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SUMMARY
Inflammasomes are protein complexes that mediate innate immune responses whose dysregulation has
been linked to a spectrum of acute and chronic human conditions, which dictates therapeutic development
that is aligned with disease variability. We designed a scalable, physiologic high-content imaging assay in
human PBMCs that we analyzed using a combination of machine-learning and cell biology methods. This
resulted in a set of biologically interpretable readouts that can resolve a spectrum of cellular states associ-
ated with inflammasome activation and inhibition. These methods were applied to a phenotypic screen that
surfacedmechanistically distinct inflammasome inhibitors from an annotated 12,000 compound library. A set
of over 100 inhibitors, including an array of Raf-pathway inhibitors, were validated in downstream functional
assays. This approach demonstrates how complementary machine learning-based methods can be used to
generate profiles of cellular states associated with different stages of complex biological pathways and yield
compound and target discovery.
INTRODUCTION

The innate immune system is our first line of defense against

foreign and internal threats, and inflammasome signaling path-

ways are critical for receiving and amplifying responses to

these threats. As such, dysregulation of these pathways has

been causally linked to myriad chronic (rheumatoid arthritis,1

gout2) and acute (sepsis,3 acute respiratory distress syndrome

[ARDS4]) human inflammatory pathologies, creating need for

therapeutic development that is aligned with the diversity of in-

flammasome-associated human conditions.

Canonical inflammasome pathways are activated through a

variety of stimuli, including the danger associated-signal ATP

and the pathogen-associated signal flagellin. These primary sig-

nals can drive secondary inflammatory responses in neighboring

cells by inducing pyroptotic release of inflammatory cytokines

and danger associated molecular pattern (DAMP)-containing

proteins.5–7 Inflammasome pathways converge at three stages:

(1) expression of pro-IL-1b and pro-IL-18, (2) inflammasome
iScience 27, 111404, Decem
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complex assembly (consists of an NLR/sensor protein, an

apoptosis-associated-speck-like protein-containing-a-CARD

domain (ASC) protein, and caspase-1), whichmediates cleavage

of pro-IL-1b, pro-IL-18, and the pore-forming protein Gasdermin

D (GSDMD), and (3) GSDMD mediated cellular release of IL-1b,

IL-18, and DAMPs, which serves as the terminal step in the

inflammasome-mediated cell death process, termed pyropto-

sis8–10 (Figure 1A).

Experimentally measuring inflammasome activation and in-

hibition typically relies on single, late pathway readouts from

monocyte-based in vitro systems. As we demonstrate here,

these methods are generally unable to resolve the complex-

ities and redundancies of inflammasome signaling, and we

therefore expanded on the principles of Cell Painting11 to

develop an in vitro imaging based system coupled with a

holistic machine learning (ML) approach to resolve intra- and

inter-inflammasome pathway differences in PBMCs for the

purpose of discovering multiple, functionally diverse inflam-

masome inhibitors.
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Using conventional monocytic pyroptosis assays to gauge inflammasome inhibition and establishment of a high-content imaging

based inflammasome assay in human PBMCs

(A) Schematic of inflammasome pathways, control activators, and inhibitors.

(B) THP-1:HMGB1 Lucia reporter assay stimulated Nigericin following LPS priming. Inflammasome activation and inhibition is measured from extracellular

luminescence signal of released HMGB1:Lucia. Signal shown is the average of triplicate points with standard deviation, Z score normalized, and plotted against

the log of compound concentration. Curves were fit with a log(agonist) vs. response variable slope (four parameters) least squares fit model.

(C) Primary human monocytes were treated with flagellin alone or ATP and Nigericin with and without an LPS priming step. Inflammasome activation was as-

sessed by extracellular IL-1b levels and compared to vehicle (DMSO) control. Data are shown as the average of four replicates with standard deviation. Statistical

significance measured by two-tailed unpaired MannWhitney U tests; *p < 0.05, **p < 0.005, ***p < 0.0005, (D) Inhibition of ATP-induced inflammasome activation

on primary human monocytes with four control compounds: MCC950, TH1020, Disulfiram, and A-804598. Data are shown as average pg/ml IL-1b of triplicates

and standard deviation from a representative experiment and fit with a log(agonist) vs. response variable slope (four parameters) least squares fit model.

(E) Inhibition of Flagellin-induced inflammasome activation on primary human monocytes with four control compounds: MCC950, TH1020, Disulfiram, and

A-804598. Data are shown as average pg/ml IL-1b of triplicates and standard deviation from a representative experiment and fit with a log(agonist) vs. response

variable slope (four parameters) least squares fit model.

(F) Primary human monocytes activated with ATP following LPS priming were inhibited with a set of mechanistically distinct compounds showing different

degrees of inhibition. Data are shown as average pg/ml IL-1b of triplicates and standard deviation from a representative experiment and fit with a log(agonist) vs.

response variable slope (four parameters) least squares fit model.

(G) Inflammasome activation of human PBMCs with 6 inflammasome stimuli and subsequent inhibition by 20 mM MCC950, 20 mM A-804598, and 40 mM

disulfiram. Data shown as average of four replicates from a representative experiment with standard deviation. Statistical significance determined using two-

tailed unpaired Mann Whitney U tests; *p < 0.05, **p < 0.005, ***p < 0.0005.

(H) Activated PBMCs stained with cell biological stains: Nucleus (Hoechst; blue), Cell membranes (Concanavalin A; purple), actin cytoskeleton (Phalloidin; green),

and ASC (Indirect immunofluorescence of an anti-ASC antibody; yellow). Automated measurements of ASC assess speck presence, area, and cellular distri-

bution. Insets show zoomed in cells with ASC specks. Scale bars for field level image and insets = 10 mm.

(I) ASC speck presence quantification of PBMCs stimulated with LPS, Nigericin, Flagellin, Poly I:C, orMDP. Data are shown as box (median, Q1, Q3) and whiskers

(range) of single-well replicates from 12 unique human donors from a representative experiment. Activated PBMCs were inhibited with 3 control inhibitors:

MCC950 (20 mM), Disulfiram (40 mM), and A-804598 (20 mM). Statistical significance determined using two-tailed unpaired Mann Whitney U-test; *p < 0.05,

**p < 0.005, ***p < 0.0005.

(J) ASC speck presence quantification of ATP activated PBMCs. Data are shown as box (median, Q1, Q3) andwhiskers (range) of single replicates from 12 unique

human donors from a representative experiment. Activated PBMCs were inhibited with 3 control inhibitors: MCC950 (1 mM), Disulfiram (5 mM), and A-804598

(1 mM). Statistical significance determined using unpaired Mann Whitney U-test; *p < 0.05, **p < 0.005, ***p < 0.0005. See also Figure S1.
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To identify and define cellular states that fall along a spectrum

from basal to pyroptotic, we first applied supervised and unsu-

pervisedML basedmethods to high-content imaging data. Inter-

pretable biological metrics were extracted from these methods

and validated using established ground-truth measurements

across known inflammasome control conditions. These metrics
2 iScience 27, 111404, December 20, 2024
were applied to compound screening data and used to surface

a set of mechanistically distinct inhibitors that act at various

stages of inflammasome signaling along a spectrum from basal

to pyroptotic. From this work, multiple members of the Raf

pathway were identified as potent inflammasome targets.

Generally, this approach could be used to disambiguate other
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interconnected biological pathways (e.g., Wnt or TLR signaling)

from high-content imaging data for the purpose of target discov-

ery and drug screening.

RESULTS

Conventional monocytic assays cannot resolve critical
intra- or inter-inflammasome pathway differences
We first tested the ability of a commonly used THP1 reporter

assay to resolve differences between mechanistically distinct in-

flammasome pathway inhibitors. In this assay, inflammasome

signaling is measured by luminescence detection of pyroptoti-

cally released HMGB1:Lucia from cells that are primed using

lipopolysaccharide and activated through the NOD-like protein

NLRP3 with Nigericin. We tested the system using the control

NLRP3 inhibitor MCC950, which mediated an expected

dose-dependent inhibition of pyroptosis. We then applied three

functionally different compounds, NFkB-in-1 (NFkB inhibitor),

TH1020 (TLR5 inhibitor), and omaveloxolone (NRF2 modulator),

which all performed similarly to MCC950, despite their unique

mechanisms of action (Figure 1B).

We next established a similar system in primary human mono-

cytes to study inflammasome pathways in a more sensitive and

physiologically relevant assay. Cells were activated across a

series of stimuli and secreted IL-1b was used as a readout of in-

flammasome activation.12 LPS priming was required for signifi-

cant nigericin or ATP mediated IL-1b release through NLRP3,

and the NLRC4 activator flagellin induced significant levels of

IL-1b release on its own (Figure 1C).

Focusing on two inflammasome activators, we tested the abil-

ity of several inflammasome inhibitors to inhibit IL-1b release in

monocytes following flagellin or ATP activation. MCC95013

dose-dependently blocked ATP activation as expected, but it

surprisingly also inhibited flagellin mediated IL-1b release

despite literature reports indicating flagellin operates through

NLRC4.14 MCC950may therefore act on NLRP3 that is activated

either directly by flagellin15 or alternatively by pyroptotically

released ROS, potassium, or other DAMPs following primary

signaling through NLRC413,16 in neighboring cells. The gasder-

min D inhibitor disulfiram12 also prevented IL-1b release for

both activators, which is expected given its critical role at

the terminal stage of convergent inflammasome pathways

(Figures 1C–1E), while the ATP receptor P2X7 inhibitor,

A-804598, demonstrated expected specificity for ATP activated

cells. We hypothesized that TH1020 would show specificity for

flagellin activated cells given its reported role as a TLR5 inhibitor,

but it potently inhibited pyroptosis in both flagellin and ATP acti-

vated cells (Figures 1D and 1E), suggesting it may act promiscu-

ously across inflammasome pathways.

Interestingly, the apoptosis inducers RA190 (proteasome in-

hibitor) and patulin (mycotoxin) have roughly 10-fold lower

IC50s than MCC950 in primary monocytes (Figure 1F), but they

likely prevent IL-1b release by shifting to different death pro-

grams rather than through direct inhibition of pyroptosis. Thus,

these monocytic models measure the potency of inflammasome

inhibition, but they are unable to discriminate between mecha-

nistically distinct inhibitors, including those that act non-specif-

ically to bypass inflammasome activation. We therefore set out
to establish a physiologically relevant in vitro system optimized

to discover and characterize mechanistically distinct, inflamma-

some specific modulators.

Inflammasome activation under various stimulation
conditions can be measured from high-content images
of primary human PBMCs
We next established a high-content imaging assay of inflam-

masome activation in primary human peripheral blood mono-

nuclear cells (PBMC). All conditions tested were validated

using control inflammasome inhibitors and the established

functional readouts IL-1b release and ASC speck presence.

These importantly served as ground-truth measurements to

validate experimental parameters and downstream machine-

learning generated readouts. Additionally, all experiments

throughout this study were designed to minimize experimental

and biological variability as detailed in the methods and

Figure S2.

PBMCswere seeded on 384-well imaging plates and indepen-

dently activated withMDP, flagellin, Poly I:C, ATP, LPS, or Niger-

icin. Three validated inflammasome inhibitors, A-804598 (P2X7

inhibitor), MCC950 (NLRP3 inhibitor), and disulfiram (gasdermin

D inhibitor) were used to demonstrate control of the system.

IL-1b levels in collected supernatants indicate that none of the

tested stimuli required a priming step, and they induced inflam-

masome activation to varying levels (Figure 1G). MCC950 effec-

tively inhibited IL-1b release for all stimuli, including flagellin and

MDP, suggesting these stimuli may lead to NLRP3 activation

either directly17,18 or following pyroptotic release of DAMPs

and other signaling molecules from neighboring cells.5,6 Disul-

firam similarly blocked IL-1b release across all conditions, which

is expected given its late, post-pathway convergence mecha-

nism of action (MoA), and also provides evidence that inflamma-

some signaling was maintained at a controllable level in this

assay. Conversely, A-804598 showed strong effects only under

ATP activation, which aligns with its specificity for an ATP recep-

tor (P2X7; Figure 1G).

