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KEY POINTS

� The largest organ of the immune system is the gastrointestinal (GI) mucosa, making the
management of it essential for productivity and health.

� The barrier that consists of mucous, defensins, and immunoglobulin A is a “kill zone” to
prevent microbial invasion of the GI epithelium.

� The enterocytes are key cells that maintain the “kill zone” and respond to metabolites and
microbial components from the lumen and signals from immune cells to maintain tight
junctions and prevent “leaky gut.”

� Passive enteric immunity is essential for disease protection of the neonate; anti-
inflammatory enteric response is essential disease protection for the growing and adult
animal.

� Direct-fed microbials, including nutraceuticals, prebiotics, probiotics, and other dietary
supplements, affect commensal “homeostasis” and mucosa immunity to maintain GI
health.
INTRODUCTION

In the last decade, there has been an explosion of knowledge on the immune system
with substantial implications for enteric health. This increase in knowledge revolves
around the realization that the gastrointestinal (GI) tract is the largest immune organ
of the body. It is understood that the mucosal immune system begins development
in the fetus but does not become functional until epithelial cells of the mucosa in
the neonate interact with microorganisms (microbiome) and/or their products in the
gut lumen. The interaction between the epithelial cells and the microbiome is neces-
sary for proper immune development, including immune system maturation, regula-
tion, and maintenance of homeostasis. In this article, the interaction of immune
system, microbiome, and the ability to maximize immunity are discussed.
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ONTOGENY AND ORGANIZATION OF ENTERIC MUCOSAL SYSTEM

The bovine mucosal immune system prevents bacterial invasion and shapes the gut
microbiota, whereas the gut microbiota influences immune system development.
The fetal calf is predominately protected by the innate immune system (Fig. 1).1 The
innate immune response of phagocytic cells (neutrophils and macrophages) does
not fully develop until late gestation and declines before gestation because of fetal
cortisol levels.2 Humoral elements such as complement are present but are at levels
below that of the adult. Interferon can be induced in the fetus as early as 60 days of
gestation.3 All of the cellular components of the acquired immune response are pre-
sent in the fetal calf.4 The number of peripheral blood T cells dramatically decrease,
beginning 1 month before birth of the calf, as they traffic and populate lymphoid tis-
sues of the fetal calf before birth (decrease w60% to 30% at birth). B cells are
much lower in the developing fetus (1%–2%).4,5 The enteric mucosal lymphoid organ
system begins developing at 100 days of gestation when the mesenteric lymph nodes
are present (Fig. 2).6–8 The continuous ileal Peyer patch (IPP) (see Fig. 2) becomes
quite active by day 85 of gestation.9 The B lymphocytes present are almost exclusively
immunoglobulin M (IgM)1 cells, and if the IPP are removed, the animals remain defi-
cient in B cells for at least 1 year because the IPP is the major source of the peripheral
B-cell pool.9 Because the IPP is the site of both proliferation and negative selection,
IPP follicles can be inferred as the major site for generation of the preimmune B-cell
repertoire in ruminants,8–10 whereas the discreet Peyer patches (PPs), distributed
throughout the jejunum, function as induction sites for the generation of IgA plasma
cells (see Fig. 2).10 The role of the rumen in mucosal immunity is unclear because there
are few leukocytes in the developing rumen. The first few weeks after birth are essen-
tial for long-term enteric immunity as the expression of host microRNAs (miR), and the
presence of commensal microorganisms determines long-term gut and host health.11

By day 21 of age, there is a maximum induction of host miR by high levels of micro-
organisms of the microbiome.11 These immune developments include induction of
Fig. 1. Development of the immune response in the bovine: from conception to puberty.
The calf’s passive maternal immunity is only transferred after birth due to its unique placen-
tation. (Adapted from Chase, Hurley DJ, Reber AJ, et al. Neonatal immune development in
the calf and its impact on vaccine response. Vet Clin North Am Food Anim Pract 2008;24:88;
with permission.)



