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Abstract

Functional food ingredients, including prebiotics, have been ardently developed for improv-

ing the intestinal environment. Fructooligosaccarides (FOS), including fructans, are the well

researched and commercialized prebiotics. However, to our knowledge, few studies have

been conducted on the physiological effects of each component of FOS as prebiotics. 1-

Kestose, a component of FOS, is composed of one glucose and two fructose molecules,

and is considered as a key prebiotic component in short-chain FOS. In the present study,

we examined the effects of dietary 1-kestose using 0.5–5% 1-kestose diets on cecal micro-

biota composition and cecal contents of short-chain fatty acids and lactate in rats. The find-

ings indicate that dietary 1-kestose induced cecal hypertrophy and alterations in the cecal

microbiota composition, including a marked increase in the cell number of Bifidobacterium

spp. These alterations were associated with significant increases in acetate and lactate, and

a marked increase in butyrate in cecal contents. Furthermore, dietary 1-kestose induced a

significant decrease in serum insulin concentration in rats fed 2.5–5% 1-kestose diet. These

findings suggest a potential of 1-kestose to be a prebiotic for improving the metabolism of

the host.

Introduction

Recent studies have revealed that human intestinal microbiota has a large impact on the health

of the host, and that irregularity of microbiota is linked with lifestyle-related and immunologi-

cal diseases, such as diabetes, adiposeness, allergy and inflammatory disorders [1,2]. Several

environmental factors, including aging, antibiotic usage, and diet, are known to influence the

composition of microbiota. Of these factors, diet appears to be the most promising factor for

the regulation of health conditions.
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A prebiotic is now defined by FAO as “a non-viable food component that confers a health

benefit on the host associated with modulation of the microbiota” [3]. Oligosaccharides are

usually used as prebiotics and are important food ingredients. Fructooligosaccharides (FOS)

are the well commercialized and researched prebiotics and several beneficial properties have

been reported. Daily intake of FOS increases levels of fecal bifidobacteria which is associated

with a trend toward a relative increase in specific immune response [4], delays the onset of

senescence including learning and memory disorders in senescence-accelerated mice [5], pre-

vents the incidence of aberrant crypt foci in mice [6], and modulates cytokine secretion in

human peripheral blood monocyte [7]. FOS consist of different ratios of 1-kestose, nystose,

and fructofranosylnystose, which have 1–3 fructose monomers linked with sucrose via β2,1

glycosidic bonds [8,9]. Therefore, the key components of prebiotic activity have not been well

characterized in FOS. Our recent in vitro study using several oligosaccharides and lactobacilli

suggested that 1-kestose content was crucial for prebiotic activity in FOS [10]. On the other

hand, in vivo studies using 1-kestose are quite limited; supplementation with 1-kestose in the

diet for pregnant and lactating mice increased the IgA levels in maternal milk [11]. Oligosaccha-

rides are usually metabolized in gut microbiota, resulting in accumulation of short-chain fatty

acids (SCFA), which have various beneficial effects on the host [12]. Moreover, certain prebio-

tics have been shown to have positive somatic effects in the host [13]. The purpose of this study

was to elucidate the unique somatic effects of 1-kestose and its responsible mechanisms.

Materials and Methods

Animal experiments

All procedures for animal experiments in the present study were approved by the Animal Care

Committee of Graduate School of Bioagricultural Sciences, Nagoya University. 1-Kestose

(purification> 98%) was provided by B Food Science Co., Ltd. (Aichi, Japan). Five experimental

diets (Table 1) were prepared in a pellet form by CLEA Japan (Tokyo, Japan): the composition

of the control diet was based on the AIN-93G diet, and sucrose in the diet was replaced with the

same amount of 1-kestose to create 1-kestose diets at 0.5%, 1.0%, 2.5%, or 5.0% (Table 1).

Forty male Sprague-Dawley rats aged 8 weeks were obtained from Japan SLC (Hamamatsu,

Japan) and were individually housed in wire-mesh cages in a conventional animal room with a

Table 1. Experimental diets.

