proliferation for each cell line, respectively. As depicted in Figure 1A, AK-01
demonstrated potent anti-MCC activities in three out of six cell lines (MCC-3, -9, and
MKL-1), whereas MCC-5, -16, and -21 were less responsive. Of the six cell lines, MCC-9
had the lowest GI50 of ~35 nM, with MCC-3 being second lowest with ~70 nM.
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Figure 1. AK-01 attenuates cell viability of MCC cells in vitro. Six MCC cell lines were treated with vehicles (DMSO) of
increasing concentrations of AK-01 for 72 h. (A) Cell proliferation was assessed by CCK-8 assay with reference maxima
(100%) defined as the mean proliferation for vehicle-treated controls. Half maximal growth inhibitory concentration (GI50)
was calculated by nonlinear regression analysis [GraphPad Prism 6.0, “log (inhibitor) vs. normalized response” dose-
response curve equation]. Data presented as mean percent proliferation ± SEM of vehicle control from three experiments
(n = 6). (B) Live cells were quantified by trypan blue dead-cell exclusion staining. Data presented as mean percentage ± SEM
of vehicle-treated control (n = 3). Dotted line represents 50% cell viability. Experiments were repeated three times. * refers to
p < 0.05, ** refers to p < 0.005, and *** refers to p < 0.0005 vs. DMSO-treated cells by paired Student’s t-test.
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Cell viability was also evaluated by trypan-blue dead cell exclusion staining (Figure 1B)
upon AK-01 treatment. The numbers of live cells were quantified in all conditions, with the
control group of each cell line set as the reference maxima (100%) and cells in each treat-
ment group plotted as the percentage of control. As expected, the six cell lines displayed
varying levels of AK-01 susceptibility, with MCC-9 and MKL-1 being the most receptive
with a 50% reduction in viability observed at ~30 nM and ~100 nM, respectively, which cor-
roborated CCK-8 data. Recent studies have suggested that AURKA inhibition is synthetic
lethal in RB−/− tumors [43,51], prompting us to examine RB expression in six cell lines.
MCPyV-negative MCCs commonly have loss-of-function RB1 mutation, and RB expression
is undetectable in those MCC, whereas integration of MCPyV large T antigen in the RB
promoter region is frequently found in MCPyV-positive tumor cells [46,47]. RB protein was
undetected in two out of three MCPyV-negative cell lines (MCC-3 and -9), whereas all three
MCPyV-positive cell lines expressed RB (Figure S1). Notably, AK-01 demonstrated the
most potent anti-tumor activities against MCC-3 and MCC-9 and a substantially less potent
response against MCC-5, the MCPyV-negative cell line with RB expression. These results
hint that RB1 synthetic lethality was retained by the highly selective AURKA inhibitor
AK-01 in MCPyV-negative MCC cell lines. In contrast, RB was expressed in all MCPyV-
positive cell lines, with MKL-1 cells being significantly more responsive to AK-01 treatment,
implying distinct underlying mechanisms of AURKA-mediated anti-MCC activities in
MCPyV-positive MCC.

3.2. AK-01 Induces Cell-Cycle Arrest and Apoptosis in MCC Cells In Vitro

It has been previously shown that AURKA dependent G2-M arrest is associated with an
increase in cyclin-B1 and histone-3 accumulation as well as increased apoptosis [35,42,52,53].
To further characterize the effects of AK-01 on MCC cells, we performed immunoblotting
analyses of G2-M arrest and apoptosis in six MCC cell lines. Whole-cell protein lysates from
MCC cells treated with AK-01 for 24 h or 72 h were probed with specific antibodies, and
DMSO-treated cells served as controls. Concurrent with reported findings, both cyclin-B1
and histone-3 levels were higher in AK-01 treated cells compared to controls, particularly
in MCPyV-negative cell lines (Figure 2). To assess the apoptotic state of these cells, we also
examined the levels of cleaved poly (ADP-ribose) polymerase (PARP). Full-length PARP
is associated with cell viability, whereas its cleavage at Asp214 and Gly215 by caspase-3
facilitates cellular disassembly and apoptosis. As shown in Figure 2, AK-01 treatment
had a profound impact on PARP cleavage. There was a significant increase in the 89 kDa
cleaved carboxy-terminal catalytic domain upon AK-01 treatment compared to controls,
and AK-01 treatment-induced apoptosis as suggested by increased cleaved-PARP, more
prominent in MCC-3, MCC-9, and MKL-1 cells (Figure 2).