Fig. 2. Organization of the gut lymphoid tissue. Lymphocytes can leave the surface epithe-
lium (intraepithelial lymphocytes [IEL]) or Lamina propria (LP) via draining afferent lym-
phatics to mesenteric lymph nodes (MLNs), or via portal blood reaching the liver where
induction of tolerance occurs. The M cells in the follicle-associated epithelium of PPs trans-
port antigen to prime B cells in the isolated lymphoid follicles (ILF) of the PPs of the jejunum,
ileum, and the large intestine. The continuous IPPs are a primary lymphoid organ respon-
sible for B-cell development. The IPP can be up to 2 m long and constitute 80% to 90%
of the intestinal lymphoid tissue. LN, lymph node. (Adapted from Brandtzaeg P, Kiyono
H, Pabst R, et al. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal
Immunol 2008;1(1):35; with permission.)
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tolerance to dietary components, reduction of mast cells that causes increased gut
permeability, and decreased pathogen responses. Changes in diet in the early period
of 7 to 21 days of age greatly influence microbiome and miR and therefore the level
and longevity of the enteric immune response.11,12



Chase4
COLOSTRUM AND ENTERIC IMMUNE DEVELOPMENT

Colostrum is composed of antibodies, cytokines, and cells. Antibody is the most
important component of colostrum and provides an immediate source of antibody
for the intestinal tract. Bovine colostrum contains w55 mg/mL of total IgG (48 mg/
mL IgG1, 3 mg/mL IgG2, and 4 mg/mL IgA).13 Preparturient vaccination of the cow
for enteric diseases, such as colibacillosis, Clostridium perfringens, cryptosporidi-
osis,14 and rotaviruses,15 results in production of pathogen-specific antibodies that
provide protection for the neonate against severe disease. A second component of
colostrum is cytokines.16,17 These immunologic hormones help in the development
of the fetal immune response. These cytokines are produced by the immune cells
that traffic to the mammary gland. Interleukin 1-beta (IL-1b), IL-6, tumor necrosis fac-
tor alpha (TNF-a), and interferon-gamma are present in bovine colostrum and associ-
ated with a proinflammatory response and may help in the recruitment and
development of neonatal lymphocytes into the gut to aid in normal immune develop-
ment. Colostrum rapidly improves the ability of neutrophils to phagocytize bacteria,
which is accomplished by absorption of proinflammatory cytokines.18 Colostrum
also contains high levels of the anti-inflammatory cytokines IL-1019 and transforming
growth factor beta (TGF-b)20 that suppress local secretion of proinflammatory cyto-
kines in the intestine to maintain tight junctions and also allow gut microbial coloniza-
tion. The third component of colostrum is cells. Colostrum contains viable leukocytes
in percentages similar to peripheral blood with more macrophages (40%–50%) and
less lymphocytes (22%–25%) and neutrophils (25%–37%).21,22 The vast majority of
lymphocytes are T lymphocytes with less than 5% being B lymphocytes. Some of
these maternal cells enter the circulation and reach peak levels 24 hours after birth.23

Animals that receive colostrum containing maternal leukocytes develop gut antigen-
presenting cells (APC; macrophages and dendritic cells [DC]) faster,22 which is impor-
tant because APCs are the keystone cell for the development of an acquired immune
response to pathogens or vaccines. Additional pathogen-specific maternal T lympho-
cytes from vaccinated cows have been isolated from the neonatal calf with maximum
proliferation at 1 day following birth.24 The exact role of these cells in the long-term
development of pathogen-specific mucosal-acquired immunity is not clear, because
they are no longer detectable at 7 days of age.