Ingredient Control diet (0% 1-kestose) 1-Kestose diet (% 1-kestose)

0.5% 1% 2.5% 5%

(g/100 g diet)

Corn starch 51.9486 51.9486 51.9486 51.9486 51.9486

α-Corn starch 1.0 1.0 1.0 1.0 1.0

Sucrose 10.0 9.5 9.0 7.5 5.0

Casein 20.0 20.0 20.0 20.0 20.0

Soybean oil 7.0 7.0 7.0 7.0 7.0

Cellulose 5.0 5.0 5.0 5.0 5.0

Mineral mix 3.5 3.5 3.5 3.5 3.5

Vitamin mix 1.0 1.0 1.0 1.0 1.0

L-Cystin 0.3 0.3 0.3 0.3 0.3

Choline bitartrate 0.25 0.25 0.25 0.25 0.25

tert-Butylhydroquinone 0.0014 0.0014 0.0014 0.0014 0.0014

1-Kestose 0 0.5 1.0 2.5 5.0

Total 100.0 100.0 100.0 100.0 100.0

doi:10.1371/journal.pone.0166850.t001
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controlled temperature (23 ± 1˚C) and a 12-h light-dark cycle (lights on at 8:00 am). After

acclimatization to the animal room for 1 week, the rats were randomly allocated to five groups

(n = 8 per group): control (0%), 0.5%, 1.0%, 2.5%, and 5.0% 1-kestose diet groups. The average

body weight in each group was 293–295 (± 3–4 standard error) g. Rats in each group were pro-

vided free access to water and the corresponding experimental diets for 4 weeks. Food intake

and body weight were recorded once a week. The feces were collected during daytime on the

day before sacrifice. On the final day of the experiment, rats were sacrificed under anesthesia

with isoflurane and blood samples were obtained from the posterior vena cava with a syringe

to prepare serum and post-heparin plasma. Subsequently, ceca and cecal contents were rapidly

recovered, frozen in liquid nitrogen, and stored at −80˚C until analyses.

Measurement of SCFA, lactate, and blood components

Measurement of SCFA (acetate, propionate, isobutyrate, butyrate, isovalerate, and valerate)

were performed by GC/MS (Shimazu, Kyoto, Japan) on Rtx-1701 coloums (Restec, Bellefonte,

USA). Preparation of GC/MS samples was performed as follows: 100 mg (wet weight) of cecal

contents were suspended in 500 μl pure water. The suspension was stirred for 3 min, followed

by the addition of 20 μL of 35% HCl and 500 μL of diethyl ether. After centrifugation at 5000 g

for 3 min at 4˚C, an upper layer (diethyl ether) was filtered with a polyvinylidene difluoride

membrane which had a 0.45 μm pore size (MilliporeSigma, Darmstadt, Germany), the filtrate

was used as samples for GS/MS analysis. Measurement of lactate was performed using an F-kit

for lactate (Roche Diagnostics GmbH, Basel, Switzerland.

Measurements of concentrations of serum total cholesterol (TC), triglyceride (TG), insulin,

and plasma glucose were conducted by SRL Inc. (Tokyo, Japan).

Analysis of intestinal microorganisms in rat cecal contents

Analyses of five groups of intestinal microorganisms (Bacteroides spp., Bifidobacterium spp.,

Lactobacillus spp., Clostridium cluster XIVa, and Akkermansia muciniphila) were conducted

by Technosuruga Laboratory Co., Ltd. (Shizuoka, Japan). Details of analyses were as follows:

the genomic DNA extraction from rat cecal contents and quantitative real-time PCR (qPCR)

were performed according to the methods of Takahashi et al. [14]. Primers for qPCR and cycle

conditions are indicated in Table 2. Each 16S rDNA of Bacteroides fragilis DSM 2151T, Bifido-

bacterium longum subsp. longum JCM 1217T, Clostridium clostridioforme JCM 1291T, Lacto-

bacillus casei JCM 1134T, and Akkermansia muciniphila ATCC BAA-835T were used as

standard curves. 16S rDNA copy numbers were represented as log10.

Table 2. Primers and program conditions for real-time PCR.

Target Primer name Oligonucleotide sequence PCR program

Bacteroides genus HuBac594Bhqf (modified) GTTGTGAAAGTTTGCGGCTCAACC 95˚C (5 sec)– 60˚C (30 sec) / 35 cycles

HuBac692r CTACACCACGAATTCCGCCT

Bifidobacterium genus Bif LM 26F GATTCTGGCTCAGGATGAACGC 95˚C (5 sec)–60˚C (20 sec)-72˚C (20 sec) / 35 cycles

Bif 228R CTGATAGGACGCGACCCCAT

Clostridium cluster XIVa CXIV-F1 GAWGAAGTATYTCGGTATGT 95˚C (5 sec)-52˚C (20 sec)-72˚C (20 sec) / 35 cycles

