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Materials  
 
The plasmid for M2MspA-N91H was prepared by Genewiz (China). E. coli BL21 (DE3) competent cell, 
lysogeny broth (LB), kanamycin and isopropyl β-D-1-thiogalactopyranoside (IPTG) were purchased from 
Sangon Biotech (China). 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) was purchased from 
Avanti Polar Lipids (USA). Potassium chloride (KCl), 3-morpholino propionic acid (MOPS) and copper 
chloride were from BBI life sciences corporation (China). All twenty proteinogenic amino acids were 
purchased from Aladdin (China). O-phosphoryl-L-serine (P-S) was provided by Sigma-Aldrich (USA), Nε-
acetyl-L-lysine (Ac-K) and S-carboxymethyl-L-cysteine (CMC) were purchased from Tokyo Chemical 
Industry (Japan). All peptides were synthesized by Sangon Biotech (China). Carboxypeptidase A1 and 
bacterial leucyl aminopeptidase were purchased from Sigma-Aldrich (USA). 
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Supplementary Tables 
 

Supplementary Table 1. The duration of baseline current (I0) during measurement[a]. 

Independent experiments trecord (min) t0 (min) t0/trecord 

#1 5.04 4.52 0.897 
#2 5.00 4.29 0.858 
#3 5.00 4.53 0.906 
#4 5.00 4.50 0.900 
#5 5.00 4.18 0.836 

[a] Total time of a continuous recording (trecord). The added-up time in trecord when the current stabilized 
around I0. 
 

Supplementary Table 2. Statistics of blockade, dwell time and signal frequency of events of twenty 

proteinogenic amino acids. 

Amino acids 
 

Blockade 
(mean ± s.d.) 

Dwell time (ms) 
(mean ± s.e.) 

Signal frequency (μM-1 min-1) 
(mean ± s.d.) 

Ala 0.147 ± 0.0031 2.39±0.15 1.503 ± 1.043 
Arg 0.170 ± 0.0029 2.10±0.03 2.052 ± 1.112 
Asn 0.165 ± 0.0034 2.69±0.33 19.721 ± 14.004 
Asp 0.215 ± 0.0038 4.13±0.20 6.361 ± 3.854 
Cys 0.209 ± 0.0062 3.07±0.36 64.634 ± 53.678 
Gln 0.189 ± 0.0029 2.87±0.13 8.892 ± 7.223 
Glu 0.244 ± 0.0041 3.23±0.19 12.524 ± 7.658 
Gly 0.119 ± 0.0022 2.01±0.11 1.303 ± 1.480 
His1 0.248 ± 0.0017 42.7±17.15 10.615 ± 1.982 
His2 0.237 ± 0.0066 1.96±0.32 10.615 ± 1.982 
Ile 0.208 ± 0.0032 2.22±0.06 3.164 ± 1.576 

Leu 0.200 ± 0.0026 1.93±0.09 3.373 ± 2.107 
Lys 0.171 ± 0.0026 2.79±0.35 0.862 ± 0.530 
Met 0.198 ± 0.0031 2.32±0.14 8.634 ± 5.144 
Phe 0.220 ± 0.0044 2.27±0.07 11.036 ± 3.485 
Pro 0.219 ± 0.0028 7.95±0.44 0.195 ± 0.111 
Ser 0.132 ± 0.0033 1.64±0.08 12.404 ± 6.133 
Thr 0.161 ± 0.0031 2.74±0.14 13.484 ± 10.064 
Trp 0.227 ± 0.0029 8.83±0.54 5.954 ± 3.496 
Tyr 0.213 ± 0.0057 3.97±0.48 4.893 ± 3.701 
Val 0.192 ± 0.0036 2.51±0.16 2.240 ± 1.162 
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Supplementary Table 3. Statistics of discrimination of twenty proteinogenic amino acids using 

machine learning algorithm.  