FUNDAMENTALS OF ENTERIC IMMUNITY

The enteric mucosal immune system provides the first immune defense barrier for
more than 90% of potential pathogens (Figs. 3 and 4). The gut mucosal immune sys-
tem alone contains more than a trillion (1012) lymphocytes and has a greater concen-
tration of antibodies than other tissue in the body. It protects against harmful
pathogens but also tolerize (induces tolerance) the immune system to dietary antigens
and normal microbial flora. The components of the gut mucosal immune system are
integrated together (see Figs. 3 and 4).25 The health of the enterocytes, which are
the epithelial cells that line the GI tract, is important not only for the growth and devel-
opment of cattle, through secretion and absorption in the gut, but also to provide a first
immune response to microorganisms (see Fig. 4). The goblet cells secrete mucous
and mucins (the enterocytes also secrete mucins) that provide the initial mucous bar-
rier (see Fig. 4).26–29 The mucosal barrier contains defensins (also known as antimicro-
bial peptides [AMP] and host defense proteins [HDP]) produced by the enterocytes
(see Fig. 4). Secretory immunoglobulin A (sIgA) is produced when dimeric IgA is
secreted by the plasma cells in the lamina propria (LP) and is transported to the
mucosal surface of the epithelial cell. The inner mucous layer along with the AMP



Fig. 3. Gut immune responses: the barrier, innate, and adaptive immune components.
(Adapted with permission from D. Topham, PhD, Rochester, NY.)
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and sIgA forms a “kill zone” that few pathogens or commensals have evolved strate-
gies to penetrate (see Fig. 4).26 The “kill zone” along with the tight junctions that knit
the enterocytes together forms a “barrier” against pathogens.
Once microorganisms breech the barriers, the innate immune system is the first

responder to pathogen invasion. The system consists of white blood cells (macro-
phages, monocytes, DC, basophils, neutrophils, eosinophils, mast cells, and natural
killer [NK] cells) (Fig. 5), complement, and the secreted immune system mediators,
including chemokines and cytokines. These innate immune mediators include inter-
feron, the proinflammatory mediators TNF-a, IL-1b, IL-6, macrophage inflammatory
protein 1-alpha, and the anti-inflammatory mediator IL-10.30 The innate response oc-
curs in 2 waves. The first wave that occurs in the first few hours following damage or
infection features the activation of macrophages, the major producer of proinflamma-
tory cytokines that recruit other white blood cells and activate neutrophils, nonspecific
killers of bacteria to increase killing of pathogens. If the proinflammatory response in
the gut mucosa is excessive, “leaky gut” will occur (Fig. 6A).31,32 The proinflammatory
cytokines, particularly TNF-a, stimulate the myosin II regulatory light chain kinase
(MLCK), which causes the tight junctions to break down so the epithelium becomes
leaky (see Fig. 6A). Mucosa epithelium needs to be hyporesponsive under the influ-
ence of the anti-inflammatory cytokines31 so healthy mucosa enterocytes will maintain
tight junctions. A local increase of the anti-inflammatory cytokine IL-10 results in inhi-
bition of the local proinflammatory response and increases eosinophils in the tissue.
Cattle that are resistant to GI parasites like Cooperia and Ostertagia have an increase
of both proinflammatory and anti-inflammatory mediators in the mucosa with a large
influx of eosinophils into the tissue and lumen.33 With only a proinflammatory
response, there is little resolution of disease and enhanced collateral damage and
immunopathology.34 Immunopathology is seen in protozoal diseases like cryptospo-
ridia, where localized neutrophilia is enhanced in young animals34–36 and also has
been hypothesized as the major contributor to the lesions of C perfringens alpha
toxin.37 The proinflammatory anti-inflammatory mucosal response increases with



