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Exercise as a Mean to Control Low-Grade
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Chronic noncommunicable diseases (CNCDs), which include cardiovascular disease, some cancers, for example, colon cancer,
breast cancer, and type 2 diabetes, are reaching epidemic proportions worldwide. It has now become clear that low-grade chronic
inflammation is a key player in the pathogenesis of most CNCDs. Given that regular exercise offers protection against all causes
of mortality, primarily by protection against atherosclerosis and insulin resistance, we suggest that exercise may exert some of its
beneficial health effects by inducing anti-inflammatory actions. Recently, IL-6 was introduced as the first myokine, defined as a
cytokine, which is produced and released by contracting skeletal muscle fibres, exerting its effects in other organs of the body. We
suggest that skeletal muscle is an endocrine organ and that myokines may be involved in mediating the beneficial effects against
CNCDs associated with low-grade inflammation.

Copyright © 2008 N. Mathur and B. K. Pedersen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Chronic noncommunicable diseases (CNCDs) which in-
clude cardiovascular conditions (mainly heart diseases and
stroke), some cancers, chronic respiratory conditions, and
type 2 diabetes, affect people of all nationalities and classes
and are reaching epidemic proportions worldwide [1–4].

CNCDs cause the greatest global share of death and
disability, accounting for around 60% of all deaths world-
wide. Approximately, 80% of chronic-disease deaths occur in
low- and middle-income countries and account for 44% of
premature deaths worldwide. It is estimated that the number
of deaths from these diseases is double the number of
deaths that result from a combination of infectious diseases
(including HIV/AIDS, tuberculosis, and malaria), mater-
nal and perinatal conditions, and nutritional deficiencies
[1].

From a historical perspective, inflammation has been
considered as the natural host response to an acute infectious
episode, whereas chronic inflammation has been considered
a sign of chronic infection. It has now become clear that
low-grade chronic inflammation is a key player in the
pathogenesis of most NCDCs. There has been an increasing

appreciation of the role of inflammation both in the
pathogenesis of atherosclerosis [5, 6] and as a key factor in
insulin resistance [7]. Low-grade chronic inflammation is
characterized by increased systemic levels of some cytokines
and C-reactive protein (CRP) and a number of studies
have confirmed an association between low-grade systemic
inflammation on one hand and atherosclerosis and type 2
diabetes on the other [8].

Physical inactivity has been identified as a stronger
predictor of these chronic diseases than risk factors such
as hypertension, hyperlipidemia, diabetes, and obesity for
all-cause mortality [9]. Moreover, regular physical activity
appears to protect against premature death independent of
obesity [10, 11].

Regular physical activity offers protection against, and
may be useful as a treatment for a wide variety of, chronic
diseases associated with low-grade inflammation [12]. The
protective effects of regular exercise against diseases such as
cardiovascular disease, type 2 diabetes, colon cancer, and
breast cancer have been reviewed extensively [13–16].

Recent findings demonstrate that physical activity
induces an increase in the systemic levels of a number of
cytokines with anti-inflammatory properties [8, 17] and
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skeletal muscle has recently been identified as an endocrine
organ, which produces and releases cytokines (also called
myokines) [18, 19].

The discovery of contracting muscle as a cytokine-
producing organ opens a new paradigm; skeletal muscle
is an endocrine organ that, by contraction, stimulates the
production and release of myokines, which may influence
metabolism and modify cytokine production in tissue and
organs.

