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Abstract

 

The immune response to infection must be controlled to ensure it is optimal for defense while
avoiding the consequences of excessive inflammation, which include fatal septic shock. Mice
deficient in Fc

 

�

 

RIIb, an inhibitory immunoglobulin G Fc receptor, have enhanced immune
responses. Therefore, we examined whether Fc

 

�

 

RIIb controls the response to 

 

Streptococcus
pneumoniae

 

. Macrophages from Fc

 

�

 

RIIb-deficient mice showed increased antibody-dependent
phagocytosis of pneumococci in vitro, and consistent with this infected Fc

 

�

 

RIIb-deficient
mice demonstrated increased bacterial clearance and survival. In contrast, previously immunized
Fc

 

�

 

RIIb-deficient mice challenged with large inocula showed reduced survival. This correlated
with increased production of the sepsis-associated cytokines tumor necrosis factor 

 

� 

 

and inter-
leukin 6. We propose that Fc

 

�

 

RIIb controls the balance between efficient pathogen clearance
and the cytokine-mediated consequences of sepsis, with potential therapeutic implications.
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Introduction

 

The outcome of the immune response to infection is deter-
mined, in part, by the degree of inflammation it generates.
Inflammatory cytokines, produced by cells including macro-
phages and neutrophils, are important in generating an effec-
tive primary immune response and in clearing infection (1,
2). However, in severe infection, the production of proin-
flammatory cytokines, such as TNF-

 

�

 

, IL-1, and IL-6,
causes septic shock, which has a mortality of 

 

�

 

50% even
when appropriate antibiotic therapy is administered (3).
The immune system must, therefore, closely regulate the
inflammatory response to infection to optimize beneficial
effects and minimize harmful ones. Inhibitory receptors
have been shown to control aspects of immune reactivity
and the development of autoimmunity (4, 5), but their role
in controlling inflammation and the outcome of infection
has not been extensively studied. Fc

 

�

 

RIIb (CD32) is a can-
didate to control this vital balance. It is an IgG Fc receptor
expressed on immune cells that inhibits activation by the B
cell receptor and activatory FcRs (4). Fc

 

�

 

RIIb-deficient
mice have increased antibody responses, cytokine production,

macrophage activation (6, 7), and immune-mediated pathol-
ogy including spontaneous SLE (4). 

 

Streptococcus pneumoniae

 

is an encapsulated Gram-positive organism that is a major
cause of human disease, particularly pneumonia, peritonitis,
and meningitis (8). It is also a pathogen of mice and has
been extensively studied in this context. Defense against 

 

S.
pneumoniae

 

 is dependent on antibody (9) and FcR-mediated
clearance (10), making it an appropriate organism with
which to study the control of responses to infection by
Fc

 

�

 

RIIb. Therefore, we examined whether Fc

 

�

 

RIIb con-
trolled the balance between defense and septic shock in the
response to 

 

S. pneumoniae

 

. Fc

 

�

 

RIIb-deficient mice showed
increased phagocytosis of pneumococci by macrophages in
vitro and increased bacterial clearance and survival in vivo.
However, previously immunized Fc

 

�

 

RIIb-deficient mice
challenged with large inocula showed reduced survival.
This correlated with increased production of the sepsis-
associated cytokines TNF-

 

� 

 

and IL-6. Thus, Fc

 

�

 

RIIb
controls the balance between efficient pathogen clearance
and the cytokine-mediated consequences of sepsis.

 

Materials and Methods

 

Mice.

 

Fc

 

�

 

RII-deficient mice on BALB/c and C57BL/6
backgrounds (backcrossed for at least eight generations) were
provided by J. Ravetch and S. Bolland (Rockefeller University,
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New York, NY). All other mice were obtained from Charles
River Laboratories.

 

Antibodies.

 

M1/70 (anti–MAC-1) antibody and avidin–Texas
red conjugate were purchased from BD Biosciences. Horseradish
peroxidase–conjugated goat anti–mouse IgM, IgG, and IgG3
were obtained from Southern Biotechnology Associates, Inc.

 

Microscopy.