To further confirm our above observations, we analyzed cell-cycle progression by flow
cytometry in four MCC cell lines upon AK-01 treatment. An increase of cell numbers at
the G2 phase upon treatment indicates arrested G2 to M-phase transition, a characteristic
phenotype associated with AURKA inhibition. As shown in Figure 3, AK-01 treatment
significantly increased cell population in the G2 phase in three cell lines tested (no signifi-
cance in MCC-5 cells), particularly pronounced in MCC-9 and MKL-1 cells. While cyclin
B1 and histone-3 levels in MKL-1 cells were less changed by AK-01 as demonstrated by
immunoblotting, a significant increase in sub-G1 population (apoptotic cells) was also
observed upon AK-01 treatment, again more prominent in MCC-9 and MKL-1 cells and
corroborating cleaved PARP evidence by immunoblotting (Figures 2 and 3). These re-
sults provide definitive evidence supporting augmented cell-cycle arrest and heightened
apoptosis as the major driver of AK-01′s anti-MCC efficacy.
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Vehicle (DMSO) or AK-01 (300 nM) treated MCC cells were harvested after 24 or 72 h, and 10–30 µg of total cell lysate
per lane were resolved in SDS-PAGE followed by immunoblotting using specific antibodies for PARP (total and cleaved),
cyclin-B1, H3, and tubulin (loading control). All data represent contiguous lanes from one of three replicate experiments.
Densitometry data (ratio of target protein compared to tubulin) was calculated using ImageJ and is presented above each
lane of each respective immunoblot. Full western blot images are available in Figures S3–S6. MW, molecular weight; kDa,
kilodaltons.

3.3. Aurora Kinase A Inhibition by AK-01 Attenuates MCC Xenograft Tumor Growth

Hence, these in vitro data prompted us to investigate the efficacy of AK-01 against
MCC tumors in vivo. MCC cell-line derived tumor models were generated, and MCC-
bearing mice were randomized into control and treatment groups, as described in our
earlier work [19] and in Materials and Methods. To simulate the clinical scenario, mice
began AK-01 treatment when tumors were established at 100–200 mm3. Similar to results
from the Phase one clinical trial [44], AK-01 displayed no obvious toxicity as monitored by
body weight, activity, and food/water intake (Table S1, Figure S2). In accord with in vitro
findings, clear evidence of regression was observed in both MCC-9 as well as MKL-1
derived xenografts. Of the two, MCC-9 was slightly more responsive to the treatment,
with tumor volume receding to indiscernible levels within 16 days of treatment. AK-01
treatment was thus discontinued after 16 days of treatment (day 16 post-randomization),
and six AK-01 treated mice were sacrificed for histological confirmation. To evaluate the
durability of response, three remaining mice were observed for relapse, with xenografts
becoming palpable again 12 days after AK-01 discontinuation, and the cohort was sacrificed
on day 49 post-randomization (Figure 4A,B). In contrast, though AK-01 significantly
repressed MKL-1 xenograft growth, tumors remained discernible after 19 days of treatment.
Three mice were sacrificed for histological examination, and the remaining six mice had
discontinued treatment and were observed for relapse (Figure 4C,D). All six mice were
found to have a relapse within a week of discontinuation of treatment. Surprisingly,
three retreated mice had already developed AK-01 resistance and did not respond to
further treatment (Figure 4E). Interestingly, the more responsive MCC-9 xenograft was
visibly more rampant upon recurrence compared to MKL-1. The underlying mechanism(s)
are unclear and warrant further investigation.