Fig. 4. The mucosal defenses of the GI tract. Distinct subpopulations of intestinal epithelial
cells are integrated into a continuous, single-cell layer that is divided into apical and basolat-
eral regions by tight junctions. Enterocytes sense the microbiota and their metabolites to
induce the production of AMPs. Goblet cells produce mucin and mucous that is organized
into a dense, more highly cross-linked inner proteoglycan gel that forms an adherent inner
mucous layer, and a less densely cross-linked outer mucous layer. The outer layer is highly colo-
nized by constituents of the microbiota. The inner mucous layer is largely impervious to bac-
terial colonization or penetration due to its high concentration of bactericidal AMPs, as well
as commensals sIgA, which is moved from their basolateral surface, where it is bound by the
polymeric Immunoglobulin receptor (pIgR), to the inner mucous layer. Responding to the mi-
crobiotal components, innate lymphoid cells (ILC), lymphoid tissue inducer cells (LTi), and NK
produce cytokines, which stimulate AMP production and maintain the epithelial barrier.
(Adapted from Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intes-
tinal microbiota and immune system. Nature 2012;489:235; with permission.)
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age and results in less disease. Neutrophils (see Fig. 5) also known as polymorphonu-
clear cells die after a short time at sites of inflammation. The hydrolytic enzymes are
released and contribute to the inflammatory response and tissue destruction, which
contributes to collateral damage and enhanced disease. Neutrophil granule proteins
induce adhesion and emigration of inflammatory monocytes to the site of inflamma-
tion. Neutrophils also create extracellular defenses by the formation of neutrophil
extracellular traps (NETs) (Fig. 6B).38–40 The NET formation is induced by agents
like bacterial aggregates and biofilms, fungal hyphae, and protozoan parasites
(cryptosporidia, Neospora, and coccidiosis) that cannot be phagocytized.35,36,41,42

Neutrophils use the potent oxidative metabolism system to kill bacteria. The NET re-
action is one of the most potent bactericidal mechanisms of neutrophils and is



Fig. 5. The cells of the immune system. The innate and acquired immune cell lines have over-
lap with the macrophages and NK cells having important innate and acquired responses. Ag,
antigen; PMN, polymorphonuclear cells. (Adapted with permission from D. Topham, PhD,
Rochester, NY.)

Enteric Immunity: Happy Gut, Healthy Animal 7
potentially fungicidal, parasiticidal, and virucidal. The eosinophil is capable of the
same phagocytic and metabolic functions as the neutrophils but focuses the host’s
defense against the tissue phase of parasitic infections (see Fig. 5). Eosinophils are
more capable of exocytosis than phagocytosis; that is, rather than ingesting and killing
small particles, they efficiently attach to and kill migrating parasites that are too large
to be ingested. Eosinophils are also important in helping to control certain types of
allergic responses. Basophils andmast cells (see Fig. 5) have been associated primar-
ily with allergic reactions because of their binding of IgE. These cells have an important
regulatory role. They release inflammatory mediators necessary for the activation of
the acquired immune response.43,44 Interferon, the last component of the innate
response, sets up an immediate wall against virus infections. The second wave that
occurs a day or 2 later is the NK cells (see Fig. 5) that enhance defensin produc-
tion,25,26 kill parasites,35,36 and virally infect cells45 but also produce cytokines to
help the adaptive immune response.45

The adaptive phase occurs in the organized gut-associated lymphoid tissues
(GALT) described above.8 GALT is the initial induction site for mucosal immunity for
antigens that are sampled from mucosal surfaces. The number and maturity of DCs
and T cells in the GALT in the jejunum and ileum are very similar in the newborn and
the weaned calf, indicating that the mucosal adaptive response is functional at birth.46

The DCs are important because they are APCs that help in discriminating between di-
etary antigens, commensal microflora, and pathogens, and in providing a proper
adaptive immune response with T cells.
These mucosal aggregates or follicles of B cells, T cells, and DCs are covered by

epithelium that contains specialized epithelial cells called dome orM cells that are found