 

Peritoneal macrophages were incubated for 2 h in
serum-free RPMI on 1% Alcian blue–coated coverslips. Immu-
nofluorescence confocal microscopy (TCS 4D; Leica) was per-
formed after staining with M1/70 and 4,6-diamidino-2-phe-
nylindole dihydrochloride (DAPI; Molecular Probes) to identify
macrophages and nuclei, respectively.

 

Bacteria. S. pneumoniae

 

 type 2 strain D39 (provided by J.S.
Brown, Imperial College School of Medicine, London, UK) or
type 14 (provided by D. Goldblatt, University College Hospital,
London, UK) were cultured overnight on blood agar plates
(5% CO

 

2

 

, 95% air, 37

 

�

 

C), inoculated into Todd-Hewitt broth
(Oxoid Ltd.) supplemented with 0.5% yeast extract (Oxoid
Ltd.), cultured for 4–5 h, and then washed and resuspended at
10

 

9 

 

CFU/ml (estimated by OD

 

660 

 

� 

 

1). Aliquots were stored at

 

�

 

70

 

�

 

C and made up in sterile PBS for use. Their concentra-
tion was verified by serial dilution and culture on blood agar
plates.

 

S. pneumoniae Peritonitis.

 

Groups of 7–13 male or female,
age-matched control and Fc

 

�

 

RII-deficient mice (8–16 wk of
age) were inoculated i.p. with 200 

 

�

 

l PBS containing 

 

S. pneumo-
niae

 

. Mice were observed at least every 4 h for the first 72 h, ev-
ery 8 h until 96 h, and daily thereafter (11). During observation,
mice were scored by a blinded observer for the presence or ab-
sence of physical signs of progressive sepsis (12). Mice that be-
came moribund were considered to have reached the end point
of the experiment and were killed. Tail bleeds were performed

at 7 and/or 24 h after infection and blood was cultured for bac-
terial growth for 24 h and assayed for cytokines. Survival data
was analyzed using Kaplan-Meier graphs and log-rank tests. All
animal experiments were performed in accordance with Home
Office regulations.

 

Antibody Responses.

 

Control and Fc

 

�

 

RIIb-deficient mice were
immunized with 1 

 

�

 

g Pneumovax II (Aventis Pasteur MSD) s.c. di-
luted in 200 

 

�

 

l sterile PBS. Serum was collected at 14 and 21 d.

 

ELISA Assays.

 

Anti-phosphorylcholine (PC) and anti-pneu-
mococcal polysaccharide antibodies were measured by ELISA as
described in Supplemental Materials and Methods, available at
http://www.jem.org/cgi/content/full/jem.20032197/DC1.

 

Phagocytosis Assay. S. pneumoniae

 

 type 14 was cultured to log
phase in Todd-Hewitt broth with 0.5% yeast extract (Oxoid
Ltd.), heat inactivated at 60

 

�

 

C for 1 h, and labeled with FITC
(Sigma-Aldrich; reference 13). FITC-labeled 

 

S. pneumoniae

 

 were
incubated in PBS or dilutions of heat-inactivated serum at 37

 

�

 

C
for 1 h before washing. Immune serum used for opsonization was
taken from five pneumovax-immunized mice 21 d after chal-
lenge. Peritoneal macrophages or RAW-297 cells were adhered
to plastic and aliquots of serum-opsonized and nonopsonized
FITC-labeled pneumococci were added at 37

 

�

 

C for 30 min
(along with 4

 

�

 

C control) plates. Adhered macrophages were then
washed, harvested, and analyzed by flow cytometry (FACSCali-
bur™; Becton Dickinson). Peritoneal macrophages were identi-
fied by scatter characteristics and MAC-1 staining. The percent-
age of FITC

 

	 

 

macrophages and the geometric mean fluorescence
of FITC

 

	 

 

macrophages were used as a measure of phagocytosis.
Duplicate or triplicate wells were processed for each serum sam-
ple and results were compared using the Student’s 

 

t

 

 test.

 

Cytokine Quantification.