High content images of the activated cells were collected

following fixation and staining with a palette that included a sub-

set of traditional cell painting dyes and an antibody used to

detect ASC by indirect immunofluorescence. Automated mea-

surement of ASC speck features known to be associated with in-

flammasome complex activation and formation,19,20 including

speck presence, area, and cellular distribution, were used to

assess activation at the single-cell level (Figure 1H). All six acti-

vation conditions induced statistically significant increases in

ASC speck counts without altering speck area or distance

from the center of the cell across 12 independent PBMC donors

(Figures 1I, 1J, S1A, and S1B). Corroborating the IL-1b findings,

these activators induced a range of ASC speck positivity in

treated cells that was sensitive toMCC950 and disulfiram across

all conditions (Figures 1I and 1J), and to A-804598 in ATP acti-

vated cells (Figure 1J).

Altogether, we validated an imaging-based in vitro system in

PBMCs that served as the foundation for using ML to define

mechanistically distinct inflammasome cellular states that

could in turn be used to surface inflammasome compound

modulators.
iScience 27, 111404, December 20, 2024 3
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Figure 2. Developing machine learning tooling to measure inflammasome states from imaging data

(A) Schematic of extracting embeddings from images of human PBMCs.

(B) Representative images of cells predicted to belong to clusters 1–4 as indicated. PBMCs stained with Phalloidin, Concanavalin A, anti-ASC, and Hoechst. All

images are the same zoom; Scale bar, 10 mm.

(C) Schematic of process for identifying morphological clusters and their associations with inflammasome activation and inhibition. See also Figure S3.

(D) Averagemedian frequency of cells positive for clusters 1–4 following treatment with control inflammasome inhibitors of ATP activated PBMCs. Data shown as

average over n = 15 experiments of the within-experiment median of 16 replicates for each of two donors. Each cluster was normalized as a percent of vehicle

control and scaled as a fraction of 1 to visualize relative compositional changes between treatment groups.

(E) Same as D, but under flagellin activation.

(F) Confusion matrix of deep learning classification model of inflammasome activation states on human PBMCs using image embeddings. Overall model ac-

curacy shown above the matrix, class specific accuracies displayed to the right. The morphological profile is the well representation obtained by median-

averaging VGG16 embeddings of each cell detected in the well.

(G) Binary confusion matrix of deep learning classification model of basal vs. flagellin (top) or ATP (bottom) inflammasome activation states on human PBMCs

using image embeddings.

(H) Confusion matrix of deep learning classification model of inflammasome inhibition states on ATP activated human PBMCs using deep learning morphological

profiles as input. Overall model accuracy shown above the matrix, class specific accuracies displayed to the right. The morphological profile is the well rep-

resentation obtained by median-averaging VGG16 embeddings of each cell detected in the well.

(I) Same as H, but under flagellin activation.

(J) Ranking software view of compoundmediated on and off basis effects on ATP and flagellin activated PBMCs. Data shown represent the difference (p value) of

each condition relative to the activated vehicle control of 16 replicates for each of two donors and across three experiments (each row is an experiment). Analyses

shown for individual cell types (monocytes, lymphocytes) as described in the methods, and all cells and shown as relative p values calculated using two-tailed t

tests. Data are organized in a matrix with features along the x axis and compound treatments along the y axis. Colors indicate directional change (magenta:

decrease, green: increase) and intensities vary by statistical confidence.

(K) UMAP of deep learning morphological profiles from ATP activated cells. Clusters of inhibitor treated cells are colored and indicated in the figure.

(L) UMAP of deep learning morphological profiles from flagellin activated cells. Clusters of inhibitor treated cells are colored and indicated in the figure. See also

Figure S3.
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Morphologically distinct cell subtypes identified from
unsupervised cluster analysis can be used to resolve
different stages of inflammasome signaling
To develop ML-based tooling, we first generated high-dimen-

sional statistical representations, called embeddings, from im-

ages of PBMCs (Figure 2A). Embeddings are distinct from fea-

tures derived from classical cell painting pipelines such as

CellProfiler21 in that they are extracted from neural networks

that allow ML algorithms to use all the data in an image rather
4 iScience 27, 111404, December 20, 2024
than being limited to predefined features. From embeddings,

imaged cells were assigned to cellular subclasses using cell

type classifiers that were developed using insights gained from

previously performed unsupervised cluster analysis.22 All subse-

quent PBMC analyses in the present study were performed on

lymphocytic and monocytic subclasses as well as an aggrega-

tion of all cells.

We next applied hierarchical clustering to single-cell embed-

dings to identify phenotypically distinct cell subtypes (PDCS).
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Using odds ratios (OR) to assess cluster membership, we found

four independent PDCSs that significantly correlated with basal

or inflammasome activation conditions (Figures 2B, 2C and

Figures S3A and S3C).

The first two of these clusters were associated with the basal

state and had OR of 2.66 for cluster 1 and 1.64 for cluster 2. Both

clusters 1 and 2 had decreasedmembership and OR of less than

1 with activated cells, indicating that cells shift away from these

clusters upon inflammasome activation (Figures S3C and S3D).

Additionally, ASC speck positivity was lower in cluster 1 under

activation conditions relative to the global, unactivated popula-

tion (0.08% cluster 1 vs. 0.4% unactivated [all cells] vs. 2.72%

aggregated ATP and flagellin activated [all cells]); Figure S3C),

while cluster 2 ASC positivity under activation conditions was

comparable to the global, unactivated population at 0.4%.

In contrast, clusters 3 and 4 were statistically associated with

activation. Specifically, cluster 3 had a low OR with the basal

state (0.13) and low membership frequency, but was conversely

associated with increased membership frequency, ASC positiv-

ity, and higher OR under activation conditions (OR: ATP 2.13,

flagellin 1.60; ASC aggregated ATP and flagellin: 40.1% cluster

vs. 2.72% all cells). Cluster 3 cells appear large with faint

mitochondrial and nuclear signals and resemble pyroptotic

monocytes.23 Cluster 4 cells appear to be enlarged and mono-

cytic (Figure 2B), and were negatively associated with the basal

state (Figure S3D; OR: 0.38). Cluster 4 membership frequency

and ASC positivity were also enriched relative to both activation

conditions (ASC aggregated ATP and flagellin: 7.7% cluster vs.

2.72% all cells), and had a high OR (2.6) with ATP activation

(Figures 2B, S3C and S3D).

We next determined whether quantification of PDSCs could

serve as a readout for compound potency and mechanism by

measuring control inhibitor mediated shifts in cluster member-

ship. The P2X7 inhibitor control A-804598 induced significant

increases in membership to basal-associated clusters 1 (353%

vehicle +/� 40.44% standard error of the mean [SEM]) and 2

(175% vehicle +/� 9.9% SEM), and reduced membership to

activation-associated cluster 3 (15.78% of vehicle +/� 2.5%

SEM) relative to ATP activated control (Figure S3F). These find-

ings were validated by a decrease in ASC positivity in cluster 3

following A-804598 treatment relative to ATP activated vehicle

(9.2% vs. 11.5% vehicle). In contrast, A-804598 treated cells

shared nearly identical cluster membership and ASC positivity

in all clusters relative to flagellin activated control (Figures 2D,

2E and Figures S3E–S3G), which is expected given the ATP

specificity of P2X7.

TH1020, MCC950, and disulfiram all similarly shifted flagellin,

but not ATP, activated cells toward basal-associated clusters

1 and 2 with little effect on activation-associated cluster 3 in

ATP treated cells, despite reducing its ASC positivity (11.55%

vehicle vs. 1.8% disulfiram vs. 1.2% MCC950 vs. 0.92%

TH1020). Under flagellin activation, however, they lowered clus-

ter 3 membership (MCC950: 32.37% +/� 4.43 SEM; disulfiram:

33.48% +/� 4.55 SEM; TH1020: 35.02% +/� 5.19 SEM all

compared to 100% vehicle) and ASC positivity (70.9% vehicle

vs. 14.8% disulfiram vs. 52.8% MCC950 vs. 29.9% TH1020).

These data indicate that inhibitors that act downstream of

signal initiation suspend cells in activated states, an effect that
would be more evident following stimulation with activators like

ATP that mediate modest responses and whose morphological

profiles are dominated by the primary activation signal

(Figures 2D, 2E and Figures S3E–S3G). In contrast, the morpho-

logical profile of a more potent activator like flagellin (Figure 1G)

may be dominated by neighboring cells that secondarily respond

to pyroptotic release of proinflammatory signals, and would

therefore be more sensitive to inhibitor-induced compositional

shifts when the secondary response is blocked. PDSC member-

ship frequency can therefore be used to resolve these effects

and identify compound mechanisms of action at various stages

of activation.

Similar to cluster 3, frequency of cells belonging to cluster 4

decreased following MCC950 and TH1020 treatments on

flagellin activated cells, and A-804598 treatment on ATP acti-

vated cells. Disulfiram, however, shifted activated cells into clus-

ter 4 (ATP: 144.57% +/� 21.98 SEM; flagellin: 144.02% +/�
17.67 SEM; compared to 100% vehicle) while lowering its

ASC positivity (ATP: 5.5% vehicle vs. 1.7% disulfiram;

flagellin: 28.6% vehicle vs. 0.89% disulfiram). Therefore,

disulfiram inhibits inflammasome signaling, but shifts cells into

cluster 4. This indicates that cluster 4 membership can be

used to resolve very late pathway inhibitors from those

whose targets lie upstream of gasdermin D (Figures 2D, 2E;

Figures S3E–S3G).

Altogether, PDSC membership can be used as cell biological

readout for identification and quantification of various stages of

inflammasome signaling.

Trained classification models resolve a spectrum of
inflammasome activated and inhibited cellular states in
human PBMCs
We built a classification model to predict the perturbation

applied to the cells in a given well. The morphological profiles

for each well are used as input to an XGBoost classifier, while

the target mutually exclusive classes are the six inflammasome

stimuli described previously: MDP, flagellin, Poly I:C, ATP,

LPS, and nigericin. The training and validation strategies, as

well as the morphological profile definition, are detailed in the

Methods section. Each activator was tested on 24 independent

donor samples to account for biological diversity and ensure

models learn from inflammasome relevant features that are inde-

pendent of donor differences. All model results are reported us-

ing a 4-fold cross validation approach, where each fold is defined

by training the model on 18 donors, and tested on 6 donors un-

seen in the training set. The resulting model performed with an

average accuracy of 73.04% +/� 1.2 SD and can therefore reli-

ably differentiate between activation states. Notably, flagellin,

ATP, and nigericin predictions were all above 90% accuracy

(Figure 2F). Importantly, we also trained a model to determine

whether inflammasome activation states are distinct from

other cellular stresses in PBMCs. To do this, we compared the

response of PBMCs to flagellin with other death-inducing com-

pounds, including staurosporine, digoxin, elesclomol, lanatoside

C, darapladib, and doxorubicin, which have been shown to

induce apoptosis, necrosis, and other types of cell death. Our

model successfully discriminated between these compounds

with 78.2% accuracy, with some expected confusion between
iScience 27, 111404, December 20, 2024 5
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lanatoside C and digoxin, which are both glycosides extracted

from digitalis plants (Figure S1C).

