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Optically Tunable Gratings Based 
on Coherent Population Oscillation
Xiao-Jun Zhang1,2, Hai-Hua Wang3, Lei Wang3 & Jin-Hui Wu1

We theoretically study the optically tunable gratings based on a L-type atomic medium using coherent 
population oscillations from the angle of reflection and transmission of the probe field. Adopting 
a standing-wave driving field, the refractive index of the medium as well as the absorption are 
periodically modified. Consequently, the Bragg scattering causes the effective reflection. We show that 
different intensities of the control field lead to three types of reflection profile which actually correspond 
to different absorption/amplification features of the medium. We present a detailed analyses about the 
influence of amplification on the reflection profile as well. The coherent population oscillation is robust 
to the dephasing effect, and such induced gratings could have promising applications in nonlinear optics 
and all-optical information processing.

Periodic optical media have attracted a great deal of attentions. One instance is the photonic crystals whose 
refractive index varies periodically over a length scale comparable to optical wavelength. Fascinating effects of 
photonic crystals have been examined in the field of quantum optics, such as controlling spontaneous and ther-
mal emission1–3, efficient miniature laser4, controlling interaction between individual photons5, and efficient 
photonelectric conversion in solar cell6,7, just to mention a few. Conventional photonic crystals, for example, 
the solid materials with arranged air holes8, silicon woodpile9, and honeycomb structures10 and so on, have fixed 
configurations. The photonic band structures of such materials are determined. And clearly, the tunable photonic 
crystal has more promising applications. One approach to produce such material is to introduce standing-wave 
field into the interaction between light and matters, and use the standing-wave field to periodically modify the 
refractive index of the sample, and further to control the optical properties of the constructed periodic structure. 
Such tunable structure is often refered to as electromagnetically induced grating (EIG)11. And it has important 
applications in quantum memory12,13, enhanced nonlinear optics process14,15, and deeply relates to coherent con-
trol of light propagation16,17, and photon state manipulation18. Electromagnetically induced transparency (EIT)19 
is the common choice to establish EIG. With a strong coupling field and a weak probe field interacting with the 
atomic media, normally in a three-level Λ configuration, EIT medium can efficiently limit the absorption of the 
resonant probe field due to the atomic coherence built between two ground states. The feature of EIT is a narrow 
transparency window in the absorption profile, with the width that can be controlled by the Rabi frequency of the 
coupling field20. Adopting a standing-wave field as the coupling field, the refractive index and the absorption are 
periodically modified, then EIG is constructed21.

There are other kinds of optical tunable gratings, for example, the four-wave mixing gratings22,23 which reduce 
the power threshold for generating the optical phase-conjugate beam, and the Raman-induce gratings17 with the 
probe field operating in a stimulated Raman emission mode to eliminate the signal attenuation24. However, the 
gratings we mentioned above essentially relates to the atomic coherence between the ground states24–26, and are 
vulnerable to dephasing effect. Such characteristic is experimentally demonstrated in the example of EIT system 
with the dephasing effect represented by the gradient of magnetic field27,28.

In the present paper, we propose a novel scheme to construct optically tunable gratings based on coherent pop-
ulation oscillations (CPOs)29,30. Normally CPO can be realized by applying two coherent electromagnetic fields of 
different amplitudes and frequencies onto a two-level atomic system with an additional shelving state. This system 
has potential application in spatial optical memory. An alternative avenue is to employ the Λ-system27,28 (adopted 
in our present investigation) composed of two coupled two-level subsystem. Such type of CPO is characterized by 
a narrow transparency window with the width depending on the population decay rate between the two ground 
states. Using a standing-wave driving field as the control field, the CPO-induced grating can be constructed. 
Such gratings are robust to dephasing effect since atomic coherence is not involved31, and possible gain can be 
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introduced to overcome the absorption of the probe field. In the following sections we systematically investigate it 
from the point of view of reflection and transmission. The equations describing the CPO system are given in Sec. 
II together with the introduction of the mechanism. In Sec. III we investigate the properties of the gratings using 
the characteristic-matrix method. And finally a brief conclusion is present in Sec. IV.