 Sensitivity Specificity Precision Recall F1 
Balanced 
Accuracy 

Ala 1.0000  0.9995  0.9706  1.0000  0.9851  0.9998  
Arg 0.5563  0.9926  0.7304  0.5563  0.6316  0.7744  
Asn 0.6582  0.9866  0.7702  0.6582  0.7098  0.8224  
Asp 0.7403  0.9828  0.4385  0.7403  0.5507  0.8615  
Cys 0.5000  0.9977  0.3333  0.5000  0.4000  0.7488  
Gln 0.7740  0.9954  0.8782  0.7740  0.8228  0.8847  
Glu 0.9912  0.9998  0.9912  0.9912  0.9912  0.9955  
Gly 0.9545  1.0000  1.0000  0.9545  0.9767  0.9773  
His 0.9792  0.9998  0.9792  0.9792  0.9792  0.9895  
Ile 0.9080  0.9922  0.7054  0.9080  0.7940  0.9501  

Leu 0.7023  0.9388  0.5000  0.7023  0.5841  0.8206  
Lys 0.5000  0.9918  0.3750  0.5000  0.4286  0.7459  
Met 0.5041  0.9722  0.7512  0.5041  0.6033  0.7381  
Phe 0.8438  0.9859  0.9284  0.8438  0.8840  0.9148  
Pro 0.7059  0.9951  0.3636  0.7059  0.4800  0.8505  
Ser 1.0000  0.9997  0.9987  1.0000  0.9994  0.9999  
Thr 0.8493  0.9803  0.6019  0.8493  0.7045  0.9148  
Trp 0.8848  0.9928  0.8914  0.8848  0.8881  0.9388  
Tyr 0.8901  0.9974  0.8804  0.8901  0.8852  0.9438  
Val 0.8194  0.9768  0.6507  0.8194  0.7254  0.8981  
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Detection of the mixture of 19 amino acids using M2MspA. Copper chloride 
and amino acids were added to the same nanopore successively. No binding event of Cu2+ and amino 
acids were observed. The experiments were conducted in 1 M KCl, 10 mM MOPS, pH 7.5. The voltage 
applied was +50 mV. 
 

 
 
Supplementary Figure 2. Detection of the mixture of 19 amino acids using M2MspA-N91H without 
Cu2+. a, no binding event of amino acids was observed if Cu2+ was not added. b, amino acids were 
detected when Cu2+ was added. The triangles represent the signals of amino acids. The experiments were 
conducted in 1 M KCl, 10 mM MOPS, pH 7.5. The voltage applied was +50 mV. 
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Supplementary Figure 3. Detection of acetylated leucine, amidated leucine, and leucine. a, 
representative current traces from a single pore after successively adding Cu2+, N-Acetyl-L-leucine, L-
leucinamide, and L-leucine (from top to bottom); b, histograms of the blockade of translocation events. 
The events of each histogram were extracted from 30 seconds of the current trace. Only after the addition 
of L-leucine, the corresponding translocation events were observed. The results indicated that L-leucine 
could not coordinate Cu2+ without α-carboxyl group or α-amine group. The experiments were conducted 
in 1 M KCl, 10 mM MOPS, pH 7.5. The voltage applied was +50 mV. 
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Supplementary Figure 4. Scatter plot of volume versus blockade of amino acids. Compared with 
Figure 2b, proline, cysteine, and amino acids with charged side chain are excluded. The Pearson 
correlation coefficient between the mean blockade and volume reaches up to 0.97. For each amino acid, 
the mean blockade and its standard deviation were calculated from the Gaussian fitting result of data 
points ((n = 7166 (F), 3934 (W), 2768 (Y), 3025 (I), 8004 (M), 8131 (T), 8101 (S), 3750 (L), 857 (A), 1149 
(G), 7873 (Q), 9634 (N), 2119 (V)) from at least three independent experiments. The R and p in this plot 
represent the Pearson correlation coefficient and p-value respectively. 
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Supplementary Figure 5. Signal extraction and sub-type classification of histidine (His). a, scatter 
plot of background signals from blank control without any amino acids. The colour of the dots represents 
different replicate experiments, and the shade of the colour represents the density of dots at that location. 
b, scatter plot of the identified signals after the addition of histidine. c, we used the K-Nearest Neighbour 
(KNN) algorithm to filter out the original signals that have any background signal among the 10 nearest 
signals (described in Method section). The red dots in the scatter plot are the histidine signals (n = 2,184), 
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and the blue dots are the noise (n = 13,514). d, based on the noticeable difference in dwell time and 
blockade, we found that histidine has two different states. We used the K-means clustering method to 
successfully distinguish histidine signals into two sub-types: His1 (n = 846) and His2 (n = 1,338). The His1 
has a longer dwell time and a higher blockade than His2. The different shapes of the dots in the scatter 
plot represent different repeated experiments. e, according to the normalized current density of the signal, 
both His1 and His2 can be divided into two types: state 1 signals and state 2 signals. Figure e is a scatter 
plot of the blockade and dwell time of two different signals, state 1 and state 2, of His1 and His2. f, Density 
plots of normalized currents in different states, state 1 and state 2, of His1 and His2. 
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Supplementary Figure 6. Fitting of the exponential decay function of the dwell time of the histidine 
signal. a-d, the histogram of dwell time and fitted exponential decay function of state 1 of His1, state 2 of 
His1, state 1 of His2, and state 2 of His2 respectively. The fitted parameters of the exponential decay 
function, half-life, R-squared, and adjusted R-squared are shown in tabular form at the top of each graph 
(mean ± se (standard error)). e, a representative trace containing different types (His1 and His2) and 
different states (state 1 and state 2) of histidine sensing events. The green, orange, purple, and red 
rectangles, corresponding to Figure a-d, indicated the signal of state 1 of His1, state 2 of His1, state 1 of 
His2, and state 2 of His2 respectively. 
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Supplementary Figure 7. The confusion matrix of random forest model of different histidine types 
in testing data set. We used the extracted feature matrix (See Method) of His1 and His2 to train a random 
forest model for histidine sub-type classifying. The model achieved an accuracy of 97% on the test set. 
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Supplementary Figure 8. Representative current signatures of twenty proteinogenic amino acids. 
The y-axis represents the normalized current amplitude. Current baseline (I0), the corresponding current 
states for the binding of one amino acid (AA×1, state 1) and two same amino acids (AA×2, state 2) are 
indicated by a dashed line. The signals generated from multiple binding events (AA×2) show different 
patterns among amino acids, which could be related to the R group. The fluctuation of open pore current 
after the addition of cysteine suggests a strong interaction between the sulfhydryl group of cysteine and 
the copper-nanopore complex (The bottom panel). The final concentration of each amino acid added here 
is 100 μM (except 5 μM, 190 μM and 2 μM for H, P, and C, respectively) 
 