We next selected ATP and flagellin as stimuli for the down-

stream screening effort due to their specific and robust re-

sponses and trained binary classifiers on PBMCs to distinguish

between basal and ATP or basal and flagellin activated PBMCs

(Figure 2G). These classifiers perform with very high accuracy

(flagellin overall accuracy of 93.75%, and ATP overall accuracy

of 97.66%) and confidently predict the basal and activated

states. Further, focusing on ATP and flagellin allowed us to inter-

rogate two different biological pathways that cover DAMP and

PAMP stimuli.

We also trained models to discriminate between inflamma-

some inhibition states on ATP- or flagellin-activated PBMCs

using the following established inhibitors: MCC950, disulfiram,

A-804598, TH1020, Z-VAD-FMK (caspase 1 inhibitor), and

DMSO (vehicle control). Overall model accuracy was

71.04% for ATP and 75.21% for flagellin-activated conditions

(Figures 2H and 2I). A-804598 expectedly showed significant

confusion with flagellin-activated vehicle but had high accuracy

(92.50%) on ATP-activated cells. Interestingly, MCC950

showed confusion with the ATP-activated vehicle (48/80 wells),

and to a lesser extent with flagellin-activated vehicle (19/80

wells). This again validates the hypothesis that MCC950 sus-

pends inhibited cells in an activated state, and this effect is

more pronounced when there is limited secondary activation

from pyroptotically released molecules, such as what is

observed with ATP stimulation. Disulfiram classification had

relatively much higher accuracy, likely because it acts much

farther downstream and induces unique, distinguishable states

of cellular inhibition, such as what was seen with cluster 4

enrichment.

Projection scores assess similarity and dissimilarity to
control activated or basal states in PBMCs
In addition to training classifiers, we evaluated compounds

using on- and off-basis scores. These scores were generated

with the same normalized well profiles used for the classifiers,

and analyzed using a geometric approach whereby a

basis vector is first established in the embedding space that

leads from activated data to basal, non-activated data (one

vector per activation condition; vehicle and plate-level

controlled).

Subsequently, the on-basis scores for a given compound un-

der an activation condition is calculated by first generating a

vector from the vehicle-activated control to the compound in

question, then taking the normalized scalar projection of that

vector onto the basis vector for the given activated vehicle-

control. The resulting output is a singular, scalar value, where

1.0 is interpreted as identical to the basal state, 0.0 is inter-

preted as identical to the activated condition, and values in

between are fractional blends of the two. Correspondingly,

off-basis scores are similarly calculated, but with a normalized

scalar rejection. The resulting output is also a singular, scalar

value, where larger values represent phenotypic differences

orthogonal to the differences between the basal and activated

states, and a value of 0 represents no orthogonal phenotypic

differences.
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Combined model outputs resolve a spectrum of
activation and inhibition cellular states in PBMCs from
high-content imaging data
Classifier output scores (how a model classifies compound ef-

fects) and projection values were used to quantify compound-

mediated effects using the activated state as a reference.

Here, unactivated and inhibited cells have low activation model

scores, and compounds that do not inhibit appear neutral. Com-

pounds that induce effects that are similar to a modeled control

inhibitor (such as disulfiram) will have high disulfiram scores,

while those that drive differential effects will have low disulfiram

scores.

A-804598 had low activation classifier output scores and high

on-basis scores relative to vehicle-treated ATP-activated cells,

but appeared neutral under flagellin activation, as expected.

MCC950 treatment of ATP-activated PBMCs mediated high

off-basis and low on-basis scores for monocytes with neutral

activation classifier output scores. This combined effect may

be due to MCC950 suspending inflammasome sensitive cells

such as monocytes in an activated state that cannot progress

and that have low ASC positivity. In flagellin-activated PBMCs,

however, MCC950 had high on-basis scores and low activation

classifier output scores across all cell types, suggesting it retains

a proportion of cells in their basal state. Lastly, disulfiram

induced high off-basis scores for all ATP- and flagellin-activated

cells, low on-basis scores for all ATP-activated cells, and low on-

basis scores for flagellin-activated lymphocytes (Figures 2J and

S3B), suggesting that inhibition at the final step before pyropto-

sis orthogonally changes cell morphology.

Execution of a high-content imaging screen of
inflammasome activated PBMCs in vitro yields
functional classes of treated cells
We next scaled these analytical tools and experimental methods

into a high content imaging (HCI) screen of ATP- or flagellin-acti-

vated PBMCs treated with a 12,000 compound bioactive library

with a goal of identifying unique targets and categorizing func-

tionally diverse compound inhibitors (Figure 3A). Plate layouts

were designed to maximize compound comparisons and mini-

mize plate and donor variability (Figure S2A). Possible experi-

mental confounders were interrogated by conducting a quality

analysis to identify variability across plates, donors, and well lo-

cations. Cell counts, stain intensities, and focal quality were

calculated for each well. Cell counts and sub-type representa-

tion were evaluated in donor control wells to monitor for donor-

driven effects (Figures S2B–S2H).

To verify that the morphological profiles captured relevant

phenotypic differences, we generated UMAP24 (Uniform Mani-

fold Approximation and Projections) visualizations. Here, acti-

vated and basal states segregated into independent clusters

without any obvious clustering driven by donors or experimental

confounders (Figures 2K and 2L). Further validation of this was

seen in the A-804598 treated wells, which were associated

with the basal state while under ATP activation and the activated

state while under flagellin activation. Similar to what was

observed in the PDCS clusters and classification model outputs,

MCC950 treatment closely resembled the activated vehicle con-

trol under ATP activation, but it shifted flagellin-activated wells
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Figure 3. Compound hit identification and mechanistic classification from a high-content imaging screen

(A) Schematic of targeted scoring approach. PDSC = phenotypically distinct cellular subtype; TSMC = targeted scoring minimum criteria; TSCC = targeted

scoring categorization criteria.

(B) Breakdown of scores for a set of literature validated inflammasome inhibitors; Z score normalized and plotted as fraction of total for each compound. Does not

rank by potency, just predominant mechanism.

(C) General score distribution under ATP or flagellin activation for hits from early ATP class. Hits shown are those that met a stringent TSCC (>20 general score;

Early: >120 (sum of general + early per condition) for one condition and relative ATP::Flagellin relationship [(Max-Min/Max)] of at least 0.7; Terminal: general >10,

terminal >15 for both ATP and flagellin; Convergent: early scores >70 for ATP and >100 for flagellin, with a relative ATP::Flagellin relationship [(Max-Min/Max)] of

<0.7. Color gradient denotes relative scores. The higher intensity points are the selected compounds, while the lower intensity points represent the rest of the

compounds tested.

(D) Same as C, but for early flagellin class.

(E) Same as C, but convergence class.

(F) Same as C, but terminal class.

(G) Heatmap showing breakdown of hits meeting the same stringent TSCC as used in C. Rows are compounds grouped by mechanistic class (indicated in

brackets), and columns are aggregated scores of each compound. See also Figures S4 and S5.
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away from the activated vehicle cluster. Disulfiram-treated wells

formed their own distinct groupings under both conditions that

were not associated with possible experimental confounders

(Figures 2K and 2L).

Holistic scores that integrate ML and cell biological
readouts can surface and mechanistically categorize
inflammasome inhibitors from high content imaging
screen
Compound-mediated effects were analyzed using the methods

described previously, namely ASC speck quantification, PDSC

membership, and classification model outputs and projection

scores. The resulting p values for each readout were ingested

into our Ranking software tool where data are organized in a ma-

trix of features and compounds, andwhere colors indicate direc-

tional change and intensities vary by statistical confidence (list of

readouts shown in Table S1). Notably, no single readout suffi-

ciently defined the spectrum of inflammasome associated

cellular states, so we adopted a comprehensive, hypothesis-
driven targeted scoring (TS) system to aggregate the interpret-

able biological readouts collected using our various analytical

tools and filter hits according to assigned thresholds.

We first designed a general score to establish a targeted

scoring minimum criteria (TSMC) for identifying inflammasome

inhibitors. This score applied directional weights to the calcu-

lated p values for a set of selectedML and cell biological features

that are broadly associated with inflammasome inhibition,

including a decrease in ASC specks and an increase in alive cells

(Figure S4A). A weighted sum of the resulting values was calcu-

lated for each compound treatment, and a minimum score of 20

from at least one condition (ATP or flagellin) was set as a mini-

mum threshold that yielded 1,965 potential inflammasome inhib-

itors (Table S2).

All compounds that met the TSMC were then subjected to a

series of scores designed to categorize compounds into the

following functional classes: (1) early ATP, (2) early flagellin, (3)

shared pathway convergence, and (4) terminal. We also imple-

mented a toxicity score to identify conditions that induce
iScience 27, 111404, December 20, 2024 7
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inflammasome-independent unhealthy or dying cells (Fig-

ure S4A). 1,018 of the 1,965 compounds that met the minimum

threshold using the general score criteria also met the TS classi-

fication criteria (TSCC) required to be assigned a mechanistic

class, and 112 of those were flagged as potentially toxic

(Table S2). This yielded an overall hit rate of 7.55%, which is

not unexpected from a phenotypic bioactive library screen

where all compounds have been demonstrated to have biolog-

ical effects, and where the screening criteria are not limited to

a specific target(s).25 Importantly, a set of literature-validated in-

hibitors, including CY-09,26 tenofovir,27 and ruscogenin,28 as

well as compounds targeting P2X7, NRTI,27,29 HSP90,30

PDHK,31 or BTK32 had positive general scores (Figures 3B and

S4B), substantiating our experimental and analytical methods.

General score distributions for top scoring compounds as-

signed to the ATP or flagellin early classes showed high relative

condition-specific scores compared to all compounds, and low

relative terminal and toxicity scores. These same compounds

adopted neutral distributions for all scores relative to the general

population in their respective non-effective conditions. Conver-

gence was determined by positive general score distributions un-

der both activation conditions, and neutral to negative terminal

and toxicity scores. The terminal inhibitor class had similar general

score distributions under both conditions, but had relatively high

terminal scores (Figures 3C–3F and Figures S5A and S5B).

Mechanistic classes are clearly delineated in a heatmap of top

scoring compounds, where compounds are ordered by their

functional classes on the y axis and their normalized scores on

the x axis (Figure 3G). Altogether, these data demonstrate that

this approach can be used to mechanistically define induced

cellular changes from an HCI phenotypic screen to surface and

categorize hits.

A hypothesis-free method using morphological profile
shifts can be used to identify and validate screening hits
As a parallel approach, we utilized a hypothesis-free analysis in

the feature space defined by compound morphological profiles.

Morphological profiles were Z scored against the activated

vehicle control distribution for the corresponding donor, plate

and activator, so activated control profiles are normally distrib-

uted, and the Euclidean norm of the profile vector represents

the overall distance from the average activated control profile.

Compoundmediated distribution shifts (CMDS) ofmorpholog-

ical profile vector norms in different activation conditions can be

used for mechanistic compound classification. For example,

disulfiram mediated distributions were significantly different

from both ATP- and flagellin-activated states, while A-804598

exhibited a significant distribution shift only under ATP

activation. TH1020 distribution deviated strongly from flagellin-

activated control, but it also induced a radial shift away from

ATP-activated control. In alignment with the classification

models and morphological cluster profiles, MCC950 mediated

distribution changes in flagellin-, but not ATP-, activated wells

(Figures 4A–4D; Figures S6A–S6D).

Four quadrants were defined in themorphological profile norm

plane using the 99th percentiles of activated DMSO as thresh-

olds. Here, compounds that mediated shifts above the threshold

for both activation states were called late stage inhibitors, while
8 iScience 27, 111404, December 20, 2024
those with single condition effects were called early or pathway

specific inhibitors, as exemplified by the control compounds

(Figures 4E and 4F).