Basic Equations
Let us consider the atomic system shown in Fig. 1 with the optical transition frequency represented by ω0. And the 
magnetic quantum numbers of the states |1〉, |2〉 and |3〉 are m = −1,1, and 0 respectively. In other words, the 
transition |1〉−|3〉 (|2〉−|3〉) can be coupled by the σ + (σ−) polarized light. The ground states are shifted by 2δB 
due to the Zeeman effect of a magnetic field B. The commonly used medium for demonstrating CPO is metasta-
ble helium28,32 which is adopted in our investigation as well. A strong standing wave Ec resonant with the optical 
transition serves as the control field, and a weak field Ep with frequency ωc−Δ probes the three-level system. Here 
Ec (Ep) is the amplitude of the corresponding field. The control field is linearly polarized, then without loss of 
generality, we set its two circularly-polarized components in phase, Ω = Ω + Ω+ −( )c c c

1
2

. Here Ωc and Ωc± 
defined as Ω = ℘± ±E /2c c c c, ,  stand for the Rabi frequencies of the control field, and its σ±-components respec-
tively. The dipole moments of the two optical transitions having the same value ℘ is already assumed. Taking the 
polarization of the control field as the reference, the linearly-polarized component the probe field parallel to the 
control-field polarization is represented by Ω , while the perpendicular one, by Ω⊥. Adopting the relations 
Ω = Ω + Ω+ ⊥i( )/ 2 , Ω = Ω − Ω− ⊥i( )/ 2 , where Ω + and Ω− stand for the two circularly-polarized compo-
nents of the probe field, we can write the Hamiltonian of the three-level atom in a rotating frame as

 δ
δ
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Where Ω = Ω + Ω+ +
Δec

i t
1 , Ω = Ω + Ω− −

Δec
i t

2 . The dynamics of laser-driven atomic system is governed by the 
density matrix ρ, which obeys the master equation iħ∂tρ = [H,ρ]. The solution to the above partial differential 
equation for the resonant probe field is discussed in the supplemental material of the article31. Take it as a major 
reference, solving the equations with the non-zero Δ is straightforward using the method of Floquet 
expansion29,33,34.

Regarding that Ω± are small values as compared with Ωc±. The above equations can be solved using the perturbation 
method with respect to Ω±. Note that the Raman coherence ρ12 (ρ21) should be neglected in every order since the 
Zeeman shift is large enough to avoid it to be built up28,31,32. We further assume that Ωc± can be described by real num-
bers, Ω = Ω = Ω+ −c c c

1
2

, Ω ∈c . The zero-order equations and their steady-state solutions where only the control 
field is considered and the first-order equations with the effect of the probe field included are presented in the 
Supplementary Information. The relevant density matrix ρij

(1) has been expanded into series as ρ ρ= ∑ < > Δeij n ij
n in t(1) . 

Note that we use the terms in round bracket (·) in the superscript to represent the levels of the perturbation with respect 
to Ω±, and the terms in angle bracket <·> to distinguish the coefficients in the expansion. In this system, for example, 
ρ < >

31
1  relates to the atomic polarization excited by the σ + -component of the probe field whose frequency is ω0 − Δ, 

meanwhile ρ <− >
31

1  corresponds to the generation of an idle field29 with the frequency of ω0 + Δ at the σ− polarization 
state. This method is normally referred to as Floquet expansion that we mentioned before. We introduce the sum and 
difference of the density matrix elements as follows: ρ ρ ρ= +< > < > < >

s
1

11
1

22
1 , ρ ρ ρ= −< > < > < >

d
1

22
1

11
1 , 

Figure 1.  Schematic diagram of linearly polarized (represented by the double-headed arrow in circle) control 
field and probe field interacting with the three-level atomic system.
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(0). And for a negligible δB, ρd

(0) and σd
(0) are zeros31. The equations for these transformed <1>-labeled 

Floquet-expansion coefficients can be written as

σ σ ρ ρ∂ = − Γ + Δ − − Ω + Ω< > < > < >i i i( ) 2
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Where I stands for the imaginary part, γt is the population decay rate resulting from the thermal motion, and  
Γ
2
0  (Γ) denotes the population (optical coherence) decay rate. We assume that δΓ Γ  B0 , and γ δΓ  t B. 