Cancers 2021, 13, 3708 8 of 15Cancers 2021, 13, x 9 of 17 
 

 

 

Figure 3. AK-01 induces G2-M cell cycle arrest and apoptosis in MCC cells. MCC cells were treated with vehicle (DMSO) 

or AK-01 300 nM for 48 h. Cells were then stained with PI (propidium iodide) and analyzed by flow cytometry. DMSO-

treated cells served as controls. (A) DNA histograms of DMSO (upper panel) and AK-01 (lower panel) treated cells depict 

a significant increase in sub G1 (white), and G2 (cyan) populations of AK-01 treated MCC cells. (B) Percentage histograms 

depicting the distribution of MCC cell population in cell cycle phases: sub G1 (dark blue), G1 (light brown), S (light gray), 

and G2 (light blue). Data presented as mean ± SD (n = 3). * refers to p < 0.05, ** refers to p < 0.005, *** refers to p < 0.0005, 

**** refers to p < 0.00005 vs. DMSO-treated cells by paired Student’s t-test. G1, growth 1 phase; G2, growth 2 phase; S phase, 

synthesis phase. 

3.3. Aurora Kinase A Inhibition by AK-01 Attenuates MCC Xenograft Tumor Growth 

Hence, these in vitro data prompted us to investigate the efficacy of AK-01 against 

MCC tumors in vivo. MCC cell-line derived tumor models were generated, and MCC-

bearing mice were randomized into control and treatment groups, as described in our 

earlier work [19] and in Materials and Methods. To simulate the clinical scenario, mice 

began AK-01 treatment when tumors were established at 100–200 mm3. Similar to results 

from the Phase one clinical trial [44], AK-01 displayed no obvious toxicity as monitored 

by body weight, activity, and food/water intake (Table S1, Figure S2). In accord with in 

vitro findings, clear evidence of regression was observed in both MCC-9 as well as MKL-

1 derived xenografts. Of the two, MCC-9 was slightly more responsive to the treatment, 

Figure 3. AK-01 induces G2-M cell cycle arrest and apoptosis in MCC cells. MCC cells were treated with vehicle (DMSO)
or AK-01 300 nM for 48 h. Cells were then stained with PI (propidium iodide) and analyzed by flow cytometry. DMSO-
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depicting the distribution of MCC cell population in cell cycle phases: sub G1 (dark blue), G1 (light brown), S (light gray),
and G2 (light blue). Data presented as mean ± SD (n = 3). * refers to p < 0.05, ** refers to p < 0.005, *** refers to p < 0.0005,
**** refers to p < 0.00005 vs. DMSO-treated cells by paired Student’s t-test. G1, growth 1 phase; G2, growth 2 phase; S phase,
synthesis phase.
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vidually (B,D). In both MCC-9 and MKL-1 xenograft cohorts, three AK-01 treated mice were observed for tumor relapse
(days 16–49 and days 19–49, respectively) after discontinuing treatment. For MKL-1, three AK-01 treated mice resumed
treatment upon tumor relapse (E; retreated mice represented in dark blue).

4. Discussion

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that has
quadrupled in incidence over the past 20 years. MCC is far more deadly than melanoma,
especially if not detected and treated at an early stage, with a dismal five-year survival rate
of <18% in advanced disease. Between 2000–2013, there was a 95% increase in reported
cases of MCC, as compared to a 15% increase in all solid tumors. MCC predominantly
and disproportionately affects white males older than 65. In addition to MCPyV, UV is the
other suggested etiology for MCC without detectable virus. Recent PD1/PD-L1 checkpoint
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inhibitors have demonstrated durable response and clinical benefits in MCC patients;
however, a significant portion of MCC patients either do not respond or acquire resistance,
eventually succumbing to their diseases. Yet, to date, there is no effective targeted therapy
for MCC approved by the US Food and Drug Administration (FDA). Unlike other solid
tumors, activating mutations in tyrosine kinases of growth factor receptors are not detected
in MCC, and the MAPK signaling pathway is not constitutively activated in MCC [1,14].
Consistently, a pilot clinical trial failed to demonstrate the clinical benefits of the tyrosine
kinase inhibitor Gleevec in advanced MCC patients [54]. We, and others, have reported
that the aberrant activation of the phosphatidylinositol-3-kinase (PI3K) pathway is detected
in more than 80% of MCC. Inhibition of the PI3K/mTOR pathway has demonstrated thera-
peutic efficacy in MCC mouse models and in the clinic [19,20,55]. Recently, inhibitors of
histone deacetylases (HDACs), a key epigenetic modulator of gene transcription, have been
shown to induce cell cycle arrest and apoptosis in MCC cells [23]. Currently, there are sev-
eral MCC clinical trials with potential targeted therapies as monotherapy or in combination
with immunotherapy (NCT04393753, NCT04261855, NCT04521413, NCT03787602).