 
 

Supplementary Figure 9. Current baselines change during detection of cysteine and S-
carboxymethyl-L-cysteine. a-b, representative current traces before and after the addition of cysteine. 
c, histogram of current amplitude for cysteine detection. d-e, representative current traces before and after 
the addition of S-carboxymethyl-L-cysteine. f, histogram of current amplitude for S-carboxymethyl-L-
cysteine detection. The current traces exhibit pronounced instability following the addition of cysteine, with 
no such phenomenon observed upon the addition of S-carboxymethyl-L-cysteine. This difference is 
evident in the histogram, where multiple peaks are discernible in the current baseline following the 
introduction of cysteine, reflecting substantial fluctuations in current. In contrast, the addition of S-
carboxymethyl-L-cysteine results in a single peak, indicating the absence any adverse impact on current 
baseline stability. 
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Supplementary Figure 10. The input data and performance of random forest models. a, the number 
of input signals of each amino acid for model training. In order to balance the number of different types of 
amino acids in the training set, for the amino acids Gly, Ala, Lys, Cys, His, and Pro, since the original signal 
is less than 1000, we increased the training data to 1000 through up-sampling. b, the number of signals 
of each amino acid used by testing and validation data set. c, The trade-off between classification accuracy 
and signal recovery of RF classifier in training, testing, and validation dataset. d, The RF classifier 
prediction probability distribution of correctly and incorrectly labeled signals within the training, testing, and 
validation dataset.  
 

 
Supplementary Figure 11. Comparison of different machine learning algorithms and the advantage 
of state 2 signals in amino acids distinguishing. a, the receiver operator characteristic (ROC) curves 
and the area under the curves (AUC) of six different machine learning algorithms in a tiny dataset (100 
signals for each amino acid). b, the trade-off between classification accuracy and signal recovery in training 
and testing dataset of state 1, state 2, or state 1 + state 2 random forest (RF) classifiers. In the state 1 or 
state 2 model, we only selected the state 1 or state 2 signals for model training and assessment. However, 
in state 1 + state 2 model, we used both of state 1 and state 2 signals. c, the importance of predictors of 
state 1, state 2, or state 1 + state 2 RF classifiers. The upper y-axis represents the corresponding blockade 
of each feature. 
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Supplementary Figure 12. Identification of the mixture containing 10 proteinogenic amino acids 
and S-carboxymethyl-L-cysteine (CMC). a, different types of amino acids were added successively. Thr, 
Gln, and CMC were added in Run1. In the second run, we newly added Gly, Ser, and Ile. In the third run, 
we newly added Ala, Met, and Try. In the fourth and fifth runs, we newly added Glu and Arg respectively. 
We extracted the raw signals and filtered the noises according to their similarity with background signals 
(described in the method section). Then, we predicted each signal using the trained random forest model. 
The scatter plot showed the prediction results of each run after noise filtering. The x-axis label and black 
vertical line indicated the theoretical blockade of added target amino acids. b, the cumulative distribution 
of identified amino acids according to the relative monitoring time. c, the current trace of real-time detection 
from Run5 with 11 different amino acids. 
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Supplementary Figure 13. Representative current traces of L-Arg detection at different 
concentrations. The L-Arg was added to the same nanopore to a final concentration of 1 μM, 4 μM and 
16 μM (From top to bottom panel). With the increase of concentration, more signals of L-Arg were identified. 
The buffer used here was 1 M KCl, 10 mM MOPS, pH 7.5. The applied voltage was +50 mV. 