The detailed explanation on the mechanism of Λ-type CPO can be found in ref.32 Here we would like to put a brief 
discussion here. If the polarization of the probe field is parallel to that of the control field (Ω⊥ = 0), then Eq. (3) 
indicates that σ< >

d
1  drops to zero quickly due to the large decay rate Γ. And σ =< > 0d

1  means that the atomic 
polarizations excited by the probe field on the two optical transitions are of the same amplitude and most impor-
tantly, in phase. This leads to the vanishing ρ< >

d
1  as well according to Eq. (5). On the contrary, the summation of 

population on |1〉, |2〉, represented by ρ< >
s

1  is oscillating according to Eq. (4). The population oscillates between 
the ground states (|1〉, |2〉) and the excited state (|3〉) just like a two-level system, and such oscillation decays at the 
rate of Γ0 + γt.

If the probe and the control field have the orthogonal polarizations (Ω = 0). Then Eq. (2) tells us that σ< >
s

1  
tends to zero rapidly, which means that the two probe-field related atomic polarizations on the optical transitions 
are in opposite phase. Then ρ< >

s
1  vanishes, meanwhile ρ< >

d
1 , the difference between the population of the ground 

levels oscillates, as indicated by Eqs (4) and (5). In other words, two set of closely related, and equal-strength 
population oscillations take place in opposite phase on transitions |1〉−|3〉 and |2〉−|3〉 (σ =< > 0s

1 , ρ =< > 0s
1 ). 

And it appears like the oscillation happen between the two ground state. And ρ< >
d

1  can be regarded as a measure 
of CPO strength. Such modulation of the population difference opens a narrow transparency window on the 
absorption profile, and this long-lived oscillation, decaying at the rate of γt corresponds to the CPO that we com-
monly refer to.

From now on, we set Ω = 0, Ω =⊥R 0, and Ω = Ω⊥I . Here R stands for the real part. Then the steady-state 
solutions are:
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Where γ γ= + Γ Γ + Δ + Δ + Γ − Δ ΩA s2 2 (1 ) [( )( ) ( ) ]t t c0
2 2 2 2 2 2 , γ= Ω Γ + Γs 3 /[ ( )]c t0

2
0 . The numerical 

result of σd is given in Fig. 2. σI d represents the absorption profile with the full width at half maximum as 2Γ 
approximately. As we can see that, when a relatively weak control field is applied, for example, Ωc = 2Γ0 (black line 
in Fig. 2(a)), a transparency window or a dip appears at the center of the absorption line and its minimum can be 
easily obtained by setting Δ = 0 in Eq. (7).
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We can see from the above equation that when γΩ = Γ2c t  (blue line in Fig. 2(a)), σ< >I dip
1  reaches zero. As a 

matter of fact, we can define a parameter γ= Ω Γs /2c t
2  as the saturation parameter29, and in this very situation s = 1.

For large control field corresponding to s > 1, the red line in Fig. 2(a) shows that the amplification can take 
place at Δ = 0. To reveal the state of CPO in this case, one has to look into Eqs (3,5) where σ< >

d
1  and ρ< >

d
1  couple 

with each other. Based on these equations, for the resonant field, we have
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Note that in deriving the above expression, σs
(0) is disregarded, since it is proportional to Ω1/ c. We treat ρ< >

d
1  

in Eq. (10) as a function of Ωc in this paragraph. The term in parentheses relates to the population distribution due 
to control field solely, and decreases slowly for the increasing Ωc. The next term in the form of a fraction decreases 
in the range of γΩ > Γc t . After all, for γΩ > Γ2c t  or s 1, ρ< >

d
1  becomes smaller as control field gets stronger 

since the strong Ωc tends to equally distribute the population over the three levels and results in the vanishing 
population difference. However ρ< >

d
1  drives σ< >

d
1  in Eq. (3) with the coefficient Ω / 2c , see the last term 

( ρΩ < >i / 2c d
1 ) in Eq. (3). And simple calculations can show that the modulus of ( ρΩ < >i / 2c d

1 ) is still a significant 
value ∼ Ω( )7 2

 which notably enlarges σ| |< >
d

1 , and it remains as an increasing function around γΩ = Γ2c t . In 
conclusion, despite small-amplitude CPO that the larger Ωc leads to, the coupling process still increases the polar-
ization, force the atom to radiate, and results in the amplification of the probe field after all.

