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Abstract: Diterpenoid plant hormone gibberellic acid (GA) plays an important role in regulation of
plant growth and development and is commonly used in agriculture for activation of plant growth
and food production. It is known that many plant-derived compounds have miscellaneous biological
effects on animals and humans, influencing specific cellular functions and metabolic pathways.
However, the effect of GA on animal and human cells remains controversial. We investigated the
effect of GA on cultured human cell lines of epidermoid origin—immortalized non-tumorigenic
keratinocytes HaCaT and carcinoma A431 cells. We found that at a non-toxic dose, GA upregulated
the expression of genes associated with the ER stress response—CHOP, sXBP1, GRP87 in both cell
lines, and ATF4 predominantly in A431 cells. We also showed that GA was more effective in upregu-
lating the production of ER stress marker GRP78, autophagy marker LC3B-II, and differentiation
markers involucrin and filaggrin in A431 cells than in HaCaT. We conclude that GA induces mild ER
stress in both cell lines, followed by the activation of differentiation via upregulation of autophagy.
However, in comparison with immortalized keratinocytes HaCaT, GA is more effective in inducing
differentiation of carcinoma A431 cells, probably due to the inherently lower differentiation status of
A431 cells. The activation of differentiation in poorly differentiated and highly malignant A431 cells
by GA may lower the level of malignancy of these cells and decrease their tumorigenic potential.

Keywords: autophagy; differentiation; epidermoid carcinoma; ER stress; gibberellic acid; human
keratinocytes; plant hormones

1. Introduction

Plant hormones are biologically active substances of low molecular weight and diverse
chemical composition. They are produced by plant cells and regulate many physiolog-
ical processes, such as stress responses, stimulation or inhibition of plant development,
growth, and differentiation [1]. Some plant hormones and/or their derivatives are ap-
proved and well-known drugs (salicylates) or bioactive compounds, which are used in
cosmeceutical products (jasmonates) [2,3]. As components of natural origin with specific
activity, plant hormones have been appealing objects of investigation in terms of their
impact on animal and human cells. It has been demonstrated that certain plant hormones
can affect specific cellular functions and even exhibit selective cytotoxicity against tumor
cells [4–7], and molecular modifications of these compounds might substantially enhance
these properties [3,8].
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The gibberellin family of plant hormones includes structurally related tetracyclic
diterpenes, which are produced by plants and fungi [9,10] and play an important role in
main physiological processes, such as the stimulation of seeds germination; the growth of
roots, stems, and leaves; and the development of flowers and fruits [11–13]. As a potent
plant growth regulator, gibberellic acid (gibberellin A3) (GA) is often used in agriculture to
activate plant growth and improve productivity. For instance, GA is applied to activate
seeds after the period of dormancy, stimulate flowering, increase fruit size, and promote the
development of seedless fruits and berries. Eventually, GA enters the food chain of animals
and humans through regular consumption of plant foods and due to the commercial use of
GA-containing products. As with many other biologically active plant-related compounds,
excessive consumption of GA may have neutral, beneficial, or hazardous effects on animal
and human health.

Despite that, our knowledge about the potential influence of GA on animals, and
especially humans, is surprisingly limited. One of the first studies, published in 1988,
showed that prolonged administration of GA (twice a week for 5 months) to Egyptian
toads (Bufo regularis) induced the formation of hepatocellular carcinomas in 16% of
experimental animals [14]. The carcinogenic effect of GA administration for 22 months
was confirmed in Swiss albino mice. The study showed that 18% of the males and 36% of
the females developed sebaceous adenomas, breast, and lung adenocarcinomas [15]. In
Wistar albino rats, sub-chronic exposure to GA increased inflammatory skin and bladder
disease via the activation and recruitment of mast cells [16]. The hepatotoxic effect of GA
was also demonstrated in female rats and their offspring: experimental animals developed
liver damage, had elevated plasma aminotransferases, bilirubin, and albumin levels, and
increased lactate dehydrogenase activity along with other pathological changes in blood
parameters [17,18].

However, more recent work showed that GA and its derivatives had a diverse but
rather positive effect on cultured human cells. For instance, GA induced the production of
zinc finger protein A (negative regulator of NF-κB-driven inflammation), which attenuated
the inflammation in human primary nasal epithelial cells and a bronchial epithelial cell line
(16HBE14o-) [19]. GA also stimulated the synthesis of α-amylase in adipose tissue-derived
mesenchymal stem cells [20]. Remarkably, both research groups [19,20] did not report a
cytotoxic effect of GA on cultured human cells of epithelial and mesenchymal origin. In
addition, synthetic derivatives of gibberellins have demonstrated potent anti-cancerogenic
and anti-angiogenic activity both in vitro and in vivo [8,21,22].

We summarized the experimental evidence obtained over the past years and con-
cluded that the effect of GA on animals and humans is still far from clear. In vivo, GA ex-
hibited a rather negative effect and might be viewed as a hazardous agent. However, when
studied in vitro, GA and its derivatives had a rather positive influence on cellular functions.
These discrepancies might be explained by the different experimental approaches, schemes
of drug application, concentrations, and duration of exposure to GA. Evidently, only using
standardized and comparable cellular models can help to elucidate the cellular response to
GA treatment and follow the implications of this response.