We next usedCMDS to cross-validate hits from the hypothesis

driven TS approach. Importantly, thismeasurement surfaces any

induced differences that are greater than biological variability of

activated DMSO, so to focus on inflammasome relevant func-

tions, we applied the toxicity score and ASC speck measure-

ment as filters to generate a list of 2,037 potential inflammasome

inhibitors (Table S3). The literature-validated compounds high-

lighted previously using the TSmethod performed similarly using

CMDS, demonstrating that this method reliably surfaces inflam-

masome inhibitors (Figures 4G and S6E).

1,142 of the CMDS identified compounds also met the TSMC

of 20, which shared a 78.9% overlap with the hits generated

using the TS method and meeting the same toxicity and ASC

speck thresholds. 534/895 (64.35%) of the CMDS compounds

that did not meet the TSMC of 20 had general scores above 10

and would have been TSMC hits if the scoring criteria had been

lowered by half. Similarly, a majority of the non-overlapping TS

identified compounds (219/367; 60%) that did not meet the

99th percentile CMDS criteria met a looser 95th percentile cut-

off (Figure 4H). Thus, there is strong agreement between the

hypothesis-independent CMDS method and hypothesis-

dependent TS method. This alignment was remarkably strong

with the compounds that induced changes meeting the

TSCC, where there was 91.1% overlap with CMDS (Figure S4A

and Table S3).

As described previously, the CMDS method can be used to

define early and late inflammasome inhibition states. 98.7% of

non-toxic TSCC compounds classified as convergent or terminal

inhibitors were also categorized as late pathway inhibitors using

the CMDSmethod. There was less agreement for condition-spe-

cific compounds, which is likely due to the fundamental

differences in how thresholds were set. In order to identify acti-

vation-specific inhibitors, the CMDS method requires significant

compound mediated differences in either ATP or flagellin

activated cells and explicitly not the other. The TSCC method,

however, defines compounds as pathway specific if they

predominantly induce effects under one activation condition,

but allows them to mediate some phenotypic changes in the

other. Thus, most of the compounds classified by TSCC as con-

dition-specific were classified as late pathway inhibitors by

CMDS. Altogether, the CMDS approach can be used to identify

functionally distinct inflammasome inhibition states and validate

hypothesis driven discovery methods.

Raf-MEK-ERK and HSP90 are potential mediators of
inflammasome signaling as revealed by compound
annotation enrichment and cosine similarity
Within the bioactive compound library, there are many instances

where multiple compounds are annotated as modulators of the

same target. We used these annotations to surface targets that

are important for inflammasome signaling. To be considered,

targets had to have at least 5 annotated compounds in the library

and at least 2 compounds identified as hits. Target enrichment

was calculated as the percentage of compounds in the hit list

divided by the percentage of compounds in the library.
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Figure 4. Compound mediated distribution shifts (CMDS) of morphological profiles to identify and characterize inflammasome inhibitors

(A–D) Comparison of control inhibitors and DMSO distributions for ATP and flagellin activation in the plane defined by the first two principal components of the

morphological profile.

(E) Comparison of control inhibitors and DMSO distributions in the plane defined by the norm of the morphological profile vector under ATP activation (x axis) and

flagellin activation (y axis).

(F) For each control inhibitor the fraction of replicates beyond the 95th percentile of the DMSO distribution is reported alongside the average p value obtained by

comparing two randomly sampled replicates against the DMSO distribution (null hypothesis) using Welch’s t test.

(G) CMDS of morphological profiles of literature validated inflammasome inhibitors.

(H) Sankey chart showing hit designation for the distance based and targeted scoring methods, and alignment of methods (purple flow). See also Figure S6.
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Unsurprisingly, compounds targeting P2X7 had a very high

enrichment factor of 13.4x under ATP activation. Interestingly, 3

of the 10 targetswith greater than 4x hit-enrichment under flagellin

activation belong to the Raf signaling pathway, strongly impli-

cating this pathway in inflammasome signaling. HSP90, which

has been shown to stabilize Raf, had an enrichment factor of 8.1

(Figures 5A and 5B).33,34 Raf and HSP90 were also on the ATP

activation list, implicating these targets in multi-pathway MoAs.

We next assessed whether compounds annotated to hit the

same target are phenotypically similar to validate their MoAs

and targets. To do this, we first measured cosine similarity35 be-

tween Z score normalized morphological profiles under the

flagellin activation condition. For example, HSP90 inhibitors

were found to be strongly enriched in the hit list, and five out of

seven compounds surfaced from the screen were predicted to

have close similarity to each other, while two diverged (Figure 5E).

We then compared TSCC scores and found that the five com-

pounds with the most similarity had high general, low terminal,

and low toxicity scores for both conditions. The two divergent

compounds, however, had high toxicity and terminal scores (Fig-

ure 5F), supporting use of these metrics to confirm target mecha-

nisms and identify phenotypically similar compounds.

Similar analyses were performed on Raf, MEK, and ERK com-

pounds to calculate similarity at both the target and pathway

levels. As shown in Fig 5G and A set of MEK inhibitors have
strong similarity to each other as well as to subsets of Raf and

ERK inhibitors, demonstrating that these compounds perform

similarly and validating this pathway as integral to inflammasome

signaling. TSCC scores indicate that these compounds mecha-

nistically act on both ATP and flagellin activated cells, with some

preference for flagellin and generally with low toxicity (Figure 5H).

These screening data suggest that HSP90 inhibitors as well as

compounds targeting the Raf-MEK-ERK signaling pathway are

involved in a step shared by multiple pathways or are involved

in secondary activation of NLRP3 following pyroptotic release

of DAMPs and other signaling molecules.

Compound testing across several activation conditions
in PBMCs validates and refines mechanistic
classifications of screening hits
To hone mechanistic classification of top hits and implicate spe-

cific targets in inflammasome signaling, we generated a list of

299 compounds to test across several activation conditions in

PBMCs. 234 compounds were selected based on high

screening scores for each of the functional classes, 50 com-

pounds were selected based on enriched target annotations,

and 15 compounds were selected based on high cosine similar-

ity scores to enriched targets (Table S4).

Each compound was tested on PBMCs independently

activated with the six stimuli described above (ATP, flagellin,
iScience 27, 111404, December 20, 2024 9
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Figure 5. Target and pathway discovery using enrichment scores and cosine distances from screening data

(A) Targets with more than 5 compounds in the library and which were present on the flagellin activated list. Shown as percent total compounds in the library

(black) relative to percent compounds on the hit list (gray).

(B) Table detailing the number of compounds represented by target in the library and in the hit list under flagellin activation. Also shown is the calculated

enrichment value (% hit/% total).

(C) Same as A, but for ATP.

(D) Same as B, but for ATP E. Heatmap of similarity scores from 25 mMHSP compounds on flagellin activated PBMCs using Z score normalized cosine distances.

(F) Targeted scoring visualized as fraction of total score for HSP inhibitors validates similarity score findings.

(G) Heatmap of similarity scores from 25 mM Raf, MEK, and ERK compounds on flagellin activated PBMCs using Z score normalized cosine distances.

(H) Targeted scoring visualized as fraction of total score for Raf, MEK, and ERK inhibitors validates similarity score findings.
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LPS, nigericin, Poly I:C, MDP), and cells were fixed, stained, and

imaged. Image embeddings were extracted and analyzed as

before, and resulting data were ingested into our Ranking soft-

ware tool to assess and score compound-mediated effects.

Directional weights of features associated with various

convergence points across the six inflammasome pathways

were used to generate the following scores for compound clas-

sification: (1) general, (2) early pathway, (3) MCC950 similarity, (4)

late/GSDMD, (5) convergence, (6) high on-basis, and (7) high off-

basis. A pathway multiplier (the sum of conditions with positive

general scores) was also calculated for each compound (score

details in Figures S7B and S7C).

A Pearson’s correlation matrix of compound scores was

generated for each of the six conditions and clustered using

Ward’s method (Figure 6A). These hierarchical data informed

how individual scoreswere aggregated for determining five func-

tional classes of inhibitors, ATP early, flagellin early, early

convergence, convergence, and terminal. Inhibitors were

graded using each score and assigned to their respective maxi-

mally scored class.

On-basis and early pathway scores clustered together with

positive correlation (Figure 6A), and were therefore used to iden-

tify three classes of compounds: those that are specific for (1)
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ATP or (2) flagellin, and (3) those that act at an early pathway

convergence point and retain cells in their basal states across

multiple activation conditions. It is important to note that since

all tested compounds were first screened for ATP or flagellin in-

hibition, we did not surface pathway-specific inhibitors for the

other activators. Rather, these stimuli were used to characterize

compounds that suspend cells following pathway convergence

points or that inhibit secondary signaling by pyroptotically

released molecules. Of the 299 compounds that were tested,

72 suspended cells early in either the ATP or flagellin activation

states (31 ATP, 41 flagellin), and 61 inhibited cells following early

pathway convergence points (Table S4). These classes are

distinguishable by principal-component analysis (PCA) and

easily visualized in a heatmap where compounds are ordered

on the y axis according to their assigned mechanistic classes

and on the x axis by their respective aggregate or condition-spe-

cific scores (Figures 6B, 6C and Figure S7A).

A fourth class of late pathway, convergent compounds was

based on positive associations between on-basis and

MCC950 scores and concurrent negative correlations with ter-

minal scores (Figure 6A). The on-basis, MCC950, and negative

terminal scores were combined using a directionally weighted

sum for each condition. Positive Z scored values per condition
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Figure 6. Mechanistic classification of inflammasome inhibitors from multi-activator imaging data

(A) Correlation (Pearson’s) heatmap of hierarchically clustered individual targeted scores (Ward’smethod) applied to human PBMCs independently activatedwith

6 inflammasome activators from 9 independent experiments.

(B) PCA of aggregated scores applied to data from 299 compounds on human PBMCs independently activated with 6 inflammasome activators from 9 inde-

pendent experiments.

(C) Heatmap of compound aggregated scores. Rows are ordered categorically by assigned mechanistic classes, and aggregate scores are arranged on the

y axis.

(D) Breakdown of scores for a subset of top inflammasome inhibitors; Z score normalized and plotted as fraction of total for each compound. Does not rank by

potency, just predominant mechanism.

(E) ASC quantification of Raf, MEK, ERK, and HSP90 target classes. Median frequency of ASC specks was quantified for individual compound treatments (at

20 mM) and then aggregated as target classes consisting of 3–5 individual compound treatments. Data shown as average median of 7 replicates across each of

2 donors with standard error and normalized as a percentage of the active control for each condition.

(F) PDSC compositional shifts for Raf, MEK, Erk, and HSP90 target classes for ATP, MDP, Nigericin, PolyIC, LPS, and flagellin. Median cluster membership was

calculated from 7 replicates for each of two donors for each compound and then aggregated as an average target class. Each cluster was normalized as a percent

of vehicle control and scaled as a fraction of 1 to visualize relative compositional changes between treatment groups. See also Figures S7, S8, and Table S4.
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were then averaged with the pathway multiplier into a single

output (Figure S7C). 82 compounds were assigned to this class,

and defined as those that inhibit multiple stimuli and suspend

cells in activated states.

The fifth class captured terminal inhibitors and was calculated

using a weighted sum for each condition based on the finding

that late/GSDMD scores had strong positive correlations with

off-basis scores, and negative correlations with convergence

scores (Figure 6A). An aggregate score was calculated from

the average of the pathway multiplier plus the positive Z scored

values from each condition. 84 compounds were found to

suspend cells in terminally inhibited states that look dissimilar

to basal and activated states (Figure 6C and Table S4).

Altogether, these analyses demonstrate that mechanistic dif-

ferences between inflammasome inhibitors can be resolved

from imaging data. This is further supported when looking at

stacked bar charts showing the breakdown of the five scores

for representative compounds from each class (Figure 6D).
Here, the ATP or flagellin specific inhibitors show clear enrich-

ment in those respective classes, with very convergence or

terminal scores. Terminal scores, conversely, are enriched in

compounds with very low pathway specific or convergence

scores, demonstrating clear distinctions in MoA between these

classes.