Next we briefly discuss the relation between the susceptibility χ and σd. As we have set that Ω = 0, and 
Ω = Ω⊥ i , consequently Ω = −Ω+ / 2 , Ω = Ω− / 2 . The negative sign means phase difference of π. Then the 
relation σ =< > 0s

1  from Eq. (8) indicates that the susceptibilities for Ω + and Ω− are the same which is reasonable 
in our model. And it takes form of χ ασ= Ω< >/ 2d

1 , with parameter α written as35

α
ε

=
℘

.
N

(11)

2

0

Where N is the atomic density. With the amplification and attenuation considered, χ as well as refractive index 
n become complex numbers36,37. When the amplitude of control field changes, χ changes accordingly. And this 
is the fundamental mechanism from which tunable gratings are realized when the standing-wave control field is 
used.

The CPO system can be realized in cold cesium atoms38, helium cell with atoms excited to the metastable 
state28,32, and semiconductor quantum structures39,40. Before investigating the features of the standing-wave 
driven system, we would like to discuss the value of the parameters we have introduced. Here we assume that the 
helium cell is used to construct the CPO, and the parameters given in the articles28,32 are used as references. The 
transit-population loss rate γt results from the thermal motion which simply causes the atom fly out of the range 
of the laser field. Set d as the diameter of Gaussian beam at e1/ 2 of maximum intensity, then it can be estimated 
(Note that γt is determined by Gaussian beam diameter (d) at e1/ 2 of max and the diffusion coefficient () 
through the relation γ = d2 /t  . Where λ= vm m

1
2

 , and π=v RT M8 /( )m  is the mean speed of atoms, 
λ π= RT d N P/( 2 )m a0

2  is the mean free path. Here d0 is the diameter of 4He atom, P the pressure of gas, Na the 
Avogadro constant, R gas constant, T the absolute temperature of the gas, and M the molar mass. Based on the 
above relations, for d = 1 cm, γr is 0.98 KHz) that for d = 1 cm, γt is approximately 103 rad/s41. When the light is 
strongly focused, for example, d = 10 μ m, the resulting γt is nearly 106 rad/s. Next we consider Γ0 which relates 
to the radiative decay of the atomic level 23P, and such radiative decay rate is about 1.022×107 Hz at low enough 
pressure42. Normally in the experiments the pressure is 1 Torr at room temperature28,32, leading to the Γ0 of meg-
ahertz. In our calculation, we assumed that the strongly focused light is used, then the relation γt/Γ0 = 1 is 
employed.

The optical coherence decay rate Γ relates to the width of absorption profile, hence we need to discuss the 
Doppler effect first. As already shown in the references41,43 the Doppler width ωD is around 0.85 GHz at the room 
temperature. And “seen” by the atoms moving at the most probable speed, the frequencies of the forward and 
backward field (standing-wave control field) are shifted oppositely and the frequency difference acquired is ωD as 
well. This shift can be omitted considering a strong control field is used. And the Doppler broadening is taken 
account of by replacing Γ by ωD. This is reasonable based on the experiments reported in the articles41,43. Taking 

Figure 2.  Real part (a) and imaginary part (b) of σd. Here σ =I 0d  when Δ = 0 under the condition of 
γΩ = Γ2c r

2  (blue line). The black and red line represent the data for Ωc = 2Γ0, and 15Γ0 respectively. Parameters 
for the results are: Γ/Γ0 = 20, γt/Γ0 = 1, and Ω = 0.1Γ0.
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the letter31 as the reference, we set Γ/Γ0 = 500 in our calculation. The residual Doppler broadening on the spin 
transition |1〉−|2〉 is simply neglected, since ρ21 = 0 is previously assumed. The shift δB resulting from the Zeeman 
effect is neglectable as well, for example, 2δB = 100 kHz when 17 mG longitudinal magnetic field is used in 
demonstrating the light storage via CPO28. Normally in our system28, the control-field Rabi frequency of 28 MHz 
corresponds to intensity of 198 mW/cm2. Then for γΩ = Γ2c t , the control-field intensity is about 0.82 W/cm2.