One of our first goals was to investigate whether GA exerts the same effect on nor-
mal and pathologically changed cells of the same tissue origin. In our previous work,
we analyzed the response of cultured human cells of epidermoid origin (immortalized
non-tumorigenic keratinocytes HaCaT and carcinoma A431 cells) to GA and found that
GA induced swelling and expansion of the Golgi complex in both cell lines [23]. The
enlargement of the compartments of the biosynthetic system is often attributed to the
development of ER stress, which is a major cellular response triggered upon excessive
accumulation of misfolded proteins in the ER lumen [24,25]. Subsequently, cells activate
UPR (unfolded protein response) to restore ER homeostasis. If the stress conditions are
mild, this may lead to metabolic adaptation and survival of the cells, and in case of severe
damage, UPR leads to the activation of cell death [26,27]. One of the potential strategies of
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cell survival may be the upregulation of autophagy [28] and activation of differentiation,
specifically in the cells of epidermoid origin [29,30].

Thus, the investigation of the underlying effects of GA on animal and human cell
lines may be important to address the discrepancy in GA action when tested in vitro
and in vivo. Our previous study showed that in human cell lines, HaCaT and A431 GA
induced the enlargement and swelling of the Golgi complex, which is a key compartment
of the biosynthetic system [23]. We hypothesized these structural alterations could be a
manifestation or a consequence of ER stress. Hence, we investigated the potential ability of
non-toxic concentrations of GA to activate genes involved in the ER stress response and
followed its effects in cultured human cells—immortalized non-tumorigenic keratinocytes
(HaCaT) and epidermoid carcinoma cell line A431.

2. Materials and Methods
2.1. Reagents

GA3 (G7645) (Sigma-Aldrich, Saint-Quentin-Fallavier, France) diluted with 96◦ ethanol
and stored at −6 ◦C as the stock solution; dithiothreitol (DTT) (A1101) (Appli-Chem,
Darmstadt, Germany) diluted with cell medium and was used once; ER-Tracker Red (BOD-
IPY™ TR Glibenclamide) (E34250) (Thermo Fisher Scientific, Bucharest, Romania, Waltham,
MA, USA); rabbit polyclonal antibodies specific to GRP78 (G8918) (Sigma-Aldrich, St.
Louis, MI, USA), (PA5-22967) (Thermo Fisher Scientific); LC3B (ab51520) (Abcam, Cam-
bridge, UK), filaggrin (ab81468) (Abcam); mouse monoclonal antibodies specific to in-
volucrin (I9018) (Sigma-Aldrich); Alexa Fluor-488-conjugated rabbit anti-IgG antibodies
(ab150077) (Abcam); Alexa Fluor-488-conjugated mouse anti-IgG antibodies (A-11001)
(Thermo Fisher Scientific).

2.2. Cell Cultures

HaCaT (immortalized non-tumorigenic human keratinocytes) (Table S1), A431 (human
epidermoid carcinoma cells), human keratinocytes (passage 2 and passage 3), and HeLa
(human adenocarcinoma cells) were kindly provided by the Cell Culture Collection for
Biotechnological and Biomedical Research, Koltsov Institute of Developmental Biology,
Russian Academy of Sciences. The cells were grown in DMEM (Dulbecco Modified
Eagle’s Medium; PanEco, Moscow, Russia) (HaCaT and A431) or DMEM/F-12 (human
keratinocytes and HeLa) supplemented with 10% fetal bovine serum (FBS) (HyClone,
Logan, UT, USA), 2 mM L-glutamine (PanEco), 80 µg/mL gentamicin (Belmedpreparaty,
Minsk, Belarus), and 0.2% Defined Keratinocyte-SFM Growth Supplement (Thermo Fisher
Scientific) (only for human keratinocytes) under standard conditions (37 ◦C, 5% CO2). The
cells were collected from the surface of a plastic flask with a 1:3 mixture of trypsin solution
(PanEco) and Versene (0.2% EDTA in phosphate buffer) (PanEco) and plated on glass cover
slips or on Petri dishes with glass bottom and grown for 48 h. Then, GA or DTT was added,
and cells were incubated for 24 h.