Fig. 6. Innate immunity and the mucosa. (A) Pathogenesis of leaky gut. The epithelial bar-
rier normally restricts passage of luminal contents, including microbes and their products,
but a small fraction of these materials do cross the tight junction. This diagram shows
how DCs, and macrophages (M) react to these materials. These innate immune cells release
cytokines that exert proinflammatory (TNF and interferon-gamma [IFN-g]) and anti-
inflammatory (IL-13) effects. If proinflammatory signals dominate and signal to the epithe-
lium, MLCK can be activated to cause barrier dysfunction through the “leak pathway,”
allowing an increase in the amount of luminal material presented to immune cells. In the
absence of appropriate immune regulation, immune activation may cause further proin-
flammatory immune activation, cytokine release, and barrier loss, resulting in a self-
amplifying cycle that can result in disease. (B) Neutrophil collateral damage from NET
formation. Neutrophil lysis after phagocytosis. Cytolysis can be programmed, for example,
necroptosis, or caused by direct damage. Neutrophil lysis is caused by cytolytic toxins,
pore-forming agents, physical injury, or frustrated phagocytosis. This can result in the for-
mation of NETs during neutrophil lysis. Hydrolytic enzymes–DNA complexes are released
in the NETs, enhancing the proinflammatory response and tissue destruction, contributing
to collateral damage and disease. ([A] Adapted from Odenwald MA, Turner JR. Intestinal
permeability defects: is it time to treat? Clin Gastroenterol Hepatol 2013;11(9):1078, with
permission; and [B] Kobayashi SD, Malachowa N, DeLeo FR. Influence of microbes on
neutrophil life and death. Front Cell Infect Microbiol 2017;7(4):159, with permission.)
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in the GALT. These dome cells pinocytose antigen and transport it across the epithelial
layer (Fig. 7).47 The antigen may then be processed by APCs and presented to T and B
lymphocytes; indeed, intestinal APCs play a central role in the induction and mainte-
nance of mucosal immunity.47 These follicles are organized like lymph nodes with
T-cell areas and B-cell germinal centers.7,46 The lymphocytes that emigrate from these
organized areas into the surrounding LP are referred to as diffuse lymphocytes.48 The
hallmark of the mucosal immune system is that local stimulation will result in memory
T and B cells in the nearby mucosal tissue but also in other mucosal tissues.
In themucosal lymphoid tissues, mature T cells andB cells that have been stimulated

by antigen and induced to switch to produce IgAwill leave the submucosal lymphoid tis-
sueand reenter thebloodstream.49These lymphocyteswill exit thebloodstreamthrough



Fig. 7. Mucosal immune system of the gut epithelium. The LP contains scattered T cells and
lies beneath the epithelium, which contains intraepithelial lymphocytes (IEL). B cells are scat-
tered in the LP but are more frequent in the crypt regions along with plasma cells that pro-
duce IgA that is transported and secreted into the lumen. M cells facilitate antigen uptake
and delivery to the organized lymphoid tissues. T cells activated in the PP and mesenteric
lymph node express mucosa specific receptors, which interact with cell-adhesion molecules
on the HEVs, assisting in homing these T cells to the mucosal LP. The chemokine CCL25 pro-
duced by epithelial cells recruits lymphocytes expressing CCR9 receptors to the LP. (Adapted
from Cheroutre H, Madakamutil L. Acquired and natural memory T cells join forces at the
mucosal front line. Nat Rev Immunol 2004;4(4):291; with permission.)
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high endothelial venules (HEV) as described above and locate in the LP (see Fig. 7). B
cells will differentiate into plasma cells that will secrete dimeric IgA. Many of these cells
will return to the same mucosal surface from which they originated,49 but others will be
found at differentmucosal surfaces throughout the body. The homing of lymphocytes to
othermucosa-associated lymphoid tissue sites throughout thebody is referred to as the
“common mucosal immune system” (Fig. 8). Therefore, oral immunization can result in
themigration of IgAprecursor cells to thebronchi in the respiratory tract andsubsequent
secretion of IgA onto the bronchial mucosa.