 

TNF-

 

� 

 

and IL-6 levels in serum and
macrophage culture supernatant were measured using Cytomet-

Figure 1. Anti-pneumococcal anti-
body production and phagocytosis in
Fc�RIIb-deficient mice. (A) Anti-
pneumococcal polysaccharide IgG3
titres in control BALB/c (�) and
Fc�RIIb�
� (�) mice 14 and 21 d
after immunization with 1 �g Pneu-
movax II. Each point represents data
from an individual mouse expressed
relative to a positive control. The hor-
izontal bar is the mean. (B–E) The
effect of Fc�RIIb on the phagocytosis
of S. pneumoniae in vitro. The
RAW-297 macrophage cell line (B
and C) or peritoneal macrophages
(D and E) were incubated with
FITC-labeled S. pneumoniae opsonized
with heat-inactivated serum, followed
by flow cytometric analysis. Antibody-
dependent phagocytosis is expressed
as percent FITC	 cells relative to
nonopsonized sample (see Fig. S2).
(B) Serum from unimmunized con-
trol (�) and Fc�RIIb�
� (�) mice
provides equivalent opsonization,
whereas (C) serum from immunized
Fc�RIIb�
� mice enhances uptake.

(D) Fc�RIIb�
� peritoneal macrophages show increased phagocytosis of opsonized S. pneumoniae. Phagocytosis was assessed as above but using peritoneal
macrophages from control BALB/c (�) and Fc�RIIb�
� (�) mice, and serum from control mice only. (E) Macrophages from Fc�RIIb�
� mice phago-
cytose a larger number of bacteria per macrophage than control mice, estimated by the geometric mean fluorescence of FITC	 cells (see Fig. S2). (B–E) Values
represent mean of triplicates, the experiments shown are representative of two, and p-values were obtained using an unpaired Student’s t test. (F) 24 h
after inoculation with S. pneumoniae, tail bleeds were performed on C57BL/6 control (n � 11) and Fc�RIIb�
� (n � 13) mice and blood cultured for
bacterial growth. Fewer Fc�RIIb�
� mice were bacteremic (results from two experiments combined; Chi-square test).
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ric Bead Array (BD Biosciences) according to the manufacturer’s
instructions (see Supplemental Materials and Methods).

 

Online Supplemental Material.

 

Supplemental Materials and
Methods describes ELISA assays and cytokine quantification. Fig.
S1 shows natural anti-PC antibody titres in Fc

 

�

 

RIIb

 

�
� 

 

and con-
trol mice and Fig. S2 shows a phagocytosis assay. Fig. S3 illustrates
signs of sickness in infected Fc

 

�

 

RIIb

 

�
� 

 

and control mice. Supple-
mental Materials and Methods and Figs. S1–S3 are available at
http://www.jem.org/cgi/content/full/jem.20032197/DC1.

 

Results and Discussion

 

Normal Natural Anti-PC Antibody Titres, but Increased An-
tibody Responses to Vaccination, in Fc

 

�

 

RIIb-deficient Mice.

 

Natural antibody against bacterial cell wall PC is critical for
defense against pneumococcal infection in naive mice (9).
We found similar titres of anti-PC IgM and IgG in
Fc

 

�

 

RIIb-deficient mice and controls (Fig. S1, available at
http://www.jem.org/cgi/content/full/jem.20032197/DC1),
and no significant differences in the B1 or marginal zone B
cell populations (unpublished data), thought to be the ma-
jor sources of such antibody (14). Vaccination raises pro-
tective antibodies against capsular polysaccharide antigens
(8). When immunized with the T-independent anti-pneu-
mococcal vaccine Pneumovax II, Fc

 

�

 

RIIb-deficient mice
produced increased titres of such antibodies (Fig. 1 A), as
seen by others using model T–independent antigens (6)
and T-dependent pneumococcal vaccines (15).

 

Increased Serum-dependent Uptake of Pneumococci by Fc

 

�

 

RIIb-
deficient Macrophages.