2.3. Real-Time qPCR

RT qPCR was performed as described by Potashnikova et al. [31] using the following
primers (Sintol, Moscow, Russia): for the CHOP gene, 5′-AGTCTAAGGCACTGAGCGTATC-
3′/5′-TCTGTTTCCGTTTCCTGGTT-3′ [32]; for the GRP78 gene, 5′-TCTGCTTGATGTGTGT
CCTCTT-3′/5′-GTCGTTCACCTTCGTAGACCT-3′ [33]; for the ATF4 gene, 5′-TGGCTGGCT
GTGGATGG-3′/5′-TCCCGGAGAAGGCATCCT-3′ [34]; for the spliced form of mRNA of
XBP1 (X-box binding protein 1) gene, 5′-GCTGAGTCCGCAGCAGGT-3′/5′-CAGGGTCCA
ACTTGAACAGAAT-3′ (modification of the original sequence from [35]). The following
primer sequences were used to amplify reference genes [36]: for the ubiquitin gene, 5′-
ATTTGGGTCGCGGTTCTTG-3′/5′-TGCCTTGACATTCTCGATGGT-3′; for the HPRT gene,
5′-TGACACTGGCAAAACAATGCA-3′/5′-GGTCCTTTTCACCAGCAAGCT-3′; for the
GAPDH gene, 5′-TGCACCACAACTGCTTAGC-3′/5′- GGCATGGACTGTGGTCATGAG-
3′; for the YWHAZ gene, 5′-ACTTTTGGTACATTGTGGCTTCAA-3′/5′–CCGCCAGGACA
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AACCAGTAT-3′. All samples were processed in triplicate. One sample of cDNA put
into each PCR run served as an inter-run calibrator for uniting data into one experiment.
Primer specificity was confirmed by melting curve analysis and detection of products with
predicted length using 1.5% agarose gel electrophoresis. Amplification efficiency (E) was
calculated as E = [10(−1/slope) − 1], using the slope of the semi-log regression plot of
Cq versus log input of cDNA. Each reaction was performed in triplicate. Results were
analyzed according to Vandesompele et al. [36].

2.4. MTT Assay

The viability of cells in the presence of different concentrations of GA was estimated
using an MTT assay performed as described earlier [7,23].

2.5. Live Fluorescent Staining and Immunocytochemistry

For ER-tracker staining, 1 µL of 1 mM ER-tracker solution was added to 1 mL cell
culture medium for 30 min at 37 ◦C. After staining, the cells were washed with medium for
5 min at 37 ◦C and visualized under a fluorescence microscope.

For immunocytochemical staining, the cells were fixed with 4% formaldehyde (MP
Biochemical, Illkirch-Graffenstaden, France) in PBS (pH 7.2–7.4) and treated with 0.1%
Triton X-100 (Serva, Heidelberg, Germany). For anti-filaggrin staining, the cells were
fixed with methanol (Merck, Darmstadt, Germany). Nuclei were visualized with DAPI
(4′,6-diamidine2′-phenylindole dihydrochloride; Sigma-Aldrich), and the preparations
were embedded in Mowiol (Hoechst, Klipphausen, Germany).

All preparations were analyzed under an Axiovert 200M inverted fluorescence micro-
scope (Carl Zeiss Inc., Oberkochen, Germany; PlanApo 20× and 63×/1.4 oil objectives)
equipped with Carl Zeiss (Jena, Gemany) AxioCam black-and-white digital camera with
AxioVision 3.1 (Carl Zeiss, Jena, Germany) software.

2.6. Transmission Electron Microscopy (TEM)

The cells were fixed for 30 min with 2.5% glutaraldehyde (Ted Pella Inc., Redding,
CA, USA), washed with PBS (pH 7.2–7.4), and postfixed with 1% OsO4 solution in
PBS (pH 7.2–7.4; Sigma-Aldrich) for 1 h. Dehydration and embedding in Epon 812
(Sigma-Aldrich) were performed using the standard technique. Ultrathin sections of
Epon-embedded samples were stained with 1.5% uranyl acetate solution and lead citrate
according to Reynolds [37] and analyzed with a JEM-1011 transmission electron microscope
(JEOL, Tokyo, Japan) equipped with a GATAN ES500W digital camera operated by the
Digital Micrograph GATAN software.

2.7. Western Blot Analysis

The cells were lysed in 2× lysis buffer containing 200 mM Tris-HCl, protease inhibitor
cocktail (Roche, Pleasanton, CA, USA), 400 mM β-mercaptoethanol (Bio-Rad Laboratories,
Inc., Hercules, CA, USA), 4% sodium dodecyl sulfate (SDS; Serva), 0.01% bromophenol
blue, and 40% glycerol (PanReac, Barcelona, Spain) and incubated at 95 ◦C for 1 min.
Proteins were separated using 10% or 12.5% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred from the gel to PVDF membranes by
a semi-wet approach using Trans-Blot® Turbo™ RTA Mini LF PVDF TransferKit (Bio-
Rad Laboratories, Inc.). Membranes were blocked with 5% milk on tris-buffered saline
containing 0.1% Tween (TTBS) for 1 h at room temperature, then stained overnight with
primary antibodies against GAPDH, GRP78, LC3B, involucrin, filaggrin, and subsequently
with HRP-conjugated secondary antibodies (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). Target proteinswere visualized by Novex ECL Kit (Invitrogen, Waltham, MA, USA)
in the ChemiDoc™ visualization system (Bio-Rad Laboratories, Inc.). Optical density of
the protein bands was determined using ImageLab Software (Bio-Rad Laboratories, Inc.).
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2.8. Data Analysis

The images were processed with ImageJ software (National Institutes of Health,
Bathesda, MD, USA) and GIMP 2.8.18 free software. Statistical data analysis was performed
in GraphPad Prizm 6 (GraphPad Software, San Diego, CA, USA) and using the Mann–
Whitney U-test (nonparametric); the differences were considered statistically significant at
p < 0.05.