Cancer is characterized by aberrant cell cycle activities, which occur either as a result
of mutations in upstream signaling pathways or by genetic lesions in genes encoding
cell cycle proteins [56]. Thus, cell cycle regulators are attractive targets, leading to re-
cent FDA approval of several CDK4/6 inhibitors for human cancers [57–61]. However,
frequent inactivation of RB1 by loss of function mutation or MCPyV enables MCC pro-
liferation independent of CDK4/6 activity, making CDK4/6 inhibitors less effective in
MCC. Moreover, mutations in PI3K and its downstream molecules AKT and mTOR have
been detected in more than 50% of MCC tumors, and activation of the PI3K/mTOR path-
way is observed in up to 80% of all MCCs, subverting the normal requirement for cell
proliferation [16–18,47,62]. In an effort to identify additional therapeutic targets, we per-
formed high throughput drug screening against >1500 clinically relevant compounds with
a panel of six MCC cell lines and identified AURK as a promising target in MCC.

Although AURKA, AURKB, and AURKC are highly homologous, they have distinct
functions. AURKA is essential for centrosome maturation, spindle assembly, and spindle
orientation. Moreover, AURKA phosphorylates PLK1, thereby promoting CDK1 activation
and mitotic entry. AURKB controls chromosome alignment in mitosis and cytokinesis as
a catalytic unit in the chromosome passenger complex [24]. AURKC expression is restricted
to the testis and functionally mimics AURKB [63]. Analysis of human tumors supports
oncogenic roles for AURKA and AURKB [64]. Overexpression of AURKA is detected in
a wide spectrum of cancers, and it is associated with poor clinical outcomes, rendering it
a highly important therapeutic target [25,26,51]. AURKA has been identified as a synthetic
lethal target for several tumor suppressors, including ARIDIA, SNF, and SMARCA4, as well
as RB1 [54,65,66]. AURKA inhibitor synergizes with BET inhibitor against MYCN-positive
human glioblastoma [41]. Moreover, up-regulation of AURKA/PLK/CDK1 contributes
to PI3K inhibitor resistance in glioblastoma [67], and AURKA drives the evolution of
resistance to EGFR inhibitor in lung cancer [31].

Inhibition of AURKA is superior because AURKB-inhibition causes DNA endoredu-
plication and polyploidy and can potentially increase the refractory and resistant cell
population [36]. While several AURK inhibitors have been developed over the years, they
either lack potency or high selectivity for AURKA inhibition [38]. Recently developed
highly-selective AURKA inhibitor, AK-01, has demonstrated over 1000-fold selectivity
for AURKA versus AURKB, leading to mitotic arrest and apoptosis across many human
cell lines and in animal models. Likewise, AK-01 exhibited anti-tumor activities in MCC
cells by cell cycle arrest and inducing apoptosis. Recently, it has been reported that AK-01
confers unique sensitivity in tumors without RB expression [43,51]. Similarly, the low IC50
in two MCPyV-negative MCC-3 and MCC-9 cells correlates with a lack of RB expression,
respectively (Figure 1 and Figure S1). In MCC-9 cells without RB expression, AK-01 in-
duces G2-M cell cycle arrest as suggested by the accumulation of cyclin B and histone
three (Figures 2 and 3). Increased apoptosis is also observed upon treatment, as evident
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by increased MCC-9 cells in the sub-G1 and elevated cleaved PARP, as demonstrated by
immunoblotting (Figure 2). This corroborates our in vivo observation that AK-01 signifi-
cantly suppresses MCC xenograft tumor growth during treatment (Figure 4). Moreover,
AK-01 has more potent anti-tumor activities in MCC-9 xenografts, which is consistent with
the notion that AURKA inhibitor retained synthetic lethality in cancer cells with RB1 loss
in lung cancers [43]. In contrast, RB expression was detected in all 3 MCPyV-positive cell
lines (Figure S1). Interestingly, even with RB expression, MKL-1 cells are more responsive
to AK-01 treatment as compared to MCC-21 and MCC-16 cells, resulting in the regression
of MKL-1 xenografts upon AK-01 treatment. Therefore, we argue that AK-01 leads to dis-
tinct cytotoxic effects on MCC cells harboring MCPyV (Figure 1 and Figure S1), justifying
further investigation.