CXIV-R2 CTACGCWCCCTTTACAC

Lactobacillus genus LactoR’F CACAATGGACGMAAGTCTGATG 95˚C (5 sec) - 56˚C (20 sec)-72˚C (50 sec) / 35 cycles

LBFR CGCCACTGGTGTTCTTCCAT

A. muciniphila Akk-F CAGCACGTGAAGGTGGGGAC 95˚C (5 sec)-57˚C (30 sec)-72˚C (60 sec) / 35 cycles

Akk-R CCTTGCGGTTGGCTTCAGAT

doi:10.1371/journal.pone.0166850.t002
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Statistical analyses

Each value represents the mean ± SE. Statistical analyses were performed using the StatView

(version 5.0) software (SAS Institute, Cary, NC). The data of body weight and food intake,

cecum and cecal contents, SCFA and lactate in cecal contents, and concentrations of blood

components were analyzed using one-way ANOVA followed by Dunnett’s test to compare the

difference between control group and experimental groups. Comparisons of the numbers of

intestinal microorganism were performed using Kruskal-Wallis test followed by Mann-Whit-

ney U-test to compare the difference between control group and experimental groups for Bac-

teroides spp. and Bifidobacterium spp., and species in the Clostridium cluster XIVa, and using

Mann-Whitney U-test only for Lactobacillus spp. and A. muciniphila. P values less than 0.05

were considered significant.

Results

Effects of dietary 1-kestose on rat body weight, food intake, and weights

of cecum and cecal contents

Supplementation of 1-kestose at 0.5–5% into the diet had no effects on body weight of rats on

the final day of the experiment or food intake during the 4-week experimental period

(Table 3), indicating that supplementation of 1-kestose up to 5% had no effect on the growth

of rats.

Since 1-kestose is not readily digested in the small intestines of rats and humans [15,16], it

is likely metabolized by large intestinal microbiota. In rats, the cecum is the main site for

microbial fermentation. The cecum weights of rats in the 1-kestose diet groups gradually

increased in a dose-dependent manner (Table 4); supplementation of 1-kestose in the diet,

even at 0.5%, significantly increased the cecum weight, and 5% supplementation diet enlarged

the cecum ~1.6-fold greater than the control diet. Although the cecal content was significantly

increased in the 5% 1-kestose group compared to the control group (Table 4), hypertrophy of

the cecum with the contents was apparent even in the 0.5% 1-kestose group and was clear in

the 5% 1-kestose group (Fig 1).

The supplementation of 1-kestose to the diet had effects on consistency of the feces in a

dose-dependent manner: the color of the feces was black in the control group and beige in the

Table 3. Body weight and food intake.

Control group 0.5% group 1% group 2.5% group 5% group

Body weight (g) 481 ± 9 465 ± 11 489 ± 15 477 ± 11 460 ± 8

Food intake (g/day) 25.2 ± 0.5 24.6 ± 0.6 25.8 ± 0.9 25.5 ± 0.9 25.1 ± 0.5

Values represent the means ± SE, n = 8. Food intake is the average of 4 weeks of the experimental period.

doi:10.1371/journal.pone.0166850.t003

Table 4. Weights of the cecum and cecal contents.

Control group 0.5% group 1% group 2.5% group 5% group

Wet weight (g)

Cecum 0.64 ± 0.03 0.74 ± 0.02 0.77 ± 0.03* 0.90 ± 0.03* 1.02 ± 0.04*

Cecal content 3.83 ± 0.67 3.71 ± 0.32 3.49 ± 0.24 3.81 ± 0.27 5.73 ± 0.58*

Values represent the means ± SE, n = 8.

* Significant difference compared to the control group (P < 0.05).

doi:10.1371/journal.pone.0166850.t004
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5% 1-kestose group, and the moisture of the feces collected during daytime on the day before

sacrifice was about 7% greater in 5% 1-kestose group than in control group (55 ± 4% vs.

48 ± 3%, respectively).

The effects of dietary 1-kestose on intestinal microorganisms

The impact of administration of 1-kestose on cecal microbiota was studied by quantitative

PCR assay. All of the 1-kestose administration groups (0.5–5% 1-kestose) showed significantly

larger numbers of Bacteroides spp. and Bifidobacterium spp., and species in the Clostridium

cluster XIVa than those of the control group (Table 5). Specifically, the cell number of Bifido-

bacterium spp. was more than 7,000-fold greater in the 5% 1-kestose group than in the control

group. On the other hand, there was no significant difference in numbers of Lactobacillus spp.

or A. muciniphila between control and 5% 1-kestose groups (Table 5).