3. Results
3.1. The Effect of GA on Metabolic Activity of Cells

Beforehand, we analyzed the data of other authors on the effect of plant hormones
on animal and human cells [38]. We found that in most experiments, hormones acted
at micromolar and even millimolar concentrations, combined with prolonged time of
treatment. For instance, Kasamatsu et al. [20] demonstrated that GA did not affect the
viability of adipose-derived stem cells in a dose- (up to 1mM) or time-dependent manner.
Using MTT assay, we evaluated the metabolic activity (cell viability) of HaCaT and A431
cells, growing for 15, 24, 48, 72, and 96 h in the presence of GA and at concentrations
varying from 0.5 to 4 mM (Figure S1). First, we compared the optical density of the samples
growing without (C1) and with ethanol as a solvent for GA (C2) and did not observe a
significant difference between C1 and C2; therefore, we used C2 as a reference sample. The
incubation of HaCaT and A431 cell with 0.5–4 mM of GA up to 96 h did not influence the
cell viability (Figure S1a,b). Nonetheless, a small but statistically significant difference in
reduction of metabolic activity was detected after incubation of both cell lines with 1, 2,
and 4 mM of GA for 24 h. These results showed that GA did not affect the viability of
HaCaT and A431 cells in a time- and dose-dependent manner. To confirm that GA does
not have a cytotoxic effect on the other cells of epidermoid origin, we incubated human
keratinocytes and HeLa cells in the same experimental conditions as HaCaT and A431
cells. The results demonstrated that GA also did not affect the metabolic activity of these
cells (Figure S2). In our previous study, we showed that GA (2 mM for 24 h) induced the
swelling and expansion of the Golgi complex in HaCaT and A431 cells [23]; therefore, we
used this dose and timing for further experiments.

3.2. GA Induces Upregulation of ER Stress Genes

Using RT-qPCR, we investigated the effect of GA on the expression of genes involved
in the ER stress response—ATF4 (activating transcription factor 4), CHOP (C/EBP ho-
mologous protein), spliced form of XBP1 (X-box binding protein 1) and GRP78 (binding
immunoglobulin protein (BiP)/78-kDa glucose-regulated protein). The ER stress acti-
vator dithiothreitol (DTT) was used as a positive control, and as expected, it induced
up-regulation of ER stress genes in both cell lines (Figure 1a–h).

We found that GA upregulated the expression of ER stress genes in both cell lines.
As shown in Figure 1, in HaCaT cells, the level of expression of CHOP was elevated
14.8-fold (Figure 1b), for sXBP1 transcript 2.8-fold (Figure 1c) and 3.1-fold for GRP78
(Figure 1d). In A431 cells, GA upregulated the expression of ATF4 2.3-fold (Figure 1e);
CHOP—4.8-fold (Figure 1f); sXBP1 transcript—1.9-fold (Figure 1g); and GRP78—7.2-fold
(Figure 1h). However, the difference between the transcriptional level of ATF4 in the
control sample (C2) and in the presence of GA was not statistically significant in HaCaT
cells (Figure 1a), suggesting that under these experimental conditions, only a trend towards
ATF4 up-regulation was detected.
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Figure 1. Levels of mRNA expression of the ER stress genes ATF4, CHOP, sXBP1, and GRP78 in
keratinocytes HaCaT (a–d) and carcinoma A431 cells (e–h) after 24 h of incubation with 2 mM of
gibberellic acid (GA) and 2 mM dithiothreitol (DTT). C1—control for GA when ethanol as a solvent
for GA is added to the cultivation medium; C2—control for DTT when cultivation medium as a
solvent for DTT is added to the cultivation medium. Data are shown as mean ± average error (from
3 replicates of 3–4 independent experiments); * p ≤ 0.05 according to the Mann–Whitney test.

3.3. Detection of ER Stress Regulator GRP78

First, we studied the cellular distribution of the ER using live staining with ER-
Tracker Red (Figure S3a–h). In both cell lines, the ER appeared as a tubular network
extending from the perinuclear cytoplasm towards the cell periphery (Figure S3a,b,e,f), and
neither the distribution nor the morphology of the network was affected by GA treatment
(Figure S3c,d,g,h). Concomitantly, we investigated the ultrastructure of the ER cisternae
in both cell lines (Figure S3i–m) and did not detect swelling or any other structural ER
alterations in the presence of GA. These results confirm that ER stress during GA treatment,
which was detected by RT-qPCR, is not accompanied by noticeable changes in the ER
distribution and structure.