AURKA has been shown to phosphorylate AKT and mTOR in promoting chemother-
apy resistance [40]. This is unlikely the underlying mechanism leading to increased apop-
tosis in MCC cells as p-AKT and p-mTOR levels were unchanged upon AK-01 treatment.
As AURKA inhibitors have demonstrated anti-tumor activities either as a single agent or in
combination in MYCN-positive human glioblastoma and AURKs are attractive therapeu-
tic targets in c-Myc-driven lymphoproliferative disorders [32]. However, examination of
mRNA expression failed to reveal a definitive association between Myc expressions upon
AK-01 treatment in MCC cells and xenografts.

Recently, AK-01 has demonstrated activities in patients with tolerable side effects
in an early-stage clinical trial [44]. However, one of the enduring challenges in cancer
management is the resistance developed to targeted therapy. Surprisingly, we observe
the short durability after discontinuation of AK-01 treatment in both MCC-9 and MKL-1
xenografts. We reason that AK-01 might be less effective to non-cycling cancer stem cells,
and AK-01 might be advantageous in the combinatorial setting. Although, in the study by
Gong et al., which demonstrates a response to AK-01 after relapse in the ovarian cancer
models, MKL-1 xenografts have developed resistance and fail to retain xenograft tumor
growth upon re-treatment [43]. Ideally, in vivo testing should be performed in an immune-
competent model system; however, the lack of syngeneic animal models of MCC has
hampered preclinical studies. Collectively, our studies have shown the vulnerability of
MCC to AURKA inhibition by AK-01 and that AK-01 inhibition confers synthetic lethality
in MCC cells with RB loss. Interestingly, our data infer that the cytotoxic effects of AURKA
inhibition by AK-01 on MCPyV-positive MCC are independent of RB expression and
deserve further investigation. Finally, the swift response and resistance development after
short-term exposure to AURKA inhibition provide an important preclinical observation,
highlighting the promises and obstacles in utilizing AURK inhibitors in MCC management.

5. Conclusions

Using patient-derived genetic insights as well as high-throughput drug screening, we
have identified aurora kinase as a therapeutic target in MCC. Our current study provides
conclusive evidence supporting LY3295668 (AK-01), a highly AURKA-selective drug, as
a promising candidate for MCC management. Consistent with published studies, our
data associates this anti-MCC activity of AK-01 to its ability to induce G2-M cell cycle
arrest and apoptosis in an RB-dependent manner in MCPyV-negative MCC. Consistent
with these results, AK-01 profoundly debilitated xenograft tumor growth. Interestingly,
discontinuation of AK-01 resulted in swift relapse with accrued resistance. Our results
support AK-01 as a potential candidate drug for combating MCC and provide critical
evidence for its clinical translation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153708/s1, Figure S1: Basal level of Rb1 expression in MCC cells, Figure S2: Body
weight of mice receiving AK-01 treatment, Figures S3–S6: Full western blot images for Figure 2,
Figure S7: Full western blot image for Figure S1, Table S1: Evaluation of AK-01 toxicity in mice.
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