The Raf pathway is implicated in inflammasome
signaling by consistent mechanistic classification of
compounds targeting Raf-MEK-ERK and HSP90
We next used these scores to mechanistically characterize

enriched targets and assess pathway contributions to inflamma-

some signaling. P2X7 inhibitors exemplify this approach as

these were expectedly enriched only in the ATP-specific class

(Figure S8A and Table S4).

A total of 34 compounds targeting different proteins in the

Raf-MEK-ERK pathway were tested in this assay. Interestingly,

they predominantly fell into two functional classes: early flagellin
iScience 27, 111404, December 20, 2024 11
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inhibitors or early convergent inhibitors (Figures 6D and S8A).

HSP90 inhibitors were similarly classified, in addition to a subset

being designated as downstream convergent inhibitors (Fig-

ure 6D; Table S4 and Figure S8A). These classifications are

largely based on the ability of these compounds to restore cells

to a basal state as shown by their induced increase in on-basis

scores, especially under flagellin activation, and frequently also

under robust activation with LPS or nigericin (Figure S8B).

Aggregating individual compound data into target specific

groups for ERK, MEK, Raf, and HSP90 generally indicates that

the Raf pathway is involved downstream of the convergence of

multiple activators as shown by strong ASC speck inhibition

relative to the activation control, especially under more robust

activation conditions such as flagellin, LPS, and nigericin. This

provides support that these compounds generally act down-

stream of a convergence point across multiple inflammasome

activators and can inhibit amplification of a strong inflamma-

some stimuli (Figure 6E).

We also assessed compositional shifts of the inflammasome

associated cell subtypes by these aggregated compound

groups across all conditions. Similar to what was observed for

ASC specks, inhibition of Raf pathway members induces clear

shifts toward the basal state clusters for all conditions, especially

cluster 2, with corresponding reductions in cluster 4, supporting

a MoA that lies upstream of GSDMD pore formation and the

terminal steps of pyroptosis, but downstream of activator

convergence points (Figure 6F). This is further supported by

the on and off basis signatures for these compounds, which

are aligned with MCC950 and the basal DMSO control for multi-

ple conditions (Figure S8B).

Mechanistically distinct hits are validated as potent
inflammasome inhibitors in an orthogonal primary
human monocyte assay
We next selected 120 compounds that represented the top hits

and enriched targets from each of the classes defined aforemen-

tioned (Table S5) for orthogonal validation on ATP- or flagellin-

activated primary human monocytes. Notably, these hits were

designated as the most likely to be true and specific inflamma-

some inhibitors and represent approximately 1% of the original

screening library.

Primary human monocytes were activated with flagellin or

ATP, treated with the selected compounds, and stained with

the viability stains Annexin V and SYTOX green to distinguish be-

tween pyroptosis and apoptosis. Images of cells were analyzed

using supervised classification into the following three cate-

gories: (1) healthy/alive, (2) apoptotic, and (3) pyroptotic

(Figure 7A). IL-1b levels in the supernatants were also measured

to confirm inflammasome activation.

Validating these readouts, we observed that ATP and flagellin

stimulation each drove significant increases in pyroptotic cells

and corresponding decreases in healthy cells relative to the

basal condition (Figures 7B, S9A and S9B). They also signifi-

cantly reduced the number of apoptotic cells, indicating the

decrease in healthy cells was not due to increased apoptosis.

MCC950 inhibited pyroptosis in both ATP- and flagellin-acti-

vated cells, while A-804598 demonstrated ATP specificity

(Figure 7C).
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101/120 (84.2%) of the test compounds effectively inhibited

inflammasome activation under at least one condition, as deter-

mined by a simultaneous increase in the percentage of alive

cells, a >50% decrease in pyroptosis, and a >30% reduction

of IL-1b relative to the respective activated states (Figures 7E

and 7F; Figures S9G and S9H and Tables S5 and S6). These

thresholds were sufficient to resolve true inhibitors, as shown

by distinct PCA clusters (Figure 7D). 17/19 of the non-inhibitory

compounds lowered IL-1b levels by more than 30% in at least

one condition, but they did not meet the pyroptosis or viability

criteria (Figures 7E, 7F and Figures S9G and S9H). Importantly,

these data substantiate the efficiency and accuracy with which

our experimental and analytical methods surfaced potent inflam-

masome inhibitors.

We then assessed the potency of a set of top compounds

representing eachmechanistic class: (1) A-740003 (ATP), (2) Selu-

metinib (flagellin), (3) NVP-HSP990 (early convergence), (4)

KPLH1130 and onalespib (convergence), (5) rubimaillin (terminal).

A-740003 demonstrated strong ATP condition specificity by

increasing the number of alive cells, lowering the number of py-

roptotic cells, and blocking IL-1b release in a dose dependent

manner only under ATP activation. Similarly, selumetinib inhibited

pyroptosis and increased viability under only flagellin activation

conditions (Figures 7G–7I; Figures S9C–S9F and Table S6).

NVP-HSP990 inhibited pyroptosis and IL-1b release under

both activation conditions without inducing apoptotic cell death

in monocytes. Onalespib and KPLH1130 represented the late

convergent compound class and each mediated strong, dose-

dependent inhibition of IL-1b and pyroptosis while increasing

the number of alive cells under both ATP and flagellin activation

(Figures 7G–7I; Figures–S9F). Rubimaillin (ACAT1 inhibitor),

the representative terminal inhibitor, increased viability without

increasing apoptotic cell counts under both conditions

(Figures S9C–S9F). It should be noted that in this monocytic

assay, the terminal compounds performed similarly to the

convergent classes of inhibitors, which further validates our up-

stream process to discriminate between mechanistically distinct

inhibitors.

Raf-MEK-ERK and HSP90 can be targeted to potently
inhibit inflammasome activation
We next selected 3 compounds targeting each of Raf, MEK,

ERK, or HSP90 to determine the general potency of Raf pathway

involvement in inflammasome signaling in primary monocytes.

Notably, these compounds all passed the thresholds set afore-

mentioned for inhibiting pyroptosis without shifting cells toward

apoptosis.

All of the selected inhibitors along the Raf-MEK-ERK axis

showed strong, dose-dependent inhibition of IL-1b release and

pyroptosis under flagellin activation (Figures 8A and 8B), and

to a lesser extent under ATP activation (Figures 8C and 8D).

HSP90 inhibitors similarly showed higher potency on flagellin

activated cells for IL-1b release (Figures 8E–8H), demonstrated

by flagellin inhibition curves shifted to the left of ATP activated

curves. Altogether, these data demonstrate that inhibiting the

Raf signaling pathway is a potent and direct means of blocking

inflammasome signaling without introducing toxicity or shifting

cells to another form of cell death.
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Figure 7. Orthogonal validation of compounds belonging to different mechanistic classes in primary human monocytes

(A) Staining schematic for death classifications. Apoptotic cells flip the negatively charged lipid phosphatidylserine to the outer leaflet, where Annexin V can bind.

Pyroptotic/necrotic cells with compromised plasma membranes allow Annexin V and SYTOX green to enter the cells and bind intracellular phosphatidylserine.

Supervised classifiers were trained to identify three death associated classes: (1) healthy/alive (Annexin V�SYTOX green� cells), (2) apoptotic (Annexin V+ SYTOX

green�), and (3) pyroptotic (Annexin V+/� SYTOX green+). Scale bar, 10 mm.

(B) Performance of death classes by condition. Shown as average with standard deviation of the fraction of cells of all replicates across 4 experiments. Minimum

of 96 replicates per experiment for activation conditions and 20 replicates per experiment of the DMSO basal control. Statistical significance measured by two-

tailed unpaired Mann Whitney u-test; ****p < 0.0001.

(C) Performance of control inhibitors on death classes by condition. Shown as average with standard deviation of the fraction of cells of all replicates across 4

experiments. 6 replicates per concentration for compounds and 20 replicates per experiment of the DMSO basal control. Statistical significance determined by

two-tailed unpaired Mann Whitney u-test, as indicated. *p < 0.05.

(D) PCA of compounds using values of their average effects on%alive (basal), % alive (activated), and%pyroptotic. Colored according to categorizations of both

(ATP and flagellin), neither, or single condition inhibitors using criteria for each condition of: increase in%alive cells, >50%decrease in pyroptotic cells, and >30%

decrease in IL-1b, relative to the activated vehicle control.

(E) Compound-mediated effects onmedian number of pyroptotic, apoptotic, and alive cells under ATP activation; average fraction of cells of 3 replicates for each

of 7 concentrations per compound normalized to vehicle controls for basal state or activated state (DMSO). Shown as fraction of the total for each treatment

condition.

(F) Same as E, but under flagellin activation.

(G) Top inhibitors effects on alive and pyroptotic cells relative to controls under ATP or Flagellin activation (specified in figure). Each point on the graph is the

average of 6 replicates. Compound concentrations vary by the size of the points (legend) to visualize dose-dependent responses.

(H) Compound mediated inhibition of IL-1b following ATP activation. Plotted as average of 6 replicates over a 7 point titration curve, fit using a log (agonist) vs.

response variable slope (four parameters) least squares fit model.

(I) Same as H, but with flagellin activation. See also Figures S8, S9, Tables S5 and Table S6.
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DISCUSSION

Dysregulation of inflammasome pathways has been linked to a

multitude of human diseases that range widely in severity and

onset, but how these interconnected pathways contribute to vary-

ing pathologies is largely handicapped by single-readout assays.

Clinical pipelines may benefit from discovery programs that focus

on aligning mechanistically distinct therapeutics with the diversity

of relevant disease states. For example, compounds that act on

early pathway targets may be ideal for treating chronic indications

such as goutwhere tolerability and general inflammatory inhibition
must be considered, while broad-acting, late pathway inhibitors

may be necessary to abrogate widespread inflammation in acute

indications such as sepsis.

Traditional methods for studying inflammasome activation

and drug discovery are limited in their ability to resolve mecha-

nistic differences between conditions. In order to acquire as

much physiologically relevant data as possible at the single

cell level, we therefore designed a scalable in vitro imaging sys-

tem in human PBMCs stained with a palette of cell biological

dyes and treated with a series of control modulators to capture

cells at all stages between the basal and pyroptotic states.
iScience 27, 111404, December 20, 2024 13
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Figure 8. Raf, MEK, ERK, and HSP90 inhibitors effectively block inflammasome signaling in human monocytes

(A) Pyroptosis inhibition curves of three inhibitors targeted at each of Raf (blue), MEK (teal), and ERK (purple) on flagellin activated human monocytes. Plotted as

average of 3 replicates over a 7 point titration curve, fit using a log (agonist) vs. response variable slope (four parameters) least squares fit model.

(B) IL-1b inhibition curves of three inhibitors targeted at each of Raf (blue), MEK (teal), and ERK (purple) activated human monocytes. Plotted as average of 6

replicates over a 7 point titration curve, fit using a log (agonist) vs. response variable slope (four parameters) least squares fit model.

(C) Same as A, but on ATP activated monocytes.

(D) Same as B, but on ATP activated monocytes.

(E) Pyroptosis inhibition curves of three HSP90 inhibitors on flagellin activated humanmonocytes. Plotted as average of 3 replicates over a 7 point titration curve,

fit using a log(agonist) vs. response variable slope (four parameters) least squares fit model.

(F) IL-1b inhibition curves of three HSP90 inhibitors on flagellin activated human monocytes. Plotted as average of 6 replicates over a 7 point titration curve, fit

using a log(agonist) vs. response variable slope (four parameters) least squares fit model.

(G) Same as C but on ATP activated monocytes.