MICROBIOME AND ENTERIC IMMUNITY

The microbiome is essential for immune development in the neonatal calf; then the
microbiome-gut-immune-brain axis maintains the health of the calf.50–53 As the calf
develops, there is a “succession” of microbes that finally culminates in what is called
a “climax” community that occurs as the gut transitions to an anaerobic environ-
ment.50,54 Microbiome succession is influenced by nutrition, stress, and environment.
This microbial community of commensals and their metabolites controls the health of
the gut mucosa and the underlying immune cells in the LP (Fig. 9).51,55 These



Fig. 8. Lymphocyte circulation and common mucosal immune system of the bovine. As illus-
trated on the left side of the figure, lymphocyte circulation with lymphocytes entering the
lymph nodes by afferent lymphatics and exiting by efferent lymphatics. The common
mucosal system involves the circulation of B and T cells between lymphoid tissues on
mucosal surfaces.
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commensal metabolites stimulate enterocytes to produce TGF-b, which is essential
for the development of T-regulatory (Treg) lymphocytes that produce anti-
inflammatory IL-10 (see Fig. 9). The microbial components in the microbiome also
stimulate the enterocytes to produce serum amyloid A that stimulates DCs to activate
another important mucosa regulatory T cell, TH17 cells (see Fig. 9). These microbial
metabolites also directly stimulate an NK-like cell, type 3 innate lymphoid cells to pro-
duce IL-22 to induce the enterocytes to produce more defensins (eg, REGIIIg and
REGIIIb) (see Fig. 9). The composition of the microbiome varies by gut location with
the numbers and diversity of populations being high in the rumen and increasing
dramatically from the abomasum to the colon with the ileum being a key organ for
microbial-immune development. These microbial communities (the microbiome)
have evolved to help protect the animal by improving barrier and immune function; un-
derstanding the complexity of the gut microbial ecosystem is essential.51,56

The stress of weaning, co-mingling, and abrupt diet changes results in major micro-
bial population shifts in the luminal microbial ecosystem, the microbiome. Stress
lowers the defenses against pathogen entry, leading to increased risk of disease.
Stress also leads to dysbiosis, the loss of good bacteria with an overgrowth of harmful
organisms (Fig. 10).57,58 However, dysbiosis is not just the loss of microbiome, it re-
sults in depletion of the “kill zone”(see Fig. 4); the mucous layer becomes thinner,
and the amount of sIgA and defensins declines precipitously to allow the barrier to
become weakened, allowing pathogens to interact with the mucosa and cause



Fig. 9. Gut microbiota and their products shape the development of epithelial cells and im-
munity. Segmented filamentous bacteria (related to Clostridium) promote the production of
serum amyloid A (SAA) protein from epithelial cells, which activates DCs to produce IL-6 and
IL-23, resulting in the generation of Th17 cells that are important for T-cell development.
Clostridium consortium and Bacteroides fragilis produce short chain fatty acids (SCFAs)
from dietary carbohydrates that induce directly or indirectly by the production of TGF-b
by the enterocytes the differentiation of Treg cells to enhance IgA production and to
help minimize inflammatory response. Diet- or microbiota-derived metabolites upregulate
the number of IL-22-secreting type 3 innate lymphoid cells (ILC3s) that induce the produc-
tion of defensins (AMP/HDP-REGIIIb and REGIIIg) from epithelial cells. (Adapted from Kim,
Yoo SA, Kim WU. Gut microbiota in autoimmunity: potential for clinical applications.
Arch Pharm Res 2016;39:1568; with permission.)
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disease. In addition, commensal organisms that help stimulate the mucosa to be anti-
inflammatory are no longer available so tight junctions become weakened; “leaky gut”
occurs, and pro-inflammatory responses occur that further weaken the gut epithelium
(see Fig. 6A). One major factor leading to the dysbiosis and diarrhea that we can learn
from pigs is low feed and water intake.59 Dysbiosis is also associated with suscepti-
bility to Johne disease.60