2. CHRONIC LOW-GRADE SYSTEMIC INFLAMMATION
AND ITS CONSEQUENCES

In response to an acute infection or trauma, the cytokines
and cytokines inhibitors will increase [20]. The initial
cytokines as they appear in the circulation in relation to
an acute infection consist of the following: TNF-α, IL-1β,
IL-6, IL-1 receptor antagonist (IL-1ra), and soluble TNF-
α-receptors (sTNF-R), and IL-10. The systemic response
known as the acute-phase response includes the produc-
tion of a large number of hepatocyte-derived acute phase
proteins, such as C-reactive protein (CRP) that is known
to be a sensitive marker of systemic inflammation. The
response can be mimicked by the injection of the cytokines
TNF-α, IL-1β, and IL-6 into laboratory animals or humans
[8, 21]. Chronic low-grade systemic inflammation has been
characterized by a 2- to 3-fold elevation in the systemic
concentrations of proinflammatory and anti-inflammatory
cytokines, natural occurring cytokine antagonists, and the
acute phase reactant C-reactive protein (CRP) [13, 22]. In
the latter case, the stimuli for the cytokine production are not
known, but it is assumed that the origin of TNF in chronic
low-grade systemic inflammation is mainly the adipose tissue
[23–26].

Type 2 diabetes, obesity, and cardiovascular disease are
related to a state of low-grade systemic inflammation [7,
27–29]. Despite the fact that the changes in acute-phase
reactants are much smaller than those in acute infections, the
chronicity of low-grade inflammation is strongly associated
with increasing age, lifestyle factors such as smoking and
obesity, together with increased risk of cardiovascular disease
and type 2 diabetes [22, 25, 30]. Plasma concentrations of
IL-6 [31] and TNF-α have been shown to predict the risk of
myocardial infarction in several studies [32], and CRP has
emerged as a particularly stronger independent risk factor
for cardiovascular disease than the low-density lipoprotein
cholesterol level [13, 33, 34].

3. THE DIRECT METABOLIC ROLES OF TNF

Growing evidence suggests that TNF-α plays a direct role in
metabolic syndrome, via direct effect of TNF-α on insulin
signaling [35, 36]. Patients with diabetes demonstrate high
expression of TNF-α in skeletal muscle and in plasma, and
it is likely that adipose tissue, which produces TNF-α, is the
main source of the circulating TNF-α [37–39].

Thus, a number of studies indicate that elevated TNF-α is
not secondary to the pathological conditions associated with

insulin resistance, but that TNF-α plays a direct pathogenic
role in glucose metabolism [29, 40]. After adjustment
for multiple confounders, including IL-6, high plasma
TNF concentrations are associated with insulin resistance
[40].

In cultured cells, TNF-α induces insulin resistance
through increased serine phosphorylationof insulin receptor
substrate-1 (IRS-1), which subsequently converts IRS-1 to an
inhibitor of insulin receptor tyrosinekinase activity [41].

TNF-α has been shown to have a direct (insulin-
independent) effecton S6K and ERK-1/2 in cultured cells
[42, 43].

In addition, evidence for a direct role of TNF-α in insulin
resistance in humans in vivo has been obtained [44]. When
TNF-αwas infused into healthy humans, we found that TNF-
α induces insulin resistance in skeletal muscle, without an
effect on endogenous glucose production. TNF-α directly
impaired glucose uptake and metabolism by altering insulin
signal transduction. TNF-alpha infusion increased phos-
phorylation of p70 S6 kinase, extracellular signal-regulated
kinase-1/2, and c-Jun NH(2)-terminal kinase, concomitant
with increased serine and reduced tyrosine phosphorylation
of insulin receptor substrate-1. These signalling effects were
associated with impaired phosphorylation of Akt substrate
160, the most proximal step identified in the canonical
insulin signalling cascade regulating GLUT4 translocation
and glucose uptake. Thus, excessive concentrations of TNF-
alpha negatively regulate insulin signalling and whole-body
glucose uptake in humans.

Moreover, it was recently demonstrated that TNF-alpha
infusion increases whole-body lipolysis by 40% with a
concomitant increase in FFA clearance, but with no changes
in skeletal muscle FFA uptake, release, or oxidation [45].

The findings with regard to an effect of TNF on both
glucose and fat metabolism provide a direct molecular link
between low-grade systemic inflammation and the metabolic
syndrome [44, 45].

4. THE DIRECT METABOLIC ROLES OF IL-6

With regard to IL-6, its role in insulin resistance is highly
controversial. In humans, circulating IL-6 levels may [46] or
may not [47] be associated with insulin resistance.