(H) Same as D, but on ATP activated monocytes.
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This experimental approach built off the principles of cell

painting, which have facilitated automated quantification of

agnostic features from HCI datasets, and integrated fluores-

cence microscopy into scalable, high-throughput work-flows.36

While this foundational methodology has revolutionized pheno-

typic screening, it often has limited biological interpretability.

We therefore developed a combined ML and cell biology-based

analytical approach that utilizes high-dimensional image embed-

dings extracted from high-content imaging data using pretrained

convolutional neural networks.

To build our analytical toolkit, we first trained classifiers to

recognize various degrees of inflammasome activation and in-

hibition from images of cells challenged with established com-

pound modulators. We used the resulting outputs to predict

compound-mediated effects from HCI data. Additionally, we

calculated on- and off-basis projection values to determine

whether compound-mediated effects fell along an expected

axis or forced cells into unique states, and applied unsuper-

vised hierarchical clustering to discover PDCS with statistical

associations to basal, activated, or inhibited states. All of these

readouts were validated using ground-truth measurements for

ASC speck formation and literature-established inflammasome

control conditions. Importantly, ASC speck validation largely

precludes our readouts from being confounded by contribu-

tions by alternative inflammasome pathways that do not require

ASC, but nonetheless these pathways may be activated in our

assays.37
14 iScience 27, 111404, December 20, 2024
It is necessary to note that no single analytical method was

able to fully disambiguate inflammasome cellular states. For

example, trained classifiers were used to predict compound-

mediated effects relative to the activated states, but under the

direct ATP activation condition, downstream inhibitors resem-

bled the activated state due to relatively low signal propagation.

Inhibited cells could be resolved from activated ones, however,

by our TS method that aggregated automated ASC speck quan-

tifications, projection scores, frequency of PDCSs, and trained

classifier scores for all activation and inhibition conditions.

As a parallel process for the discovery andmechanistic classi-

fication of inhibitors directly in the deep learning representation

space, we also developed the CMDS of morphological profiles

method. Contrary to targeted strategies, this approach does

not require specific controls in order to identify hits or conditions,

and therefore is largely agnostic to biological systems. CMDS

importantly validated the majority of TSCC-surfaced com-

pounds in an unbiased, hypothesis-independent manner.

Altogether, we generated profiles of mechanistically distinct

inflammasome states that ranged from basal to pyroptotic and

which were used to define compound mechanisms of action in

a bioactive compound screen. Through this process, we vali-

dated and characterized many literature-established inflamma-

some modulators that were part of the screening library, and

which importantly served as internal controls for our methods.

Further, we identified many instances where multiple com-

pounds that were annotated to act on the same target were
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surfaced as hits and assigned to the same mechanistic class,

implicating their respective targets in inflammasome signaling.

Such target identification led to the discovery that the Raf-

MEK-ERK pathway, including the Raf chaperone HSP90, plays

a vital role in inflammasome signaling. While ERK and HSP90

have been previously linked to inflammasome signaling38,39

andNLRP3,30,40 to our knowledge this is the first study to identify

and mechanistically classify these interacting proteins in parallel

as inflammasome modulators.

In PBMCs, compounds targeting this pathway restore acti-

vated cells to their basal states rather than suspending them in

downstream stressed and activated states, while in primary

monocytes, they consistently and potently inhibit pyroptosis

without shifting cells toward a non-inflammatory apoptotic cell

death. Altogether we identified, validated, and mechanistically

characterized 34 compounds targeting the Raf pathway as in-

flammasome modulators across a series of orthogonal experi-

ments and an array of established and unbiased readouts.

Aggregating individual compound data from this pathway into

target specific groups for ERK, MEK, Raf, and HSP90 generally

indicates that they are involved downstream of an early conver-

gence point of multiple activators, and upstream of gasdermin D

pore formation and signal amplification. This could support a role

for the Raf pathway modulating complex formation by acting on

a common component of the inflammasome complexes like

ASC or a recruitment signal.

Importantly, the discovery and validation of a multitude of com-

pounds targeting each of several proteins along this signaling

pathway simultaneously cross-validate each of their independent

roles, and also identify theRaf pathway as a potentially rich source

of therapeutic targets for inflammasome related pathologies.

More generally, this approach could be applied to any set of

complex, interconnected biological pathways to identify a spec-

trum of mechanistically distinct cellular states associated with

activation, inhibition, health, or dysregulation, which in turn could

drive multiple target or drug discovery programs forward from a

single screen.

Limitations of the study
The data presented here, while physiologically relevant and

derived from human primary cells, are limited in their ability to

capture the full complexity and variability of an in vivo biological

system. Additionally, while our experiments distributed every

donor across every condition, so effects associated with age,

ethnicity, and gender were minimized, the majority of commer-

cially available human primary cells (PBMCs and monocytes)

were isolated from Caucasian males. Thus, there may be limita-

tions when extrapolating data to cells from donors of different

genders and ethnicities.

Given the nature of unbiased image embeddings extracted us-

ing neural networks, there are limits in being able to comprehen-

sively describe the respective image features used in model

training.

We utilized a large panel of small molecules for mechanistic

analysis of Raf pathway inhibitors and focused on the average

effects of multiple compounds for each target in the pathway.

We cannot exclude the possibility that some of these com-

pounds mediate off-target effects, and this should be consid-
ered in future studies to further clarify the mechanisms of action

of Raf pathway involvement in inflammasome signaling.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-ASC rabbit pAb Adipogen AG-25B-0006-C100 RRID: AB_11181932

Goat anti-rabbit 647 secondary antibody Thermo A-21245 RRID: AB_2535813

Biological samples

Cryopreserved human PBMCs iXCells Biotechnology 10HU-003-CR10M, 10HU-003-CR100M

Cryopreserved human primary monocytes iXCells Biotechnology 10HU-008N-10M

Chemicals, peptides, and recombinant proteins

RPMI 1640 Gibco 21870092

HEPES Thermo 15630080

Penicillin and Streptomycin Thermo 15140163

L-glutathione Thermo 25030081

Sodium pyruvate Sigma S8636-100ML

Vitamins Sigma M6895-100ML

Non-essential amino acids Sigma M7145-100ML

beta-mercaptoethanol Thermo 31350010

FBS (heat inactivated) Thermo 10437036

Bovine Growth Serum HyClone AB10180149

Bioactive screening libraries MedChemExpress HY-L001, HY-L001P

DMSO Sigma d2650

LPS Invivogen tlrl-eklps

Nigericin Invivogen tlrl-nig

Poly(I:C) Invivogen vac-pic

Flagellin (S. typhimurium) Invivogen tlrl-stfla

ATP Thermo R0441

MDP Bachem 4009623

Staurosporine R&D Systems 1285

Digoxin Cayman Chem 22266

Elesclomol SelleckChem S1052

Lanatoside C MedChemExpress HY-B1030

Darapladib SelleckChem S7520

Doxorubicin SelleckChem S1208

Annexin V AbCam ab14150

SYTOX green Promega S7020

Concanavalin A Alexa Fluor 488 Thermo C11252

Phalloidin Phenovue Fluor 568 Perkin Elmer CP25681

Hoechst 33342 Thermo H3570

Paraformaldehyde EMS 15710-S

Critical commercial assays

Fireplex assay Abcam ab234897

Deposited data

Image embeddings and original

code for models

Zenodo https://doi.org/10.5281/zenodo.13694396

Spring Inflammasome Benchmark Dataset GitHub https://github.com/spring-discovery/

inflammasome-benchmark-dataset

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

All training datasets, images, and model outputs.

All data are downloadable (image files and.csv files

of data, features, and analyses)

Spring Webapp https://tinyurl.com/InflammasomeChenetal

Experimental models: Cell lines

THP1-HMGB1-LuciaTM cells Invivogen Thp0gb1lc; RRID:CVCL_A8BE

Software and algorithms

GraphPad Prism RRID:SCR_002798

Excel RRID:SCR_016137

Spring AI Software

Other

HeraCell VIOS 160i normoxic incubator ThermoFisher Scientific 51030403

Echo 650 Liquid Handler Beckman Coulter

Microlab Star liquid handler Hamilton RRID:SCR_019993

Biotek EL406 Agilent RRID:SCR_019735

ImageXpress Micro Confocal high

content imager

Molecular Devices RRID:SCR_020294

Mantis Formulatrix RRID:SCR_019923
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Cell lines and primary cells
Human PBMCs

Isolated cells frommale and female donors aged 45–55 were acquired commercially from iXCells Biotechnology (10HU-003-CR10M,

10HU-003-CR100M). The majority of cells were isolated from Caucasian males. Cells were verified by iXCells to be free of myco-

plasma, other bacteria, yeast, fungi, HIV, HBV, and HCV.

Donor samples were not separated into different experimental groups. Cells from each donor were distributed evenly across

experimental conditions, so gender, ethnicity, and age of donors did not influence the outcomes of our analyses. The number of do-

nors run per experiment are detailed in the figure legends. There may be limitations when extrapolating data to cells from donors of

different genders and ethnicities.

Cryopreserved primary human PBMCswere cultured in RPMI 1640 supplemented with 2mMglutamine, 25mMHEPES, pen/strep,

1 mM sodium pyruvate, 1x vitamins, 1x non-essential amino acids, 50 mM beta-mercaptoethanol), and 10% heat-inactivated fetal

bovine serum. Random samples were periodically tested and found to be mycoplasma-free.

Human monocytes

Isolated cells frommale and female donors aged 45–55 were acquired commercially from iXCells Biotechnology (10HU-008N-10M).

The majority of cells were isolated from Caucasian males. Cells were verified by iXCells to be free of mycoplasma, other bacteria,

yeast, fungi, HIV, HBV, and HCV.

Donor samples were not separated into different experimental groups. Cells from each donor were distributed evenly across

experimental conditions, so gender, ethnicity, and age of donors did not influence the outcomes of our analyses. The number of do-

nors run per experiment are detailed in the figure legends. There may be limitations when extrapolating data to cells from donors of

different genders and ethnicities.

Cryopreserved primary human monocytes were cultured in RPMI 1640 supplemented with 2mM glutamine, 25 mM HEPES, pen/

strep, 1 mM sodium pyruvate, 1x vitamins, 1x non-essential amino acids, 50 mM beta-mercaptoethanol), and 10% heat-inactivated

fetal bovine serum.

Cell lines

THP1-HMGB1-Lucia cells (Invivogen, thp0gb1lc, RRID:CVCL_A8BE). These cells were purchased directly from Invivogen and guar-

anteed to be mycoplasma free. THP1 cells are derived from monocytes isolated from a 1-year old male with acute monocytic

leukemia.

THP1-HMGB1-Lucia cells were cultured in RPMI 1640 supplemented with 2 mM L-glutamine, 25 mM HEPES, 10% heat-inacti-

vated fetal bovine serum, 1 mg/mL Normocin, and pen/strep, according to manufacturer’s recommendations.

Cells were cultured in a humidified HeraCell VIOS 160i normoxic incubator (ThermoFisher Scientific, 51030403) at 37C and

5% CO2.
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Compound preparation
For inflammasome inhibitor compound preparation, an Echo 650 Liquid Handler (Beckman Coulter) was used to prepare compound

matrices on 384-well plates (Labcyte, PP-02200). Compounds were sourced from MedChemExpress bioactive screening libraries

(HY-L001, HY-L001P). The volume of DMSO in eachwell was normalized to achieve 0.5%final DMSOassay concentration. The com-

pound plates were stored at 4C in the dark overnight prior to use in assays.

Inflammasome activator compoundswere prepped at 10x the concentrations described in the assaymethods below in serum-free

media.