Properties of the Gratings.  In order to construct the spatial periodic variation of the refractive index 
of the medium, the control field is retro-reflected upon impinging on a mirror of reflectivity Rm to establish a 
standing-wave pattern within the sample. We explicitly denote the spatial dependence of the Rabi frequency of 
the control field as Ωc(x), and define it as

γ
Ω =

Γ

−
+ + − .x

a
R

R k x R k x( )
2

1
(1 ) cos ( ) (1 ) sin ( )

(12)
c

m t

m
m c m c

2 2 2 2

Where kc = ωc/c is the amplitude of the wavevector, and recall that the control field resonant with optical transition, so 
ωc = ω0. Parameter am is dimensionless variable representing the amplitude of the control field. Even though the value 
of Rm is chosen less than unity, we still use “nodes” and “antinodes” to name respectively the positions where the Rabi 
frequency of the control field takes the minimal and maximal values. At the nodes, γΩ = Ω = Γλ( ) amin 2c c m t4

,  
while at the antinodes γΩ = Ω = Γλ

η( )max 2c c
a

t2
m , here η = − +R R(1 )/(1 )m m .

One can easily find out that if am = η, σ =< >I 0dip
1  at antinodes, and if am = 1, σ =< >I 0dip

1  at nodes. We can 
divide the states of the system into three categories regarding the sign of σ< >I dip

1 , as shown in Table 1. We will show 
that the reflection profiles of the three cases takes the different forms. However, the range of Ωc shown in the table 
can be impractical considering that max Ωc should not exceed Γ, and this leads a upper limit as

η γ
<

Γ
.

a
2 (13)

m

t

The control field can tailor the optical property of the sample and lead to a spatially periodic refractive index 
χ= +n 1 . In the present CPO system, χ  1, then = + χn 1

2
. The reflectivity of the probe field can be 

obtained through characteristic matrix method which is to divide one period (length of λ /2c  here, with λc being 
the wavelength of control field) into m layers and treat each layer as a homogeneous dielectric film for a very large 
m. This method is fully studied and can be found in the famous book44 and articles36,37,45. The spatial period of the 
grating is half of the probe wavelength, therefore the high-order diffraction cannot be realized in the present 
atomic configuration, and the probe field should be normal-incident laser. For the transverse-electric polarized 
light the characteristic matrix for a homogeneous optical layer is

=


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
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−


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Here ε μ=p /j j j
 with εj and μj being the dielectric constant and magnetic permeability respectively. 

Commonly μj can be regarded as unity for transparent substances44, and εj is a complex number36,37 whose imag-
inary part describes absorption or amplification. k = ωp/c, and dj = λc/2m is the length of single film. The total 
characteristic matrix of the sample is

∏=









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.
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M M
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Here λ= L/ c  is the number of the control-field wavelength λc contained by the whole sample (L). The reflec-
tivity R and transimissivity T can be expressed as the function of mij, the element of M.

=
+ − +

+ + +
R

m m p p m m p
m m p p m m p

( ) ( )
( ) ( )
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(16)

l l

l l

11 12 1 21 22

11 12 1 21 22

2

Case Range of am

Im σ< >
d

1

at antinodes
Im σ< >

d
1

at nodes

I 0 < am ≤ η ≥0 >0

II η < am < 1 <0 >0

III am ≥ 1 <0 ≤0

Table 1.  The three cases of the standing-wave driven CPO system.
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=
+ + +

.T
p

m m p p m m p
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( ) ( ) (17)l l

1
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2

Consequently, the absorptivity can be expressed as A = 1−T−R. The parameter ε μ=p /l l1( ) 1( )  with the 
subscript 1(l) stands for the first (last) layer, which normally is the walls of the container, and we set them as vac-
uum for simplicity.

Case I.  In the first case, the value of am locates in η< ≤a0 m , the sample is passive at any position. As a special 
case, am = η is included in this case and it corresponds to the situation in which zero-absorption happens at 
antinodes. We present the numerical results of the susceptibility χ at antinodes and nodes as Fig. 3(a) and (b) 
respectively. The special case of am = η is chosen. As we can see that in Fig. 3(a), the χI  reaches zero in the middle 
of the dip at the antinodes. Naturally, the absorption is much higher at the nodes due to the weaker the control 
fields there and the resultant shallower dip is shown in Fig. 3(b).