Next, we studied the localization of GRP78 in control HaCaT and A431 cells
(Figure 2a–c,j–l), DTT-treated cells (Figure 2d–f,m–o), and GA-treated cells (Figure 2g–i,p–r).
Immunocytochemical visualization of GRP78 showed that it labeled the tubular network in
both cell lines, which was mainly accumulated around the nucleus. The pattern of GRP78
labelling was comparable to the pattern of staining obtained using ER-tracker Red shown
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in Figure S2. Additionally, more bright diffuse staining of the cytoplasm was observed
in both cell lines in the presence of DTT (Figure 2d–f,m–o) and in A431 cells after GA
treatment (Figure 2p–r). The intensity of staining may reflect the increased production of
GRP78; therefore, we analyzed the content of GRP78 in HaCaT (Figure 2s) and A431 cells
(Figure 2t) using Western blot using DTT as a positive control for GRP78.

Figure 2. Immunocytochemical visualization of GRP78 localization and analysis of GRP78 content
in keratinocytes HaCaT and carcinoma A431 cells. (a–i) Keratinocytes HaCaT in control specimens
(a–c) and in the presence of DTT (d–f) and GA (g,h); (j–r) carcinoma A431 cells in control specimens
(j–l), in the presence of DTT (m–o) and GA (p–r). Nuclei are stained with DAPI (left column); GRP78
is visualized with anti-GRP78 antibodies (middle column), merged images (right column). Scale
bar, 20 µm. Western blot analysis and evaluation of GRP78 content in HaCaT (s) and A431 cells (t).
C1—cells growing with ethanol as a solvent for GA (control for GA); C2—cells growing in standard
conditions (control for DTT). Data are shown as mean ± standard deviation (n = 3–5); * p ≤ 0.05
according to the Mann–Whitney test.

We found that GA induced statistically validated elevation of GRP78 content (1.9 times)
only in A431 cells (Figure 2t), but a trend towards the increase in GRP78 production was
also observed in HaCaT cells (Figure 2s). These results confirm the difference in the in-
tensity of GRP78 immunostaining seen in Figure 2a–r. As mentioned in Section 3.2, GA
induced the upregulation of GRP78 genes in both HaCaT and A431 cell lines, yet in Ha-
CaT cells, the upregulation of GRP78 expression was not as pronounced as in A431 cells
(Figure 1d,i). This difference in activation of GRP78 genes by GA may explain the lower
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level of GRP78 synthesis seen in HaCaT cells, which was detected by Western blot analysis
(Figure 2s).

3.4. GA increases the Content of Autophagy Marker LC3-II

It is well known that ER stress is a trigger for autophagy, which may cause reparative
autophagy or autophagic cell death [39–41]. We analyzed the presence of LC3B as the
autophagy marker in control and GA-treated cells. Immunocytochemical visualization of
autophagosomes labeled with antibodies against LC3B did not show detectable changes in
the pattern of LC3B staining in both cell lines before and after GA treatment (Figure 3a–l).
However, Western blot analysis demonstrated an increased level of LC3B-II content in
GA-treated HaCaT cells (Figure 3m) and A431 cells (Figure 3n), but the difference was only
significant for A431 cells. We believe that similar to GRP78, HaCaT cells display a tendency
for LC3B-II production. The presence of autophagosomes and autolysosomes, typical for
different stages of constitutive and induced autophagy, was confirmed by TEM analysis in
HaCaT and A431 cells (Figure 3o–u).

Figure 3. Immunocytochemical visualization of autophagy marker LC3B and analysis of LC3B-II
content in keratinocytes HaCaT and carcinoma A431 cells. (a–f) Keratinocytes HaCaT in control
specimens (a–c) and in the presence of GA (d–f); (g–l) carcinoma A431 cells in control specimens
(g–i) and in the presence of GA (j–l). Nuclei are stained with DAPI (left column), autophagosomes
are visualized with anti-LC3B antibodies (middle column), merged images (right column). Scale bar,
20 µm. Western blot analysis and evaluation of LC3B-II content in HaCaT (m) and A431 (n) cells. C—
cells growing with ethanol as a solvent for GA (control for GA). Data are shown as mean ± standard
deviation (n = 3); * p ≤ 0.05 according to the Mann–Whitney test. TEM images of autophagosomes
(APh) and late autolysosomes (AL) in HaCaT (o–r) and A431 cells (s–u). Autophagosomes and
autolysosomes are present in control specimens of HaCaT (o,p) and A431 cells (s), and in GA-treated
HaCaT (q,r) and A431 cells (t,u). Arrowheads point to the gap between two membranes surrounding
autophagosomes. Scale bar, 0.5 µm.

3.5. GA Raises the Level of Epidermal Differentiation Markers Involucrin and Filaggrin

It has been shown that ER stress and autophagy play an important role in the differ-
entiation of human keratinocytes [42]. Therefore, we investigated the levels of epidermal
differentiation markers—involucrin and filaggrin—in both cell lines in the presence of GA.

Immunocytochemical staining of HaCaT cells with antibodies against involucrin
showed that the intensity of cytoplasmic staining varied across different cells (Figure 4a–c).
The brightly stained cells (5.9% of the whole population, Figure 4m, C) were either singular
or assembled into clusters. Staining with DAPI confirmed that these cells were not debris
or remnants of dead cells (Figure 4c). The same pattern of staining was observed after
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incubation with GA (Figure 4d–f), and the number of brightly stained cells did not change
(6.3% of the whole population, Figure 4m, GA).