 

We investigated the role of Fc

 

�

 

-
RIIb in phagocytosis of pneumococci using an in vitro
system in which FITC-conjugated pneumococci are fed

to macrophages and analyzed by flow cytometry (Fig. S2,
A–C, available at http://www.jem.org/cgi/content/full/
jem.20032197/DC1). Macrophages were chosen because
they are the major phagocytes in the uninflamed perito-
neal cavity and we planned to use peritonitis as our model
of pneumococcal infection. Opsonization of pneumococci
with serum from nonimmunized Fc

 

�

 

RIIb-deficient or
control mice increased uptake equally (Fig. 1 B), consis-
tent with their having similar titres of “natural” anti-PC
antibody. Serum from Fc

 

�

 

RIIb-deficient mice immu-
nized with Pneumovax was a more efficient opsonogen
(Fig. 1 C), consistent with the increased anti-PC antibod-
ies they produce. Findings using the RAW mouse macro-
phage cell line were confirmed in BALB/c peritoneal
macrophages (Fig. S2, D and E). Comparison of phagocy-
tosis by control and Fc

 

�

 

RIIb-deficient macrophages,
keeping the opsonizing serum constant, showed that more
macrophages from Fc

 

�

 

RIIb-deficient mice consumed a
larger number of opsonized pneumococci per cell more
quickly than controls (Fig. 1, D and E, and Fig. S2 F).
Thus, Fc

 

�

 

RIIb dampens macrophage uptake of pneumo-
cocci both by an effect on the macrophage itself and by
reducing opsonizing antibody titres after immunization
(but not via natural antibody).

 

Fc

 

�

 

RIIb-deficient Mice Are Resistant to Pneumococcal Perito-
nitis.

 

Increased antibody-dependent phagocytosis of
pneumococci in vitro suggested that Fc

 

�

 

RIIb-deficient
mice might clear 

 

S. pneumoniae

 

 more efficiently after intra-
peritoneal infection. Mice of both the BALB/C and
C57BL/6 backgrounds were used, the latter being more
susceptible to pneumococcal infection (16). Less than 200

Figure 2. Survival after S. pneumoniae infection. Unimmunized Fc�RIIb�
� or control mice were inoculated with S. pneumoniae type 2 i.p. Both
C57BL/6 (106 CFU) and BALB/c (107 CFU) Fc�RIIb�
� mice have increased survival (P � 0.027 and P � 0.026, respectively). When unimmunized
mice were challenged with higher doses of S. pneumoniae (107 in C57BL/6, 108 in BALB/c), both Fc�RII�
� and control mice succumbed to infection.
Fc�RIIb�
� and control mice were immunized with 1 �g pneumococcal polysaccharide (Pneumovax II) s.c. and 21–28 d later mice were challenged
with an intermediate dose of S. pneumoniae type 2 or a high dose of S. pneumoniae type 2 (gray shading). At intermediate doses, both strains were protected
by immunization. However, at high doses of S. pneumoniae, both C57BL/6 and BALB/c Fc�RIIb�
� mice showed increased mortality (P � 0.017
and P � 0.012, respectively). Each experiment shown is representative of at least two, and p-values were obtained with a log-rank test.
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CFU did not cause death (unpublished data), but when 105

(C57Bl/6) or 107 (BALB/C) CFU were used a survival ad-
vantage for Fc�RIIb-deficient mice was seen compared
with controls. At higher doses all mice died (Fig. 2). Con-
sistent with this, more efficient bacterial clearance was seen
in Fc�RIIb-deficient mice (Fig. 1 F). Supporting these
findings is the recent observation that Fc�RIIb deficiency
protects against death from staphylococcal infection in un-
immunized mice (17).

Immunized Fc�RIIb-deficient Mice Infected with Higher Doses
of Bacteria Have an Increased Mortality. When immunized
mice were infected with intermediate numbers of bacteria
(107–109), both strains were equally protected and all sur-
vived (Fig. 2 C; reference 15). As immunized Fc�RIIb-
deficient mice showed both increased macrophage phago-
cytosis in vitro and higher titres of antipolysaccharide
antibody we predicted that immunized mice might, if
challenged with sufficient bacteria to overcome protec-
tion, again demonstrate enhanced survival. Against expec-
tations, challenge of immunized mice with higher doses of
bacteria resulted in increased death of Fc�RIIb-deficient
mice (Fig. 2 D, also with the low virulence serotype 14;
unpublished data).