The susceptibility varies continuously with respect to x as shown in Fig. 3(c) where the data of χI dip within one 
period is plotted. Through out the whole medium, the susceptibility is periodically modified to establish Bragg 
reflections off the absorption peaks18.

Figure 3(d) shows the reflectivity (black line) and the absorptivity (red line) of the system. Naturally, the 
medium is much absorptive for Δ≠0 than the resonant situations, see Fig. 2(a) and (b). Consequently, it results 
in the narrow “valley” of the absorption profile. The mirror-symmetry of the absorptivity and reflectivity profile 
suggests that the absorption limits the reflection, and shapes the reflection profile. For the even more weak control 
field, am < η, the medium at the antinodes is absorptive, then the reflection will be even weak. The low reflectivity 
certainly limits the application of the system, however the situation changes in the next case.

Case II.  The larger control field can lead to the amplification of the probe field. In this subsection we discuss 
the control field whose amplitude is under the condition of η < am < 1. In this case, χ <I 0dip  (amplification) at 
the antinodes, meanwhile χ >I 0dip  (attenuation) at nodes, as shown in Fig. 4(a) where χI dip is plotted as a func-
tion of x for Rm = 0.7 (dashed line) and Rm = 0.8 (solid line). The zero point which is marked by the small circle is 
set to be (x0,0), and x0 can be obtained from Eq. (7) which is

λ
π

=








− − + 


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Figure 3.  Susceptibility χ at antinodes (a) and nodes (b) for am = η as the function of probe detuning Δ.  
(c) Imaginary part of the susceptibility for resonant probe field χI dip within a spatial period. Such quantity can 
represent the modulation on the refractive index due to the relation of χ= +n 1 /2. (d) The reflectivity (red 
line) and absorptivity (black line) plotted as function of Δ. Parameters are Γ = 500Γ0, γt = Γ0, λc = 1.083μ m,  
L = 5 mm, Rm = 0.8, η = 0.0557, α = Γ0 and am = η.



www.nature.com/scientificreports/

7SCientifiC REPOrTs |  (2018) 8:6834  | DOI:10.1038/s41598-018-25010-w

Based on the sign of χI dip, a single spatial period of the standing-wave control field can be roughly and rationally 
divided into three layers which are the first active layer ≤ ≤x x0 0, the second passive layer λ< < −x x x/2c0 0, and 
the last active layer − ≤ ≤λ λx x

2 0 2
c c . This simplified active-passive-active (APA) three-layer system is featured by the 

thickness of each layer which relates to x0, and averaged dielectric constant of each layer. Note that from the angle of 
averaged dielectric constant, the first and the third layers are identical. Here we introduce parameter εa p( ) to represent 
the averaged dielectric constant of the active (passive) layer, and it takes the form of ε χ κ= + + i1a p a p a p( ) ( ) ( ), with

∫κ α σ
=

Ω

< >I

x
x

dx
( )

2
,
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The expression of α is given in Eq. (11). The quantity of χa p( ) is obtained through the averaging process of 
σ< >R dip

1 . However, considering that it is the resonant probe field that we investigate here, χa p( ) vanishes. 
Incidentally, the real and imaginary parts of complex refractive index46 correspond to εa p( ) can be written as 

κ= + +R ( )n( ) 1 1 /2a p a p( )
2

( ) , κ= + −I ( )n( ) 1 1 /2a p a p( )
2

( ) . And more information about the approximate 
method for reflection from the continuously varying refractive index can be found in ref.45 After define θ = 
2πx0/λ, the reflectivity of the APA system is

θ
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κ κ
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Where  θ=θ 4  and κ| |  1a p( )  is already assumed. The detailed derivation of the formula is presented in 
the Supplementary Information.