Infusion of recombinant human (rh) IL-6 into resting
healthy humans does not impair whole body, lower limb, or
subcutaneous adipose tissue glucose uptake or endogenous
glucose production [48, 49]. When diabetes patients were
given an rhIL-6 infusion, plasma concentrations of insulin
decreased to levels comparable with that in age and BMI
(body mass index)-matched healthy controls, indicating that
the IL-6 enhanced insulin sensitivity [50].

In vitro studies demonstrate that IL-6 can induce insulin
resistance in isolated 3T3-L1 adipocytes [51, 52] and in
mice [53]. However, the IL-6 dose applied in the latter
studies was supraphysiological, and is therefore probably not
relevant to human physiology. Interestingly, IL-6 knockout
mice develop impaired glucose tolerance that is reverted by
IL-6. Thus, accumulating data suggest that IL-6 enhances
glucose uptake in myocytes [54–57].
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A number of studies indicate that IL-6 enhances lipolysis,
as well as fat oxidation [50, 58]. Consistent with this idea,
Wallenius et al. 2002 demonstrated that IL-6 deficient mice
developed mature-onset obesity and insulin resistance. In
addition, when the mice were treated with IL-6, there was a
significant decrease in body fat mass in the IL-6 knockout
but not in the wild-type mice. Recently, we demonstrated
that IL-6 increased the glucose infusion rate [56] and glucose
oxidation without affecting the suppression of endogenous
glucose production during a hyperinsulinemic euglycemic
clamp in healthy humans. Infusion of rhIL-6 into healthy
humans to obtain physiological concentrations of IL-6
increased lipolysis in the absence of hypertriacylglyceridemia
or changes in catecholamines, glucagon, insulin, or any
adverse effects in healthy individuals as well as patients with
type 2 diabetes [49, 50, 58]. These findings, together with cell
culture experiments demonstrating that IL-6 alone markedly
increases both lipolysis and fat oxidation, identify IL-6 as a
novel lipolytic factor.

Taken together, it is apparent that in vivo studies in
humans provide little or no evidence that IL-6 is a direct
player in the metabolic syndrome.

5. TNF/IL-6-INTERACTION

Of note, whereas it is known that both TNF-α and IL-6
induce lipolysis [40, 49], only IL-6 appears to induce fat
oxidation [19, 59]. Given the different biological profiles
of TNF-α and IL-6, and given that TNF-α can trigger IL-6
release, one theory holds that it is the adipose tissue-derived
TNF-α that actually is the “driver” behind the metabolic
syndrome [36] and that locally produced TNF-α causes
increased systemic levels of IL-6.

6. CYTOKINE RESPONSES TO EXERCISE

Though an acute bout of physical activity is accompanied by
responses that in many respects are similar to those induced
by infection and sepsis, there are some important differences
in the cytokine response to exercise from that elicited by
severe infection [27, 60, 61]. The striking difference between
exercise and sepsis with regard to cytokine responses is that
the classical proinflammatory cytokines, TNF-α and IL-1β,
in general do not increase with exercise.

Typically, IL-6 is the first cytokine present in the
circulation during exercise, and the appearance of IL-6 in
the circulation is by far the most marked and its appearance
precedes that of the other cytokines. The level of circulating
IL-6 increases in an exponential fashion (up to 100 fold) in
response to exercise, and declines in the postexercise period
[60–62].

Taken together, exercise provokes an increase primarily
in IL-6, followed by an increase in IL-1ra and IL-10. The
IL-6 response to exercise has recently been reviewed [13,
18, 60, 63]. A marked increase in circulating levels of IL-6
after exercise without muscle damage has been a remarkably
consistent finding. The magnitude by which plasma IL-6
increases is related to exercise duration, intensity, and muscle
mass involved in the mechanical work [13, 18, 60, 62].

7. ANTI-INFLAMMATORY EFFECTS OF IL-6

Interleukin-6 is most often classified as a proinflammatory
cytokine, although data also suggest that IL-6 and IL-6-
regulated acute phase proteins are anti-inflammatory and
immunosuppressive, and may negatively regulate the acute-
phase response [20].