Figure 4. Immunocytochemical visualization and evaluation of involucrin content in keratinocytes
HaCaT and carcinoma A431 cells. (a–f) Keratinocytes HaCaT in control specimens (a–c) and in the
presence of GA (d–f), arrowheads indicate brightly stained cells; (g–l) carcinoma A431 cells in control
specimens (g–i) and in the presence of GA (j–l); arrowheads indicate cells with bright diffuse staining
of the cytoplasm; note that involucrin-positive tubular/vesicular structures are seen in the cells with
faintly stained cytoplasm. Nuclei are stained with DAPI (left column), involucrin-positive staining
is detected with anti-involucrin antibodies (middle column), merged images (right column). Scale
bar, 20 µm. The relative number of cells with brightly stained cytoplasm in control specimens versus
GA treated samples is shown in (m) (HaCaT cells) and (n) (A431 cells). Data are shown as mean ±
standard deviation (n = 3); * p ≤ 0.01 according to the Mann–Whitney test. Western blot analysis and
evaluation of involucrin content in HaCaT (o) and A431 cells (p). C—cells growing with ethanol as a
solvent for GA (control for GA). Data are shown as mean ± standard deviation (n = 3); * p ≤ 0.05
according to the Mann–Whitney test.

However, we detected a completely different pattern of staining in A431 cells. Most
of the cells had an involucrin-positive tubular/vesicular network distributed next to or
around the nucleus and arranged similar to the Golgi complex (Figure 4g–i). The bright
diffuse staining of the cytoplasm (Figure 4i, white arrowhead) was observed in only 0.9% of
cells (Figure 4n, C). In GA-treated cells, the number of cells with prominent diffuse staining
of the cytoplasm (Figure 4l, white arrowheads) was increased up to 2.5% (Figure 4n, GA).
These observations were supported by the Western blot analysis; it demonstrated that
GA increased the involucrin content 3.8 times in A431 cells (Figure 4p), and once again,
HaCaT cells showed the tendency for the elevation of involucrin production (Figure 4o).
Notably, in A431 cells growing in the presence of GA, involucrin-positive tubular/vesicular
structures changed their localization and expanded from the perinuclear region towards
the cell periphery (Figure S4). In our previous study, we reported comparable redistribution
of Golgi complex in GA-treated A431 cells [23].

Immunocytochemical staining for filaggrin showed diffuse or dot-loke staining of the
cytoplasm in HaCaT cells (Figure S5a–c), and the same pattern of staining was observed
during GA treatment (Figure S5d–f). Reticulated and dot-like pattern of staining for
filaggrin was also observed in A431 cells (Figure S5g–i), and this pattern was not changed
during GA treatment either (Figure S5j–l). However, Western blot analysis showed that GA
increased the content of filaggrin 2.5-fold in both cell lines (Figure S5m,n).
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4. Discussion

Many external (physical and environmental conditions, chemical agents, viral in-
fections) and internal factors (gene mutations, depletion of Ca2+ levels) may induce the
accumulation of unfolded or misfolded proteins in the ER lumen and activate the devel-
opment of the ER stress. Adaptive cellular reaction termed unfolded protein response
(UPR) restores ER homeostasis via the activation of signaling mechanisms, which are
transduced by transmembrane ER-resident sensors/receptors—IRE1α (inositol-requiring
protein 1α), ATF6 (activating transcription factor 6), and PERK (protein kinase RNA-like
endoplasmic reticulum kinase) [43–45]. Normally, the association with BIP/GRP78, which
is predominantly localized in the ER lumen, inactivates these sensors. Upon UPR activation,
GRP78 dissociates from PERK, ATF6, and IRE1α, and released sensors activate downstream
signaling pathways, which either result in cellular death or survival [26,46,47].

We found that plant hormone GA increased the expressional level of mRNA for the
ER stress genes (ATF4, CHOP, sXBP1, and GRP78) in cultured human cells of epidermoid
origin—immortalized keratinocytes HaCaT and carcinoma A431cells—but in a slightly
different manner for ATF4. The level of mRNA for CHOP, sXBP1, and GRP78 increased in
both cell lines, but in HaCaT cells, only a tendency for the upregulation of ATF4 expression
was seen. During mild ER stress and short UPR, eukaryotic cells utilize several compen-
satory mechanisms which aim to reduce the stress and restore ER homeostasis [27,28,40,48].
Strong ER stress and/or prolonged UPR may halt these compensatory reactions and trigger
the initiation of cell death [27,30,44]. We did not detect the decrease of cell viability in the
presence of GA and presumed that upregulation of ATF4, CHOP, sXBP1, and GRP78 is a
manifestation of mild ER stress in HaCaT and A431 cells.