Figure 4(b) provides results of R from Eq. (16) (red lines) and RAPA (black lines) for Rm = 0.8 (solid lines) and 
0.7 (dashed lines). Clearly, the active medium can lead to the large reflectivity exceeding unity17, see the red line 
in Fig. 4(b). As we can see that for the same value of am, the formula of R provides a relatively larger value of reflec-
tivity than the APA method. This is mainly because that RAPA only takes account of reflection between the layers 
εp and εa. The variation of the refraction index within each APA-layer is averaged, the corresponding reflection is 
neglected as well. However, the similarity of the line profile of R and RAPA as functions of am is very high, especially 
on the value of am for which the maximum reflection takes place. And such value is determined by εa, εp and x0 
through Eq. (21). Clearly, the APA structure is main factor of the reflection profile. The reflection from the inter-
face of the passive and active layers dominates the reflection feature due to its more significant variation of the 
optical properties. And the formula (21) can be employed as a quick reference for controlling the reflection profile 
(more precisely, the relative magnitude of reflection) using the coupling-field intensity, however, it is unquestion-
ably the rough estimation on the certain value of the reflectivity.

Figure 4.  (a) The imaginary part of χdip under different values of Rm. The small circles indicate the positions 
of x0. The data is calculated using Eqs (9) and (12) with am = 0.2; (b) Relation between reflectivity and the 
amplitude of control field. Different linecolors distinguish the reflectivity obtained from the two methods: Black 
lines indicate that the data is calculated using the APA approximation method, while the data represented by red 
lines is obtained from Eq. (16). Two kinds of lineshapes are used to differentiate values of Rm: solid line for Rm = 
0.8, and dashed line for Rm = 0.7. Other parameters are α = Γ0, Γ = 500Γ0, γt = Γ0, λc = 1.083μ m, L = 5 mm, 
and Δ = 0.
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The reflectivity provided in Fig. 4(b) is for the resonant probe field. In Fig. 5 we present the reflectivity R as 
the function of Δ, under four different values of am. Together with Fig. 4(b), Fig. 5 shows how the reflectivity 
can be controlled by the amplitude of the control field. The red line corresponds to am = 0.116, and such value 
leads to the maximum reflection in Fig. 4(b) for Rm = 0.8; In the medium contains the gain layers, the reflectivity 
could exceed unity just as we shown here. For the other value of am, the different structure of APA layers are con-
structed, the probe field somehow does not resonate with the gratings anymore, and lower reflectivity is caused. 
Note that for the stronger control field, the width of the reflection peak is larger. This is simply because that more 
atoms within the Doppler broadening is involved in the pumping process.

Case III.  In this subsection we consider the relatively large control field, am ≥ 1. The case of am ≥ 1 means χI dip 
is negative everywhere. The “=” sign corresponds to the situation in which χ =I 0dip  at nodes. This case can be 
difficult to realize due to the limitation of the laser intensity imposed by the capacity of practical device or the 
requirement of CPO pump mechanics, such as Eq. (13). For the latter one, if we set Rm = 0.8, the Eq. (13) requires 
am < 0.88 and Case III becomes an unreasonable situation; Meanwhile for Rm = 0.7, am < 1.4 is demanded. In the 
following investigation, we set Rm = 0.7, am = 1.

In Fig. 6(a) we present data of χR , χI , and R for varying Δ. In contrast with the previous case, here the reflec-
tivity is quite low for the resonant probe field. This is because that χI dip varies over a very narrow range within a 
spatial period as shown in Fig. 6(b), and χR dip is a constant just as in the previous cases. Note that in Fig. 6(b) the 
data is magnified 105 times.

As for the amplification, χI dip is nearly negative everywhere, which means the whole sample can be regarded as 
the gain medium for the resonant probe field. This is feature of the current case. However, the spatial deviation of the 
susceptibility is so small, and results in the insignificant reflection even amplification is included. And the gain char-
acteristic of the medium manifests itself in the transmission as shown in Fig. 6(c) that T exceeds unity for Δ = 0.