Cell thawing and plating
On the day of experimentation, cells were thawed and washed 2x in PBMC media (RPMI 1640 w/2mM glutamine, 25 mM HEPES,

pen/strep, 1 mM sodium pyruvate, 1x vitamins, 1x non-essential amino acids, 50 mM beta-mercaptoethanol) with 10% FBS before

resuspending in serum-free media (PBMCmedia without FBS) prior to plating. Washing consisted of centrifuging the cells at 300g for

10 min, then aspirating and resuspending in media.

Cell fixation and staining
Cell fixing and permeabilizing

Prior to staining, the PBMCs were fixed by adding 16% PFA with the Microlab Star liquid handler (Hamilton; RRID:SCR_019993) to

bring the final concentration to 4% PFA, for 15 min at room temperature. The cells were then washed 3x with staining buffer (1%

bovine growth serum in PBS), and permeabilized with 0.3% Triton X- and 1% bovine growth serum in PBS for 15 min at room tem-

perature. The cells were then washed 3x again with staining buffer. All washing and permeabilization steps were done on a Biotek

EL406 (Agilent; RRID:SCR_019735).

Immunofluorescence ASC specks

After fixing and permeabilization, the PBMCs were stained with anti-ASC rabbit pAb (AL177, Adipogen AG-25B-0006-C100;

RRID:AB_11181932) at 25 mg/mL in staining buffer (1% bovine growth serum in PBS) along with Cell Painting dyes, overnight at

4C. The cells were then washed 3x with staining buffer, and stained with Goat anti-rabbit 647 secondary antibody (Thermo

A-21245; RRID:AB_2535813) at 1 mg/mL in staining buffer for 1 h at room temperature. Finally, cells were washed 3x with PBS.

All washing and staining steps were done on a Biotek EL406 (Agilent).

Cell staining

After fixing and permeabilization, cells were stained with Concanavalin A Alexa Fluor 488 (Thermo C11252) at 25 mg/mL and Phalloi-

din Phenovue Fluor 568 (PerkinElmer CP25681) at 66 nM in staining buffer (1% bovine growth serum in PBS) along with anti-ASC

antibody, overnight at 4C. The cells were then washed 3x with staining buffer, and stained with Goat anti-rabbit 647 secondary anti-

body (Thermo A-21245) at 1 mg/mL in staining buffer for 1 h at room temperature. Finally, the cells were washed 3x in PBS, stained

with Hoechst 33342 (Thermo) at 0.2 mg/mL in PBS for 15min, then washed again 3x in PBS. All washing and staining steps were done

on a Biotek EL406 (Agilent).

Functional assays
Inflammasome inhibition

Inflammasome inhibitor compounds prepped at 10x concentration in serum-free media were then added using the Microlab Star

liquid handler to bring the final compound concentration to 1x. Cells were incubated with inhibitor compounds for 30min at 37C. prior

to Inflammasome activator compound addition.

Inflammasome activation (PBMCs)

A Microlab Star liquid handler (Hamilton) was used to plate cryopreserved primary human PBMCs (iXCells) on 384-well imaging

plates (Greiner 781091). Cells in serum-free media were seeded at a density of 15,000 cells per well. After a 10 min room

temperature incubation and a 30 min incubation at 37C, PBMC media with 50% FBS was added to bring FBS to 10% final

concentration.

Inflammasome activator compoundswere added using aMantis (Formulatrix; RRID:SCR_019923) to the PBMCs and incubated for

4 h at 37C before fixing and staining. Activators included LPS (0.1 mg/mL), Nigericin (20mM), Poly(I:C) (20mg/mL), Flagellin (1 mg/mL),

ATP (1mM), and MDP (10mg/mL). A schematic of the order of addition for this assay is shown in Figure S10.

Death classification and pyroptosis assays (primary human monocytes)

Primary human monocytes (iXCells) were thawed and plated in 384-well imaging plates (Greiner, 781091) at 10,000 cells/well in

serum-freemedia to allow for attachment to the plate. Cells were allowed to settle for 10min at room temperature and then incubated

at 37�C for 30 min before fetal bovine serum (Thermo, 26140-079) was added to a final concentration of 10%. Compounds (concen-

trations indicated in figures) were then added using a Microlab Star liquid handler (Hamilton).
e3 iScience 27, 111404, December 20, 2024
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For monocyte activation, 0.1 mg/mL LPS priming for 4 h followed by a 2 h activation with ATP (1 mM final) or Nigericin (20 mM). Non-

LPS primed conditions were incubated for 6 hwith the same concentrations of ATP or nigericin, or alternatively with 1 mg/mL Flagellin.

Supernatants were collected from activated cells and analyzed for cytokine expression using a Fireplex assay (Abcam). A schematic

of the order of addition for this assay is shown in Figure S10.

For monocyte death classification assays, following a 20 min incubation at 37�C, LPS (Invivogen, tlrl-eklps, final assay concentra-

tion 1 ng/mL in washing media (WM)) was added and incubated for 3 h at 37�C. ATP (Thermo, R0441; final assay concentration 1mM

in WM) or nigericin (Invivogen, tlrl-nig; 20 mM final in WM) was added and incubated for an additional 3 h. Flagellin activation was

performed by adding 1 mg/ml Flagellin (final) to cells 20 min after compound addition and incubated for 6 h at 37�C.
Following the activation step, supernatants were harvested for downstream cytokine analysis. Annexin V (AbCam) and SYTOX

green (Promega) were added to plates as a measure of cell death and imaged on a Molecular Devices ImageXpress Micro Confocal

high content imager (RRID:SCR_020294).

Death classification assays (primary human PBMCs)

Primary human PBMCs were plated, treated with various doses of flagellin (0.625, 1.25, 2.5, 5, 10 mg/mL), staurosporine, digoxin,

elesclomol, lanatoside C, darapladib, and doxorubicin (all at 2.5, 5, 10, 20, 40 mM) at 37C for 6 and 24 h, then fixed and stained ac-

cording to the above plating, fixing, and staining methods with Concanavalin A Alexa Fluor 488 (Thermo C11252) at 25 mg/mL, Phal-

loidin Phenovue Fluor 568 (PerkinElmer CP25681), and Hoechst 33342 (Thermo). A classifier model was then built on all compounds

at all doses and timepoints.

THP1 pyroptosis assay

THP1-HMGB1-Lucia cell line, a commercially available monocyte derived reporter cell line engineered to measure pyroptosis and

necrosis via luminescence signal. THP1-HMGB1-Lucia cells were purchased from Invivogen (thp-gb1lc). THP1-HMGB1-Lucia cells

were cultured according to manufacturer’s instructions and were used at passage 10, 12, or 14, with two freeze thaws – one from

purchase and one from banking at passage 6. The second test system was primary human monocytes isolated from healthy human

donors and purchased from iXCells.

Inflammasome-mediated pyroptosis was induced via stepwise addition of lipopolysaccharides (LPS) and nigericin. AMicrolab Star

liquid handler (Hamilton) was used to dilute the prepared compounds in assay media and transferred 20mL of the diluted compounds

into an assay plate (Greiner, 781091.) The cells were harvested by pelleting at 300xg for 5 min, manually aspirating supernatant, and

resuspending the pellet at 250,000 cells/mL in assay media. 25mls of resuspended cells were transferred to a warmed assay plate

using the Microlab Star. During a 20 min preincubation step, an LPS mother plate was prepared with the Microlab Star and 5mL

of LPS (Invivogen,tlrl-eklps, final assay concentration 1 mg/mL in assay media) was transferred into the assay plate.The assay plate

was shaken at 1000 rpm for 1 min, then incubated for 3 h at 37�. At t = 3h, 5.5mL of nigericin (Invivogen, tlrl-nig, final assay concen-

tration 10mM in assay media) was added to the assay plate with the same automation protocols as the LPS addition. The assay plate

was further incubated at 37� for an additional 3 h.

Readouts
High-content widefield fluorescence imaging and image preprocessing

Images were acquired on an ImageXpress Micro Confocal High-Content Imaging System (Molecular Devices) in widefield on a 403

ELWD air objective. Four z-stacks separated by 1mm were acquired and combined using maximum intensity projection, then cor-

rected for illumination. Four fields were collected per well in a 384-well plate using 1x1 binning.

Cytokine expression analysis

Supernatants were collected from the 384-well imaging plates for cytokine analysis. For validation of initial conditions, the FirePlex-

HT Human 10-plex Immunoassay (Abcam: ab234897) was run in-house on ImageXPress Micro Confocal (Molecular Devices) micro-

scopes according to the manufacturer’s instructions.

For monocyte cell death analysis assays, supernatants were analyzed using nELISA41 at Nomic Bio.

HMGB1 detection from THP1 reporter cells

QuantiLuc Gold solution was manually prepared according to the manufacturer’s instructions and 25mL of the solution was mechan-

ically stamped into a final quantitation plate (Greiner, 655073.) After the 3 h incubation with nigericin, the assay plate was shaken at

1000 rpm for 1 min and centrifuged at 300xg for 1 min 10mL of supernatant was mechanically removed and placed into the quanti-

tation plate, which was manually agitated to mix the solutions. Luminescence, measured at 578 nm and expressed as relative light

units (RLUs), was immediately read column-wise at 37C with a Spectramax iD5 plate reader (Molecular Devices).

Computational methods
Extracting visual features as computer vision embeddings

Cell nuclei in each field are localized using a CellProfiler pipeline21 on the Hoechst-stained images. Square tiles of 82 pixels (‘‘single

cell crops’’) are cropped around the centroid of each nucleus across all stains.

To calculate embeddings, single cell crops are used as input into a convolutional neural network that has been pre-trained on a

large number of photographic images and has learned to classify everyday objects within these images. The activations at specific

layers are used as black-box features capturing shape and texture properties of the input images. The model architectures and

pretrained weights are detailed in the below table.
iScience 27, 111404, December 20, 2024 e4



Convolutional neural networks used to extract visual features from HCI data

Architecture Pretrained weights Embedding layer

VGG1642 ImageNet1k MaxPool of last convolutional layer

EfficientNetV2XL43 ImageNet21k AvgPool of last convolutional layer
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The resulting features are high dimensional embeddings, or a list of representative numerical features which have been shown to

faithfully represent cellular morphology in an unbiased fashion. When multiple stains are selected, embeddings for each stain are

concatenated together to create a single representation.

Morphological profiles

Themorphological profile is the well representation obtained bymedian- (VGG16) or mean- (EfficientNetV2XL) averaging the embed-

dings of each cell detected in the well. When EfficientNetV2XL embeddings are used, the resulting feature vector is further trans-

formed by computing the top 100 PCA projections with respect to the entire dataset. Finally, each component is z-scored with

respect to the activated vehicle distribution for the corresponding donor and plate.

In order to optimize the morphological profiles and understand confounding effects, we executed a set of dedicated experiments

publicly released as the Spring Inflammasome Benchmark Dataset (link provided in the key resources table).

We defined a benchmark task where, given a query well and a search pool, the wells in the search pool are ranked by similarity to

the query well in the morphological profile space. The mean average precision of finding a technical replicate within the top 20 wells

(mAP@20) is the metric used for evaluation. To account for confounding effects, the search pool is defined as all the wells that do not

share the plate or donor of the query well.

The benchmark is used to identify the optimal choice of model architecture and pretrained weights for building morphological pro-

files. The family of EfficientNet-V2 models was considered in virtue of their balance between state-of-the-art accuracy and compu-

tational efficiency demonstrated in the context of natural images applications. The below table shows that the best performing model

in the Spring Inflammasome Benchmark is the EfficientNet-V2 XL architecture, the largest model in the family, trained on the

ImageNet21k dataset. Interestingly, the benchmark score for the other models in the family, which are trained on the smaller

ImageNet1k dataset, is inversely correlated with the number of parameters. We hypothesized that, as the model capacity increases,

the representations learned become more specific to the domain of the training data.
Comparison of neural networks used to extract visual features from benchmark dataset

Architecture Pretrained weights mAP@20

EfficientNet-V2 B0 ImageNet1k 11.5

EfficientNet-V2 S ImageNet1k 10.6

EfficientNet-V2 L ImageNet1k 9.8

EfficientNet-V2 XL ImageNet21k 13.0
Uniform Manifold Approximation and Projection (UMAP)24 was used to reduce high dimensional morphological profiles into two

unitless dimensions for visualization on a scatterplot.