SCFA and lactate in cecal contents

Concentrations of SCFA (acetate, propionate, isobutyrate, butyrate, isovalerate, and valerate)

and lactate in cecal contents were determined in all of the dietary groups. It is known that the

Fig 1. (a)-(e). Photographs of the cecum with cecal contents in rats. The cecum from each group of rats: (a) control, (b) 0.5%, (c) 1%, (d) 2.5%, (e) 5%.

Bars: 2 cm.

doi:10.1371/journal.pone.0166850.g001
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major SCFA in cecal contents are acetate, propionate, and butyrate. Among these SCFA, the

concentrations of acetate and butyrate were increased by 1-kestose supplementation in a dose-

dependent manner: the acetate concentration was significantly higher in the 5% 1-kestose

group than in the control group, and the butyrate concentration was significantly higher in the

2.5% and 5% 1-kestose groups than in the control group (Fig 2). The butyrate concentration

level in the 5% 1-kestose group was ~10-fold higher than in the control group. The concentra-

tions of isobutyrate, isovalerate, and valerate in the cecal contents tended to be decreased by

supplementation of 1-kestose, although the levels of these fatty acids were relatively low

among SCFAs (Table 6).

The lactate concentration in the cecal contents was increased by supplementation of 1-kes-

tose in a dose-dependent manner and was significantly higher in the 2.5% and 5% 1-kestose

groups than in the control group (Fig 2).

Concentrations of blood components

Concentrations of blood TC, TG, glucose, and insulin were measured in all of the dietary

groups of rats (Table 7). The TC concentration tended to be decreased by supplementation of

1-kestose, but the decreases were not statistically significant. Blood TG and glucose concentra-

tions were not affected by supplementation of 1-kestose. The insulin concentration was

decreased by supplementation of 1-kestose in a dose-dependent manner and was significantly

lower in 2.5% and 5% 1-kestose groups than in the control group.

Discussion

Recent studies have suggested that intestinal microbiota are closely linked with the develop-

ment of allergies, chronic gut disorders, and metabolic syndrome [17,18,19]. Since diet has a

great impact on the development of well-balanced microbiota, functional food ingredients,

including prebiotic oligosaccharides, which can promote the growth of beneficial gut com-

mensals without digestion by the host, are promising for the prevention of disorders. FOS are

the well studied and commercialized prebiotics, and has several beneficial effects, such as the

promotion of bifidobacteria growth [20]. FOS commonly contain 1-kestose, nystose and fruc-

tosyl-nystose at a ratio of 3:6:1 [10]. Each oligosaccharide usually possesses different prebiotic

Table 5. Levels of bacterial cell numbers (log10 cells/g) in cecal contents.

Bacterial group Control group 0.5% group 1% group 2.5% group 5% group

Bacteroides spp. 8.64 8.98* 9.10* 9.34* 9.05*

(8.35–8.83) (8.76–9.30) (8.91–9.50) (9.00–9.73) (8.90–9.28)

Bifidobacterium spp. 7.05 8.86* 8.94* 9.95* 10.91*

(6.99–7.18) (8.77–8.89) (8.86–9.09) (9.09–10.51) (10.73–10.93)

Clostridium cluster XIVa 9.74 11.28* 11.70* 11.74* 10.4*

(9.52–9.81) (11.21–11.44) (11.39–11.80) (11.73–11.80) (10.26–10.50)

Lactobacillus spp. 8.78 N.D. N.D. N.D. 8.89

(8.55–8.92) (8.75–9.06)

A. muciniphila Valerate 8.93 N.D. N.D. N.D. 8.87

(8.77–9.23) (8.58–9.24)

Results are represented as the log10 of copy number of 16S rDNA per gram of cecal contents.

IQR in parentheses indicates the interquartile range.

*Significant difference compared to control group (P < 0.05).

N.D. represents not determined.

doi:10.1371/journal.pone.0166850.t005
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Fig 2. Measurement of SCFAs in cecal contents. Values represent the means ± SE (n = 8), * P <0.05 vs. control

group.

doi:10.1371/journal.pone.0166850.g002

Table 6. Concentrations of isobutyrate, isovalerate, and valerate in cecal contents.