ATF4 and CHOP are members of the PERK signaling mechanism. After dissociation
from GRP78, PERK completely blocks the translation and phosphorylates eIF2α (eukaryotic
initiation factor 2α). This, in turn, activates the translation of ATF4 and the development of
adaptive response. At the same time, ATF4 may activate CHOP signaling pathways and
facilitate the initiation of apoptosis [30,49,50]. XBP1 is a component of the most conservative
IRE1α signaling pathway in eukaryotes and the main regulator of the adaptation to ER
stress [51]. After the activation of the ER stress response, the endoribonuclease domain of
IRE1α initiates splicing of XBP1 mRNA [52], and the spliced form of XBP1 mRNA is used
for the synthesis of sXBP1, which is a major transcriptional factor for the genes involved in
UPR and ERAD [51,53].

Unequivocally, increased expression of GRP78 is the ultimate feature of the ER
stress [50]. We found that GA upregulated the expression of mRNA for GRP78 in both
cell lines. However, the evaluation of the protein content using Western blotting only
showed the increase in GRP78 production in A431 cells. It is likely that, under the current
experimental conditions, the level of upregulation for GRP78 expression in HaCaT is not
sufficient to trigger the increased production of GRP78 protein. Thus, GA induced mild
ER stress in HaCaT and A431 cells, but A431 cells were more “sensitive” to GA treat-
ment as they had higher levels of upregulation for ATF4 and GRP78 genes and increased
content of GRP78. Our findings are confirmed by recent studies about the effect of GA
derivative—GA-13315 (13-chlorine-3,15-dioxy-gibberellic acid methyl ester) on cultured
lung adenocarcinoma cells A549. This synthetic compound substantially increased the
expression of GRP78, ATF4, and CHOP in A549 cells, but unlike GA, GA-13315 triggered
apoptotic cell death [22].

It is known that ER stress may stimulate autophagy, and the latter is one of the
mechanisms for the destruction of aggregated and misfolded proteins during ERAD [28,46].
We found that GA increased the LC3B-II content in A431 cells, yet only the tendency for
elevated LC3-II production was detected in HaCaT cells. The increased level of LC3B-II
production in A431 cells might be one of the consequences of the ER stress, which was
also confirmed by the upregulation of ATF4 expression and the increased level of GRP78
content. Notably, the same effect was observed in HaCaT cells, but to a lesser extent. PERK
mediates the upregulation of LC3 and ATG5 via ATF4 and CHOP pathways in many
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cultured cell lines, thereby facilitating phagophore formation [54–56]. The activation of
the IRE1/XBP1 signaling mechanism may also link UPR and autophagy, as shown by
Kishino et al. [51]. Moreover, tumor cells may activate ATF4-mediated autophagy as a
survival mechanism under stress conditions [57–59]. GRP78 also improves the survival of
tumor cells during stress conditions because it stimulates macroautophagy and hampers
proapoptotic signaling mechanisms [45,60].

We used TEM to investigate membranous vesicles and identified autophagosomes
and autolysosomes in control and GA treated cells. Numerous autophagosomes and
autolysosomes in control samples confirmed a high basal level of autophagy in both cell
lines. However, the increased content of LC3B-II and the presence of autolysosomes in
GA-treated A431 cells demonstrated the progression of autophagic flux without arrest
at early stages. Moreover, the upregulation of ATF4 expression and elevation of GRP78
content also confirmed the increase in autophagy in A431 cells exposed to GA.

Activation of autophagy promotes tumor progression and helps tumor cells to sur-
vive in stress conditions [61]. At the same time, autophagy plays a crucial role in normal
physiological processes, including differentiation. For instance, autophagy triggers the
early stages of signaling mechanisms that control the differentiation of immortalized ker-
atinocytes HaCaT [42]. The differentiation is also one of the adaptive survival mechanisms
in response to various external stimuli. It has been demonstrated that ER stress affects
the biogenesis of lysosomes and the differentiation of primary neonatal human epider-
mal keratinocytes [29]. Terminal differentiation of murine epidermal keratinocytes is also
accompanied by the activation of autophagy markers and nucleophagy [62]. In our experi-
ments, GA mainly stimulated the production of LC3B-II in carcinoma cell line A431, yet the
tendency for an elevated level of LC3B-II was also observed in HaCaT cells, suggesting that
autophagy may further progress into a cellular reaction to stress and lead to the activation
of differentiation.

Immortalized non-tumorigenic human keratinocytes HaCaT constitutively express
epidermal differentiation markers (keratin 1, 10, involucrin, filaggrin) and form structurally
organized and differentiated epidermal tissue after transplantation to naked mice [63].
During cultivation in vitro and in the presence of low concentration of retinoic acid, these
cells may form the stratum corneum [64]. Derived from vulvar carcinoma, A431 cells are
not able to differentiate even in favorable growth conditions (cultivation in serum-free
medium, low concentration of retinoic acid, high concentration of Ca2+), but they can still
produce involucrin [65]. Assessment of the autophagy marker proteins combined with
proteins from the epidermal differentiation cluster (involucrin and filaggrin) is often used
for the evaluation of the differentiation status of normal and tumor cells. We compared
the levels of epidermal differentiation markers in both cell lines, cultivated in standard
conditions and in the presence of GA, and found that GA stimulated the synthesis of
involucrin in A431 cells and filaggrin—in HaCaT and A431 cells.