Phenotypic cell subtype discovery using Ward’s method

Hierarchical clustering of VGG16 morphological profiles using Ward’s method was used to identify phenotypically distinct cell clus-

ters. Their associations with experimental conditions were determined using odds ratios, and a Bonferroni corrected Fisher’s exact

test was used to calculate p-value (0.01 threshold for significance).

Median number of cells per well belonging to a cluster were used to determine compound mediated effects. Median values were

averaged across replicates and normalized as a fraction of the average median of vehicle control replicates.

Compound mediated distribution shift (CMDS) of morphological profiles

The CMDS scoring is complementary to the targeted strategy because it does not rely on specific control inhibitors as reference. It is

based on the following postulate: morphological profiles of non-toxic, ASC speck suppressing compounds that deviate significantly

from the activated vehicle control distribution must correspond to an inhibition mechanism along the specific inflammasome

pathway. The CMDS approach enables discovery and mechanistic classification of compounds that don’t share commonalities

with known control inhibitors.

Given that morphological profiles were z-scored against activated vehicle control distribution for the corresponding donor, plate

and activator, the individual vector components of activated vehicle control profiles are normally distributed. The Euclidean norm of a

profile vector represents the overall distance from the average activated vehicle control profile.

Four quadrants were defined in the morphological profile norm plane using the 99-th percentiles of the activated vehicle distribu-

tion for ATP or flagellin as thresholds. Compounds that mediate shifts above the threshold for both activation states are called late

stage inhibitors, while those with single condition effects are called early or pathway specific inhibitors. For each control inhibitor the
e5 iScience 27, 111404, December 20, 2024
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fraction of replicas beyond the 95-th percentile of the activated vehicle distribution is reported alongside the average p-value ob-

tained by comparing 2 randomly sampled replicas against the activated vehicle distribution (null hypothesis) using Welch’s t-test.

Compounds meeting these thresholds are those that induce measurable effects on activated cells, so to filter for compounds that

induce inflammasome relevant responses, we filtered out compounds with high toxicity scores or that do not induce a change in ASC

specks.

Ranking software tool feature quantifications and scoring

Single cell quantifications were aggregated on a per well basis and median values were analyzed using statsmodels.regression.li-

near_model.OLS. Here, an ordinary least-squares regression model is applied to the data to extract mean differences, p-values,

and confidence intervals relative to the activated donor control. Calculated values for each feature for every compound treatment

are then ingested into our data organization and visualization software.

For scoring purposes, we first assigned fixed quantities to p-values (calculated using two-tailed t-tests) according to their confi-

dence levels (p-value <0.05 = 0.5; p-value <0.01 = 1). This heuristic was applied to ensure features are standardized and directly com-

parable. Those valueswere thenmultiplied by directional weights (�10 to +10) for the features selected for a given individual score, as

detailed in Figure S4A (screening data) or Figure S7B (multi-activator data). Individual scores were generated as a weighted sum of

the selected features.

Individual scores for screening data were designed as follows: four individual scores were used to analyze screening data. Briefly,

the scores were generated using the following criteria (detailed in Figure S4A): (1) general (increase clusters 1 and 2, decrease cluster

3, decrease ASC specks, increase ASC speck area), (2) early pathway (decrease in off-basis, increase in on-basis, similarity to

A-804598 (ATP only)), (3) terminal pathway (similarity to disulfiram, increase cluster 4), and (4) toxicity (decrease cluster 1, increase

% dying T cells, increase % damaged nuclei, increase % dying macrophages, and decrease in % monocytes).

Aggregated scores for screening data were applied as follows: Boolean operators were used to classify compounds from

screening data into four mechanistic classes based on their individual score performance as follows: early class (general plus early

scores combined >75, terminal scores <10, relative ATP::Flagellin relationship [(Max-Min)/Max] of <0.6), convergent class (general

scores + early ATP scores >40, general + early Flagellin scores >50, and terminal scores <10 for both activation conditions), terminal

class (general scores >5 for both conditions, and terminal scores >10 for both conditions).

Stringent TSCC for visualizations in figures: Early: >120 (sum of general + early per condition) for one condition and a relative

ATP::Flagellin relationship [(Max-Min/Max)] ofR0.7; Terminal: general >15, terminal >10 for both ATP and flagellin; Convergent: early

scores >60 for ATP and >90 for flagellin, with relative ATP::Flagellin relationship [(Max-Min/Max)] of <0.7.

Individual scores for multi-activator data were designed as follows: seven individual scores were applied to multi-activator data

and detailed in Figure S7B. The scores were generated using the following criteria for every compound for each of the six conditions:

(1) general inhibitor score (decrease ASC speck presence, increase in clusters 1 and 2, decrease in cluster 3), (2) early pathway score

(ATP condition: increase in similarity to A-804598, decrease in similarity to activated ATP; flagellin condition: decrease in similarity to

activated flagellin), (3) MCC950 similarity (increase in similarity to MCC950), (4) late/GSDMD pathway (increase in similarity to disul-

firam, increase in cluster 4), (5) Convergence (decrease in cluster 4, increase in similarity to TH1020), (6) on basis (increase), (7) off

basis (increase). A pathway multiplier (the sum of conditions with positive general scores) was also calculated for each compound.

Aggregated scores for multi-activator data were applied as follows: five aggregate scores for compound classification of multi-

activator data were designed using insights from hierarchical clustering of Z score normalized individual scoring data using Ward’s

method. Compounds were assigned to mechanistic classes according to their respective maximum aggregate scores.

The five scoring rubrics were calculated as follows and described in Figure S7C:

Early pathway scores were used to assign compounds into Early ATP, Early Flagellin, or Early Convergent classes, andwere calcu-

lated as theweighted sumof the individual on-basis and early pathway scores.Class 1: For early ATP designation, ATP early pathway

score was penalized by half if the pathway multiplier exceeded 3, and the resulting value must be > 2.5x flagellin early pathway score

to be considered for this class.Class 2: Early flagellin pathway designation used the same strategy as early ATP, but with the flagellin

early pathway score. Class 3: Early convergence score was determined by a sum of the convergence multiplier with the positive

z-scored values for each condition, and divided by the total number of conditions. Class 4: The late convergence pathway score

was a weighted sum of the convergence score and MCC950 similarity score, minus the Late/gasdermin D score for each condition.

Positive Z score normalized values for each condition were added with the convergence multiplier and divided by the total number of

conditions. Class 5: The Terminal aggregate score was a weighted sum of Late/gasdermin D score and high off-basis, minus the

convergence score for each condition. Positive Z score normalized values for each condition were addedwith the convergencemulti-

plier and divided by the total number of conditions. All scoring was executed in Microsoft Excel.

Classification models

Classification models were trained on the VGG16 morphological profiles of each well using XGBoost,44 an implementation of

gradient-boosted decision trees. All results are reported using a 4-fold cross-validation, whereby each fold is defined by training

on 16 donors, and testing on 8 unseen donors.

Prediction of activator or inhibitor signatures is determined by applying trained classifiers to images of compound treated cells.

This feature is measured on a 0–1 scale, with 0 indicating the lowest observed value, and 1 indicating the highest observed value.
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Projection scores

On- and off-basis scores were generated from the same VGG16 morphological profiles used for the classifiers. A basis vector for

each activation condition is first established in the embedding space; this vector leads from an activated vehicle control condition

to the corresponding basal vehicle control condition on the same plate. Replicates of the activated and basal wells are first me-

dian-aggregated to generate a single profile prior to the creation of the basis vector.

On-basis scores are calculated by generating a vector from the activated-vehicle controls to individual compounds, and then tak-

ing its normalized scalar projection onto the basis vector for the given activated vehicle-control. The output is a singular, scalar value,

where 1.0 represents the basal state and 0.0 represents the activated state. Off-basis scores are similarly calculated, but with a

normalized scalar rejection and an a singular, scalar output value, where large values represent phenotypic differences that are com-

parable or greater than the differences between the basal and activated states, and 0.0 means a compound does not induce orthog-

onal phenotypic differences.

Automated measurement of ASC specks (presence, area, distribution, and distance)

Using the ASC imaging channel, a set of ground-truth labels were built classifying cells as ASC positive or negative. Then, an algo-

rithm was trained on the example set using embeddings + XGBoost to recognize ASC speck positivity. Image filters were applied to

ASC speck positive samples to binarize the ASC channel for speck detection. The measure.regionprops method from the scikit-im-

age Python package45 was then used to measure the location and size of ASC specks.

The ASC presencemeasurement is themedian number of cells per well detectedwith an ASC speck (binary scale where 1 is present,

0 is absent). ASC area is the average area (mM) of detected specks in a well, cellular overlap determines if a speck is detected within or

external to the cell (0 is external, 1 is internal), and nuclear or cellular distance is the length from the nuclear or cellular center (mM).

Monocytic death classification analysis

Using Annexin V and Sytox Green imaging channels, an example set was built by assigning 100 example cells into three classes: (1)

healthy/alive (Annexin V� SYTOX green� cells), (2) apoptotic (Annexin V+ SYTOX green�), and (3) pyroptotic (Annexin V+ SYTOX

green+). Then, an algorithm was trained on the example set using embeddings + XGBoost to recognize these classes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Titration curves and IC50 determination
Inhibition curves were fit using a log(agonist) vs. response variable slope (four parameters) least squares fit model using GraphPad

Prism software package (RRID:SCR_002798). IC50s were calculated from these curves using Prism software.

THP1 assay

relative luminescence unit values (RLUs) were plotted against the log of disulfiram concentrations using GraphPad Prism software.

Details of number of replicates per experiment and number of experiments are detailed in the figure legends.

IL-1b expression

For representative experimental data, average pg/ml of replicates was plotted against the log of the compound concentrations using

GraphPad Prism software. For analysis of multiple experiments, average pg/ml of replicates was normalized as the percentage of

activated vehicle control (DMSO). Details of number of replicates per experiment and number of experiments are detailed in the figure

legends.

Monocytic cell death analyses

Pyroptosis, alive, and apoptosis calculations were performed for each compound treatment by calculating the fraction of the acti-

vated or basal vehicle control (value of condition replicate/average value control replicates). Details of number of replicates per

experiment and number of experiments are detailed in the figure legends.

Statistical significance between groups
Statistical significance between groups was determined using unpaired Mann Whitney u-tests with a 1% false discovery rate to cor-

rect for multiple comparisons, with a significance threshold of p < 0.05. Details of number of replicates per experiment and number of

experiments are detailed in the figure legends.

Principal component analysis (PCA)
GraphPad Prismwas used to perform PCA on the correlation matrix (standardized) of z-scored aggregate scores from themulti-acti-

vator PBMC data. According to GraphPad Prism software, PCs were selected using parallel analysis, which performs Monte Carlo

simulations on random data of equal dimension to the input data, and calculates eigenvalues for resulting PCs. PCs with eigenvalues

greater than 95% of the 1000 simulations were selected.

PCA of death classification monocyte data were similarly performed on compound data normalized as a percentage of alive (acti-

vated), alive (basal), or pyroptotic activated controls. Score plots are shown as scatterplots of the first two principal components, with

each point representing the data for a single compound, as indicated in the figure legends.

Statistical measurements from computational analyses
Statistics used for computational analyses are described in the method details text and figure legends.
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