Component Control group 0.5% group 1% group 2.5% group 5% group

cecal content (μmol/g)

Isobutyrate 0.93 ± 0.06 0.73 ± 0.03* 0.50 ± 0.05* 0.33 ± 0.05* 0.42 ± 0.05*

Isovalerate 0.55 ± 0.08 0.36 ± 0.03* 0.24 ± 0.03* 0.20 ± 0.02* 0.35 ± 0.02*

Valerate 0.91 ± 0.08 0.78 ± 0.07 0.69 ± 0.08 0.56 ± 0.07* 0.48 ± 0.06*

Values represent the means ± SE, n = 8

* Significant difference compared to control group (P < 0.05).

doi:10.1371/journal.pone.0166850.t006
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potentials in terms of growth stimulation of beneficial microbes, and it has been reported from

in vitro studies that short-chain FOS stimulate the growth of butyrate-producing bacterial

strains and Bifidobacterium spp. [21], and that stimulation of growth of intestinal lactic acid

bacteria is much greater in 1-kestose than in nystose and fructosyl-nystose [10,22]. In the pres-

ent study, we demonstrated that feeding of a 1-kestose diet increased weights of the cecum and

cecal contents, likely due to the fermentation of 1-kestone in the cecum. 1-Kestose was not

detected in cecal contents (data not shown), suggesting that 1-kestose was quickly degraded by

microbiota. Our findings show that the growth of Bifidobacterium spp. in cecal contents was

greatly enhanced by 1-kestose-supplemented diets, and that their quantity in rats fed a 5%

1-kestose diet was over 7000-fold that of the control group. Bifidobacteria are beneficial gut

microbes found in various animals, including humans, and their activity is closely linked with

the health of the host [23]. It is known that Bifidobacterium spp. produces acetate and lactate

by degradation of oligosaccharides [24]. In fact, acetate and lactate concentrations in cecal

contents were significantly increased in rats fed a 5% 1-kestose diet. Furthermore, the 5%

1-kestose diet significantly increased the number of Clostridium cluster XIVa, which produce

butyrate via metabolism of sugars and lactate in the gut. Among these combinations of alter-

ations in microbiota composition and their metabolites, butyrate concentrations in cecal con-

tents were significantly elevated by 1-kestose-supplemented diets in rats.

Butyrate is known to have several beneficial effects in the host, including being an energy

source for epithelial cells [25], induction of colonic regulatory T cells [26], induction of apo-

ptosis in human colonic carcinoma cells [27], inhibition of inflammatory responses in intesti-

nal biopsy specimens [28], and improvement of metabolic syndrome [29]. Therefore,

increased production of butyrate in the intestines is one of the most important beneficial

effects of oligosaccharides on human health [30]. Previous studies have also reported increased

levels of butyrate production after supplementation of prebiotic oligosaccharides in rats; buty-

rate production was increased approximately 5.1-fold and 2.4-fold by 10% FOS and 10%

galacto-oligosaccharides diets, respectively [31].

Since the metabolizable energy of FOS was a half of that of regular carbohydrates [4], the

adverse effect of 1-kestose might be possible in energy intake. The body weight of rats appears

to be slightly lower in the 5% 1-kestose group than in the control group. However, the differ-

ence in the body weight was not significant, indicating no adverse effect of 1-kestose in the

present study.

Among the blood components measured, the concentration of insulin was decreased by

supplementation with 1-kestose into the diet in a dose-dependent manner, and the decreases

were significant in the 2.5–5% 1-kestose diet groups, suggesting that 1-kestose may raise insu-

lin sensitivity in rats. This effect of 1-kestose might be attributed to the formation of butyrate

as previously reported [30]. The concentration of TC tended to be decreased by intake of

1-kestose diet, although the decrease was not statistically significant. Since the excretion of bile

Table 7. Concentrations of total cholesterol, triglyceride, glucose, and insulin.

Control group 0.5% group 1% group 2.5% group 5% group

Total cholesterol (mg/dL) 102 ± 4 99 ± 3 94 ± 6 90 ± 6 82 ± 6

Triglyceride (mg/dL) 277 ± 17 291 ± 24 270 ± 20 283 ± 20 247 ± 24

Glucose (mg/dL) 207 ± 11 202 ± 10 192 ± 11 202 ± 4 188 ± 7

Insulin (ng/mL) 4.34 ± 0.51 3.04 ± 0.38 3.08 ± 0.31 2.56 ± 0.31* 2.01 ± 0.24*

Values represent the means ± SE, n = 8.