A number of studies have demonstrated that working
muscle produces IL-6. Thus muscle biopsies obtained before
and after exercise in humans and rats demonstrate very
little IL-6 mRNA in resting muscle, but up to a 100-
fold increase in exercising skeletal muscle [18, 64, 65]. In
addition, it has been demonstrated that the IL-6 protein
is expressed in contracting muscle fibres and that IL-6 is
released from skeletal muscle during exercise [28]. Data
suggest that IL-6 exerts inhibitory effects on TNF-α and IL-1
production. IL-6 inhibits lipopolysaccharide (LPS)-induced
TNF-α production both in cultured human monocytes and
in the human monocytic line U937 [66], and levels of
TNF-α are markedly elevated in anti-IL-6-treated mice and
in IL-6-deficient knockout mice [67, 68], indicating that
circulating IL-6 is involved in the regulation of TNF-α
levels. In addition, rhIL-6 infusion inhibits the endotoxin-
induced increase in circulating levels of TNF-α in healthy
humans [69]. Furthermore, IL-6 stimulates the release of
soluble TNF-α receptors, but not IL-1β and TNF-α, and
appears to be the primary inducer of the hepatocyte-derived
acute-phase proteins, many of which have anti-inflammatory
properties.

The exercise-induced increase in plasma IL-6 levels is
followed by increased circulating levels of well-known anti-
inflammatory cytokines such as IL-1ra and IL-10 [28, 48].

It has been suggested that IL-6 promotes insulin resis-
tance due to the observation that plasma IL-6 is often
elevated in patients with metabolic disease [70].

From a simplistic physiological point of view, it seems
paradoxical that working muscle would release a factor
that inhibits insulin signalling when insulin sensitivity is
enhanced in the immediate postexercise period [28].

8. ANTI-INFLAMMATORY EFFECTS OF EXERCISE

A number of studies suggest that regular exercise has anti-
inflammatory effects. Cross-sectional studies demonstrate
an association between physical inactivity and low-grade
systemic inflammation in healthy subjects [71–75], in elderly
people [76, 77], and in patients with intermittent claudica-
tion [78]. Moreover, the finding in longitudinal studies that
regular training induces a reduction in CRP level suggests
that the physical activity as such may suppress systemic low-
grade inflammation [74, 75, 79, 80].

To study whether acute exercise induces a true anti-
inflammatory response, a model of “low-grade inflamma-
tion” was established in which we injected a low dose of
Escherichia coli endotoxin to healthy volunteers, who had
been randomized to either rest or exercise prior to endotoxin
administration. In resting subjects, endotoxin induced a 2-
to 3-fold increase in circulating levels of TNF-α. In contrast,
when the subjects performed 3 hours of ergometer cycling
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and received the endotoxin bolus at 2.5 hours , the TNF-α
response was totally blunted. Moreover, the effect of exercise
could be mimicked by infusion of IL-6, suggesting that IL-6
may be involved in mediating the anti-inflammatory effects
of exercise [69].

9. CONCLUSION

Regular exercise protects against diseases associated with
chronic low-grade systemic inflammation. Muscle con-
traction-induced factors, so-called myokines, may be in-
volved in mediating the health beneficial effects of exercise
and play important roles in the protection against CNCDs,
which include cardiovascular conditions, some cancers, and
type 2 diabetes. In particular, the long-term effect of exercise
may to some extent be ascribed to the anti-inflammatory
response elicited by an acute bout of exercise, which is partly
mediated by muscle-derived IL-6 [8, 20, 81]. The possibility
exists that, with regular exercise, the anti-inflammatory
effects of an acute bout of exercise will protect against
chronicsystemic low-grade inflammation and thereby offer
protection against insulin resistance and the development of
atherosclerosis, but such a link between the acute effects of
exercise and the long-term benefits has not yet been proven.
Given that the atherosclerotic process is characterized by
inflammation, one alternative explanation would be that reg-
ular exercise, which offers protection against atherosclerosis,
indirectly offers protection against vascular inflammation
and hence systemic low-grade inflammation.
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