Homeostasis, “maintaining” a stable microbiome, is essential for good health and
production. Oral antibiotics affect the microbiome homeostasis and therefore effect
gut immunity and the incidence of disease. For example, the use of the antimicrobial
bacitracin methylene disalicylate61 altered the fecal microbial composition of calves
by increasing the number of opportunistic pathogens such as Escherichia, Entero-
coccus, and Shigella, and decreasing beneficial bacteria. In another study, the micro-
biome population of Lactobacillus decreased with all antibiotic treatments, but the
greatest reduction in Lactobacillus was observed with oxytetracycline, a broad-
spectrum antibiotic.61 To make things worse, the reduction of lactic acid–producing
bacteria (Lactobacillus) during weaning raises intestinal pH, increasing disease sus-
ceptibility because low gut pH is bactericidal to Escherichia coli.59 It takes weeks to
months to return the microbiome populations back to normal following antibiotic
treatment.



Fig. 10. Healthy mucosal defenses and mucosal dysbiosis. The intestinal microbiota pro-
motes 3 levels of protection against enteric infection. (I) Saturation of colonization sites
and competition for nutrients by the microbiota limit pathogen association with host tissue.
(II) Kill zone: Commensal microbes prime barrier immunity by driving expression of mucin,
IgA, and AMPs that further prevents pathogen contact with host mucosa. (III) Finally, the mi-
crobiota enhances immune responses to invading pathogens. Enhanced immune protection
is achieved by promoting IL-22 expression by T cells and NK cells, which increases epithelial
resistance against infection, as well as priming secretion of IL-1b by intestinal monocytes
(MF) and DCs, which promotes recruitment of inflammatory cells into the site of infection.
In conditions in which the microbiota is absent, there is reduced competition, barrier resis-
tance, and immune defense against pathogen invasion. (From Khosravi A, Mazmanian SK.
Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Micro-
biol 2013;16(2):222; with permission.)
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MAXIMIZING ENTERIC IMMUNITY: PASSIVE IMMUNITY, VACCINES, AND DIRECT-FED
MICROBIALS

Passive immune therapy has been used for more than 50 years in calf enteric disease.
Polyclonal antisera has been administered orally and/or subcutaneously to prevent/
treat bacterial diarrheal diseases colibacillosis and C perfringens type A and C with
variable results.62 One of the first successful uses of passive treatment was the oral
administration of K-99 monoclonal antibody for the prevention/treatment of colibacil-
losis in calves.63 Antirotavirus chicken egg yolk immunoglobulins fed in milk replacer
decreased rotavirus diarrhea and enhanced rotavirus antibody-secreting cells.64 Ma-
jor success has been obtained by vaccinating cows before calving to enhance passive
colostral antibodies for the protection of the calf against colibacillosis, C perfringens
type C enterotoxemia, rotavirus, and coronavirus diarrhea.62,65,66

Both parenteral and mucosal vaccinations have been used to prevent enteric dis-
ease. Immune protection has been done indirectly by vaccinating the cow to obtain
high levels of colostral antibodies for passive transfer to the calf against the neonatal
diseases discussed above.62,65,66 In the neonate, acquired immunity with parenteral
vaccination of the neonatal calf has been used for C perfringens type C in herds
wherein the disease occurs in calves older than 14 days of age.62 Although oral and
intranasal vaccines for rotavirus and coronavirus have the potential for active mucosal
immunity in the neonatal calf (less than a week of age),67 early onset of these diseases
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(<14 days of age) along with the induction time for the immune response (7–10 days)
makes efficacy poor in young calves (<14 days of age). Interestingly, oral coronavirus
infections result in infection of both the enteric and the respiratory system68 so coro-
navirus vaccines administered intranasal stimulated the commonmucosal system and
provided respiratory protection (see Fig. 8).69 Several Salmonella vaccines: inacti-
vated (whole cell; Rough mutants lacking oligosaccharide side chains (Re) mutant
common core), MLV (genetically altered), and subunit (siderophores) vaccines have
been licensed for parenteral administered but efficacy has been less then optimal.70,71