The enzymes from the transglutaminase family (predominantly transglutaminase I)
catalyze the attachment of involucrin to the plasma membrane proteins [65,66]. How-
ever, the activity of transglutaminase I is suppressed in A431 cells [67]. This may explain
the difference in the pattern of immunocytochemical staining for involucrin in HaCaT
(Figure 4a–c) and A431 cells (Figure 4g–i). Only single A431 cells demonstrate the dif-
fuse staining of the cytoplasm, and most cells have involucrin-positive tubular/vesicular
structures, which have the appearance of the Golgi complex. We assume that the atypical
pattern of involucrin staining in A431 cells may be attributed to the anomalous phenotype
of the A431 cells. The level of involucrin production and the number of A431 cells with a
normalized pattern of staining increased in the presence of GA. This demonstrates that GA
may restore at least some features of normal phenotype in A431 cells.

It has been shown that filaggrin may be expressed in subpopulations of oral squamous
carcinomas [68] and in cultivated squamous cell carcinoma (SCC-13) [69]. We detected fi-
laggrin in HaCaT and A431 cells using immunocytochemical staining and Western blotting
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and showed that during incubation with GA, the level of filaggrin production increased in
both cell lines.

It is known that keratinocyte differentiation within the epidermis depends upon mild
ER stress, UPR [27], and consequent activation of the ATF4 pathway [70]. ATF4 also
regulates differentiation in other cell types, including osteoblasts [71,72], adipocytes [73],
chondrocytes [74], and breast epithelial cells [75]. The upregulation of ATF4 signaling
and activation of differentiation markers (involucrin and filaggrin) primarily in A431
cells demonstrates that GA activates differentiation in A431 cells more effectively than in
keratinocytes HaCaT.

Tumor cells often have a higher level of GRP78 (especially after therapy), which pro-
vides better conditions for their survival, active proliferation, increased drug resistance, and
metastatic growth [45,76,77]. However, certain agents may induce upregulation of GRP78
expression and trigger rather positive changes in tumor cells by activating differentiation.
This is crucial for highly malignant and undifferentiated types of tumors because activation
of differentiation slows down or inhibits proliferation, changes cellular phenotype, and
normalizes cellular functions [78,79]. These data are in agreement with our observation of
up-regulation of GRP78 expression followed by increased production of GRP78 in carci-
noma A431 cells exposed to GA. The increase of GRP78 expression is also observed during
differentiation of normal cells, for instance, human keratinocytes [70], embryonic stem cells
H9 [80], rat myofibroblasts [81], and human and murine lung fibroblasts [82].

Thus, we demonstrated that at non-toxic doses and duration of treatment, GA induced
mild ER stress and autophagy followed by the activation of differentiation in cultured
human cells of epidermoid origin—immortalized keratinocytes HaCaT and carcinoma A431
cells. It appeared that GA was more effective at activating differentiation in carcinoma A431
cells, probably due to the inherently lower differentiation status of these cells compared to
HaCaT keratinocytes.

5. Conclusions

Plant hormone GA added to cultured human non-tumorigenic immortalized ker-
atinocytes HaCaT and epidermoid carcinoma A431 cells does not produce a cytotoxic
effect. However, it may induce mild ER stress, which stimulates cell differentiation via the
activation and enhancement of autophagy. Overall, the effect of GA on cell differentiation
was more pronounced in A431 cells than in HaCaT, which may be explained by the lower
initial differentiation status of A431 cells. The activation of differentiation triggered by GA
may be viewed as a positive effect in poorly differentiated and highly malignant cells, as
the activation of at least some differentiation features may lower the level of malignancy of
tumor cells and decrease their tumorigenic potential. Therefore, under these conditions,
GA may be an anti-cancerogenic agent. Our study also demonstrates that GA induces
the activation of differentiation in HaCaT cells, but to a lesser extent. Upregulation of
differentiation may be positive for cells with functional deficiencies (ageing and senescent
cells) and can have negative effects on cells with enhanced differentiation features, such
as during hyperkeratosis. Further studies may provide insight into using GA and its
derivatives for activation of cell differentiation and, potentially, other cellular processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13111813/s1, Table S1: The genetic information for HaCaT cell line, Figure S1:
Evaluation of metabolic activity of keratinocytes HaCaT (a) and carcinoma A431 cells (b) with
MTT assay, Figure S2: Evaluation of metabolic activity of human keratinocytes (a) and adenocar-
cinoma HeLa cells (b) with MTT assay, Figure S3: Visualization of localization and ER structure
in keratinocytes HaCaT and carcinoma A431 cells using light and electron microscopy, Figure S4:
Immunocytochemical visualization of tubular/vesicular network with antibodies against involucrin
in carcinoma A431 cells, Figure S5: Immunocytochemical visualization and evaluation of filaggrin
content in keratinocytes HaCaT and carcinoma A431 cells.
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