Increased Proinflammatory Cytokine Production and Signs of
Sepsis in Fc�RIIb-deficient Mice. Most death from Gram-
positive organisms is due not purely to the infection itself,
but from the hypotension and end organ failure characteris-
tic of septic shock. This is a clinical manifestation of the

uncontrolled release of proinflammatory cytokines such as
TNF-� and IL-6, which has a mortality of �50% (3, 18).
Infusion of TNF-� alone can cause fatal septic shock at se-
rum levels similar to those seen in animals with bacterial
sepsis (18). As proinflammatory cytokines are released in
response to FcR cross-linking and Fc�RIIb can control
such release (7), it seemed likely that the high degree of
FcR cross-linking on macrophages that would occur when
large doses of bacteria met high levels of anti-pneumococ-
cal antibody could result in uncontrolled cytokine produc-
tion and septic shock. Consistent with this, commonly ac-
cepted signs of illness (e.g., piloerection) occurred more
quickly in infected immunized Fc�RIIb-deficient mice,
but not in infected naive mice (Fig. S3, available at http://
www.jem.org/cgi/content/full/jem.20032197/DC1). This
was independent of bacterial division, as similar results
were obtained when mice were challenged with heat-killed
bacteria (Fig S3). Thus, the increased mortality of immu-
nized Fc�RIIb-deficient mice could be due to the inflam-
matory response to sepsis itself.

To test this we measured TNF-� and IL-6 production
by Fc�RIIb-deficient mice; TNF-� because it has been di-
rectly implicated in causing death (18) and IL-6 as its serum
levels correlate best with mortality due to septic shock (19).
Peritoneal macrophages from Fc�RIIb-deficient mice pro-
duced similar levels of TNF-� to control when cultured
alone, but enhanced production when unopsonized or op-
sonized pneumococci were added (Fig. 3 A). In vivo, in

Figure 3. Proinflammatory cyto-
kine production in response to S.
pneumoniae in control and Fc�RIIb�
�

mice. (A) Peritoneal macrophages
from C57BL/6 and Fc�RIIb�
� mice
were cultured for 12 h alone, with
unopsonized, heat-killed S. pneumo-
niae, or with heat-killed S. pneumoniae
opsonized with heat-inactivated
immune serum. TNF-� levels, mea-
sured using a cytometric bead assay,
and were higher in Fc�RIIb�
� cul-
ture supernatant in all conditions, but
particularly when opsonized bacteria
were used. The experiment shown is
representative of two. (B) Serum
TNF-� levels were higher in
Fc�RIIb�
� mice whether unimmu-
nized (left), 7 h after inoculation
with S. pneumoniae (middle), and in
particular, in mice immunized and
subsequently inoculated with S.
pneumoniae (right, gray shading).
(C) IL-6 levels in peritoneal macro-
phage culture supernatant. (D) Serum
IL-6 levels in control (�) and
Fc�RIIb�
� (�) mice, uninfected or
7 h after inoculation with S. pneumo-
niae either with (gray shading) or
without prior immunization. Values
are from individual mice, experi-
ments shown are representative of
two, and p-values were obtained
using an unpaired Student’s t test.
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the absence of infection, levels of TNF-� were low but
significantly higher in Fc�RIIb-deficient mice, suggesting
that Fc�RIIb controls “basal” TNF-� production. Unim-
munized Fc�RIIb-deficient mice produced increased titres
of TNF-� in response to infection. However, when previ-
ously immunized mice were challenged with high doses of
pneumococcus, increases in TNF-� were particularly
prominent (Fig. 3 B), reaching serum levels shown to be
associated with fatal septic shock (20, 21). In vitro IL-6
production by macrophages showed a similar pattern to
TNF-� (Fig. 3 C). In vivo, IL-6 levels were low in unin-
fected and infected unimmunized mice. No significant dif-
ference was seen between Fc�RIIb-deficient and control
mice. In contrast, IL-6 levels in infected, immunized
Fc�RIIb-deficient mice were markedly elevated to levels
�10 times those seen in control mice (Fig. 3 D). Thus,
both the cytokine pattern and clinical picture seen in in-
fected, immunized mice are consistent with death being
due to septic shock.