A major problem with Salmonella vaccines has been adverse reactions. The off-label
oral administration of MLV Salmonella vaccines also has variable efficacy.70,72 There is
a singleMycobacterium avium subsp paratuberculosis (MAP; paratuberculosis; Johne
disease) vaccine available. The vaccine is efficacious and used in sheep.73 The paren-
terally administered whole inactivated bacterin with Freund’s adjuvant also produces
cross-reactivity to both paratuberculosis and bovine tuberculosis tests.74,75 These
false positives interfere with national bovine tuberculosis eradication testing
programs, which limits the use of the vaccine to approval by regulatory officials.
Cross-reactivity is also a major deterrent for animal health companies to design
new MAP vaccines for cattle.
Mucosal delivered vaccines have the advantage of not being affected by maternal

antibody interference, being able to induce a response in neonates less than 7 days of
age, and priming the common mucosal immune system (for example, oral coronavirus
vaccination would provide specific coronavirus immunity to the respiratory mucosa).67

The use of novel adjuvants with parenteral vaccines76 that induce mucosal responses
in addition to novel mucosal delivered adjuvants will also enhance enteric immunity.77

The area with the most opportunity that is also the least characterized is the use of
direct-fed microbials to enhance enteric immunity and animal health while reducing
antimicrobial usage.78 Direct-fed microbials includes nutraceuticals, prebiotics, probi-
otics, and other dietary supplements. The effect of these direct-fed microbials on gut
mucosal immunity and health has generated much interest.50,51,54,56,61 Prebiotics (ol-
igosaccharides, beta-glucan, and fiber), fiber metabolites (butyric acid and other short
chain fatty acids), organic acids (ie, formic acid, citric acid), and botanicals (ie, vanilla,
oregano, pepper oil) enhance the tight junctions in mucosal barrier and have an anti-
inflammatory effect on mucosa (see Fig. 9).79–82 Probiotics (ie, yeast, Lactobacillus,
Bifidobacteria, and their metabolites) maintain microbiome homeostasis, increase
secretory IgA, and decrease local inflammatory and APC responses to improve
mucosal immunity (see Fig. 9).83–88 This anti-inflammatory activity could have an
impact on protozoal (eg, coccidia and cryptosporidia) and bacterial diseases (eg, Sal-
monella and Johne disease) where a proinflammatory response is part of the patho-
genesis mechanism. Additional research needs to be done to further understand
mechanisms and develop formulations that contain combinations of direct-fed micro-
bials for different applications and age groups.
SUMMARY

The enteric mucosal immune system provides the first immune defense barrier for
more than 90% of potential pathogens. The gut mucosal immune system alone con-
tains more than a trillion (1012) lymphocytes and has a greater concentration of anti-
bodies than other tissue in the body. It protects against harmful pathogens but also
induces immune system tolerance to dietary antigens and normal microbial flora.
The health of the enterocytes, which are the epithelial cells that line the GI tract, is
important not only for the growth and development of cattle, through secretion and
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absorption in the gut, but also to provide a first immune response to enteric microor-
ganisms. The enterocytes maintain a “kill zone” barrier to keep out pathogens in
concert with the commensal microorganisms (microbiome) and other cells of the
immune system. The microbiome functions best when it is in a stable condition,
“homeostasis.” Disruptions in the microbiome’s homeostasis result in dysbiosis,
which decreases the “kill zone,” allows “leaky gut,” and increases inflammation.
Increased inflammation is seen as an important part of pathogenesis of infectious dis-
eases, including coccidia, cryptosporidia, C perfringens type A, Salmonella, and
Johne disease. Maintaining microbiome homeostasis, the “kill zone,” and the mucosa
anti-inflammatory response are the keys to maintaining good gut and animal health
and reducing antimicrobial usage.
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