 

 
 

Supplementary Figure 14. Representative current traces of L-Asp detection at different 
concentrations. The L-Asp was added to the same nanopore to a final concentration of 0.25 μM, 1 μM 
and 4 μM (From top to bottom panel). The buffer used here was 1 M KCl, 10 mM MOPS, pH 7.5. The 
applied voltage was +50 mV. 
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Supplementary Figure 15. Representative current traces of L-Gly detection at different 
concentrations. The L-Gly was added to the same nanopore to a final concentration of 0.1 μM, 2 μM and 
50 μM (From top to bottom panel). The buffer used here was 1 M KCl, 10 mM MOPS, pH 7.5. The applied 
voltage was +50 mV. 
 

 
 
Supplementary Figure 16. Scatter plots of dwell time versus blockade of identified amino acids in 
the peptide hydrolysates by RF model. Upper panel: from left to right, the hydrolysates of Angiotensin 
I, α-Bag Cell Peptide (1-9) and Adrenocorticotropic hormone (18-39). Lower panel: the hydrolysates of 
Alzheimer’s peptides 
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Supplementary Figure 17. The estimated density line of standardized current of all identified 
signals of peptide hydrolysates. The red and blue lines represent density plots of standardized currents 
for all signals identified from the hydrolysates of a LEF and FYSL, respectively. The gray vertical lines 
indicate the theoretical position of E, F, Y, L and S amino acids after standardization of blocking currents. 
This density curve shows the signal distribution of different amino acids in the hydrolyzed products and 
will be used to characterize the amino acid composition of the pre-hydrolysis polypeptide. 
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Supplementary Figure 18. The heatmap of Euclidean distance between different peptides. The 
Euclidean distance was calculated from the estimated density value of standardized current of all peptides.  
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Supplementary Discussion 
 
Supplementary Discussion 1 
 
“The state 1 and state 2 signal represents the binding of one amino acid and two amino acids, respectively. 
In the training model where only state 2 signals were used as the input data, the classification accuracy 
was higher than other models (Supplementary Figure. 11b). The state 2 signals were shown more robust 
than state 1 signals. Therefore, we included all the state 1 and state 2 signals as the input data for training 
(Figure 3, Supplementary Figure. 11b, c). Indeed, the addition of state 2 signals in “state 1+state 2” model 
improved the classification accuracy, compared with the “state 1” model. However, we did not include the 
state 2 signals for signal identification. It is because during the detection of amino acids mixture, the state 
2 signals may result from the binding of two different amino acids, which has hundreds of combinations. 
These kinds of signals have not yet been completely determined by experiment. 
We also observed other interesting results (Supplementary Figure 8), of which the molecular mechanism 
behind remains unclear. 1) The current blockade resulted from the binding of the second amino acids 
differed from the blockade from the first amino acid. For example, for Lys and Arg, the second blockade 
was larger than the first one. For leu, it was opposite. We reasoned that there could be a preference of 
binding site for different amino acids. Since there are four binding sites within nanopore, the second amino 
acid molecule can bind to the ortho- or para- positions, which may result in a blockade differing from the 
first blockade; 2) The concentration dependence of the frequency of state 2 signals should be analysed 
for all the amino acids. It could provide the evidence for the assumption that state 2 signals were generated 
by the simultaneous binding of two amino acids. It could also reveal the proportions of state 1 and state 2 
signals at different concentrations, which helps understand the binding mechanism of two amino acids at 
molecular level. 
 
 
 