* Significant difference compared to the control group (P < 0.05).

doi:10.1371/journal.pone.0166850.t007
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acids into the feces is one of the factors to affect the blood concentration of TC, the bile acids

in the feces collected on the day before sacrifice of rats in control and 5% 1-kestose diet groups

were extracted by the reported method [32] and determined by the direct spectrophotometric

method [33]. However, the content of the bile acids in the feces was not different between two

groups (10.7 ± 2.5 vs. 10.0 ± 2.7 μmol/g dry feces, respectively). Further studies are required to

confirm the effects of 1-kestose on the concentrations of blood components.

Overall, the findings of the present study demonstrated the strong bifidogenic activity of

1-kestose, which was associated with several beneficial effects in the host, increased level of

cecal butyrate and decreased level of serum insulin. These findings suggest that 1-kestose may

be a promising prebiotic for the treatment of metabolic diseases. It has been reported from the

clinical study that 1-kestose exerts a beneficial effect on the clinical symptoms in infants with

atopic dermatitis [34]. Further studies including human clinical trials are needed to determine

the exact effects of 1-kestose in humans.
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28. Segain JP, De La Blétière DR, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits

inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000; 47

(3): 397–403. doi: 10.1136/gut.47.3.397 PMID: 10940278

29. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitiv-

ity. Nat Rev Endocrinol. 2015; 11: 577–591. doi: 10.1038/nrendo.2015.128 Epub 2015 Aug 11. PMID:

26260141

30. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of buty-

rate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011; 17(12):1519–1528. doi: 10.

3748/wjg.v17.i12 1519 Review. PMID: 21472114

31. Sakaguchi E, Sakoda C, Toramaru Y. Caecal fermentation and energy accumulation in the rat fed on

indigestible oligosaccharides. Br J Nutr. 1998; 80: 469–476. doi: 10.1017/S0007114598001548 PMID:

9924269

32. Oishi K, Yamamoto S, Itoh N, Nakao R, Yasumoto Y, Tanaka K, et al. Wheat alkylresorcinols suppress

high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and

cholesterol excretion in male mice. J Nutr. 2015 Feb; 145(2): 199–206. doi: 10.3945/jn.114.202754

PMID: 25644338

33. Mashige F, Tanaka N, Maki A, Kamei S, Yamanaka M. Direct spectrophotometry of total bile acids in

serum. Clin Chem. 1981 Aug; 27(8): 1352–1356. PMID: 6895053

34. Shibata R, Kimura M, Takahashi H, Mikami K, Aiba Y, Takeda H, Koga Y. Clinical effects of kestose, a

prebiotic oligosaccharide, on the treatment of atopic dermatitis in infants. Clin Exp Allergy. 2009 Sep; 39

(9): 1397–1403. doi: 10.1111/j.1365-2222.2009.03295.x PMID: 19508323

Dietary 1-Kestose and Cecal Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0166850 November 18, 2016 11 / 11

http://dx.doi.org/10.3109/00365529609094568
http://www.ncbi.nlm.nih.gov/pubmed/8726286
http://dx.doi.org/10.1038/nature12721
http://dx.doi.org/10.1038/nature12721
http://www.ncbi.nlm.nih.gov/pubmed/24226770
http://dx.doi.org/10.1016/j.cbi.2010.03.035
http://www.ncbi.nlm.nih.gov/pubmed/20346929
http://dx.doi.org/10.1136/gut.47.3.397
http://www.ncbi.nlm.nih.gov/pubmed/10940278
http://dx.doi.org/10.1038/nrendo.2015.128
http://www.ncbi.nlm.nih.gov/pubmed/26260141
http://dx.doi.org/10.3748/wjg.v17.i12
http://dx.doi.org/10.3748/wjg.v17.i12
http://www.ncbi.nlm.nih.gov/pubmed/21472114
http://dx.doi.org/10.1017/S0007114598001548
http://www.ncbi.nlm.nih.gov/pubmed/9924269
http://dx.doi.org/10.3945/jn.114.202754
http://www.ncbi.nlm.nih.gov/pubmed/25644338
http://www.ncbi.nlm.nih.gov/pubmed/6895053
http://dx.doi.org/10.1111/j.1365-2222.2009.03295.x
http://www.ncbi.nlm.nih.gov/pubmed/19508323