Unimmunized Fc�RIIb-deficient mice demonstrated a
clear survival advantage when challenged with pneumo-
coccus, probably due primarily to increased FcR-depen-
dent bacterial uptake by phagocytes freed of Fc�-
RIIb-mediated suppression. The modest increase in
proinflammatory cytokine production observed in unim-
munized Fc�RIIb-deficient mice, both before and after
infection, may also be important, as these cytokines have
been shown to be important in defense against pneumo-
coccus (2). The other effects of Fc�RIIb seem less likely
to be involved. Natural anti-PC antibody levels were sim-
ilar, and neither increased antigen presentation (22) nor
antibody production (Fig. 1 A; reference) would have had
time to have an effect.

There was a striking contrast when previously immu-
nized mice were challenged with pneumococcus. In this
situation Fc�RIIb deficiency resulted in rapid and in-
creased mortality. This was likely to be due to septic
shock associated with excessive release of proinflamma-
tory cytokines, serum levels of which reached those
shown to cause death in models of sepsis in mice (20) and
other species (21). Treatment of septic shock with anticy-
tokine therapy has been disappointing, particularly in
Gram-positive infection. Our attempts to use treatment

with anti–TNF-� to reduce mortality in immunized in-
fected mice met with similar failure (unpublished data),
consistent with the conflicting effects seen in other Gram-
positive models (23). A number of explanations for this
have been put forward (24). Two seem particularly rele-
vant and also underline the potential for manipulation of
inhibitory receptors to provide novel therapeutic ap-
proaches in septic shock. First, treatment with anti–TNF-�
increases mortality in naive mice infected with pneumo-
coccus (1), and experiments in TNF and TNF receptor–
deficient mice confirm that normal production of TNF-�
is necessary for survival from pneumococcal infection (2).
TNF-� blockade does not normalize TNF-� levels but
abolishes them, and would therefore be expected to re-
duce the risk of septic shock but at the same time cause
death from the infection itself. Second, although serum
TNF-� levels seen in our in vivo experiments are similar
to those causing death in other studies (0.1–10 ng/ml; ref-
erences 20 and 21), it is clear that TNF-� does not act
alone. Neutralization (or, rather, normalization) of a num-
ber of components of the “cytokine storm” seen in septic
shock may well be required to improve prognosis. Inhibi-
tory receptors can control a number of cytokines at once,
making them attractive targets for novel therapeutic strat-
egies addressing this important clinical condition. Manip-
ulation of the expression or function of Fc�RIIb or other
inhibitory receptors may therefore normalize proinflam-
matory cytokines in a “global” fashion, offering a route to
effective therapy in sepsis and other inflammatory condi-
tions.

Fc�RIIb has opposing effects on infection in different
circumstances; damping down the immune response to
pneumococci in naive mice, but preventing death from the
inflammatory consequences of sepsis in immunized ones.
The physiological role of Fc�RIIb thus appears to be to
help control the “inflammatory threshold,” balancing the
inflammatory response to infection to optimize survival
(Fig. 4). This role would explain the need for complex reg-
ulation of Fc�RIIb expression and function on different
cell types (25, 26). It could also result in evolutionary pres-
sures underlying the distribution of SLE-associated Fc�-
RIIb polymorphisms in humans (27, 28) and mice (29,
30). It remains to be seen if Fc�RIIb controls other infec-

Figure 4. The physiological role of Fc�RIIb appears
to be to control cytokine release, antibody production,
and phagocytosis to balance the inflammatory response
to infection to optimize survival in different circum-
stances. Factors that determine the level of expression
of Fc�RIIb include the cytokine milieu and naturally
occurring Fc�RIIb promoter polymorphisms (refer-
ences 29 and 30).
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tions in the same way, or if other inhibitory receptors oper-
ate in an analogous fashion, although both seem likely. Un-
derstanding the exact role of inhibitory receptors in setting
the inflammatory threshold in different infections, and un-
derstanding the mechanism by which these receptors are
themselves controlled, is likely to be of significant thera-
peutic importance in treating both primary infection and
septic shock.
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