The two peaks of the reflectivity appears where the refractive index at the nodes reaches the extreme values. As 
we can see in Fig. 2(b) that the probe detuning corresponding to the extreme values (Δm) does not change much 
for different values of control-field Rabi frequency near γΩ = Γ2c t . They are around certain values, Δm = ±Δ0 
we assumed. By solving σ∂ Δ =ΔI ( ) 0d , we have γΔ = 3 t0  approximately under s = 1. The reason for such 
insensitive response to Ωc is the width of the dip which relates to γt solely and the determinative connection 
between the χR  and χI  through Kramers-Kronig relations47. For the larger coupling-field Rabi frequency far 
from γΩ = Γ2c t , the detuning for maximal refractive index drift away from ±Δ0. However, the much smaller 
refractive index is caused as well, see χR  at the antinodes represented by the lines with solid circles in Fig. 6(a). 
As the intensity of the control field changes through the spatial period, those extreme refractive indices apparently 
change most significantly, and result in the two peaks of the reflectivity.

The reflectivity could be enhanced by increasing the atomic density N due to the enlarged spatial deviation of 
the complex refractive index and the enhanced gain feature. However the latter one could cause the probe field 
(either reflected or transmitting) to “blow” up, and such instability is not helpful in practical application. The 
intensity of control field is relatively high in this case, for example, the data used in Fig. 6 requires the control 
intensity at the antinodes to be approximately 103.7 W/cm2. This requirement depends on Γ, and cooling the sam-
ple to reduce the Doppler broadening could makes the lower control-field intensity valid in this case. Comparing 
the results in the previous case, the situation here is not a reasonable choice for controlling the reflectivity in 
practice. However it is attractive only when this special reflection line-profile is demanded.

In all the three cases, we assumed that the coupling field resonates with the optical transition. For the 
non-resonant coupling field, if the coupling detuning is smaller than Γ, spectral reflectivity as a function of Δ 
should not change much since the CPO depends on Δ, the frequency difference of the coupling and probe field29. 
The period of the grating can be further tuned through the misaligning angle between the two component lasers 

Figure 5.  (a) The reflectivity plotted as a function of probe detuning under different values of am. Rm = 0.8; 
Other parameters are α = Γ0, Γ = 500Γ0, γt = Γ0, λc = 1.083μ m, L = 5 mm.
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of the standing-wave coupling field37. The period increases with the misaligning angle, and causes the reflection 
profile to shift due to the Bragg’s rule.

Conclusions
In this paper, we investigate the optically controllable gratings in the CPO medium whose refractive index can be 
periodically modulated by the standing-wave control field. The valuable feature of CPO is the dip appears in the 
absorption profile with the width relating to the population decay rate and the depth depending on the strength of 
the control field. When the Rabi frequency of the control field is larger than the saturation parameter, the medium 
becomes active for the resonant probe field, and amplification appears. We use the standing wave as the control 
field, then the dip varies spatially to form a standing-wave pattern. The resultant Bragg scattering can lead to 
significant reflection. Distinguished by the control-field intensity and the reflectivity of cavity mirror represented 
by Rm or η in the text, the medium is divided into three categories regarding absorption property of medium (see 
Tab. 0). The lower control-field intensity makes the medium absorptive at any position. In such case the reflec-
tion profile is characterized by one sharp peak locating in the resonance region. The reflectivity is low due to the 
limitation imposed by the attenuation process. The next case relates to the stronger control field which forces the 
medium to be active at anti-nodes meanwhile still passive at nodes for the resonance field. With the aid of the 
simplified three-layer APA approximate method, we show that how amplification changes the scattering property 
of the medium thoroughly. The most significant feature is that the amplification can lead to the reflection profile 
with one peak larger than unity. In addition, it can provide a flexible way to control the reflectivity through the 
control field as shown in Fig. 5. Although it is difficult to realize practically, for the complete analysis, we consider 
the third case as well in which the even stronger control field is assumed, and it makes absorption disappears. 
As an example, we investigate the critical state in which the medium is neither gain nor absorptive at nodes, but 
active everywhere else. The spectral reflectivity has two peaks whose locations depend on the population decay 
rate between the ground states. The resonant field can propagate through the medium and get amplified, but 
barely reflected due to the small variation of the complex refractive index. At last we would like to mention that 
the present system can be extended. Using a standing-wave coupling field and a traveling-wave coupling field to 
form a two-photon transition48,49, a subwavelength grating could be constructed.

Data Availability.  No datasets were generated or analysed during the current study.
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