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Abstract: Breast cancer resistance protein (BCRP), one of the ATP-binding cassette (ABC) transporters,
was associated with the multidrug resistance (MDR) of chemotherapy. Magnolol (MN) and honokiol
(HK) are major bioactive polyphenols of Magnolia officinalis. This study investigated the effects of MN
and HK on the function and expression of BCRP for the purpose of developing BCRP inhibitor to
overcome MDR. Cell lines including MDCKII-BCRP and MDCKII-WT were used for evaluating the
function and expression of BCRP. The results showed that MN (100–12.5 µM) and HK (100–12.5 µM)
significantly decreased the function of BCRP by 80~12% and 67~14%, respectively. In addition,
MN and HK were verified as substrates of BCRP. Furthermore, MN and HK reduced the protein
expression of BCRP, and inhibited the phosphorylation of epidermal growth factor receptor (EGFR)
and phosphatidylinositol 3-kinase (PI3K). In conclusion, both MN and HK decreased the function and
expression of BCRP via EGFR/PI3K signaling pathway. Therefore, both compounds were promising
candidates for reversing the MDR of chemotherapy.

Keywords: magnolol; honokiol; BCRP; EGFR; MDR

1. Introduction

In recent decades, it is well recognized that overexpression of ATP-binding cassette
(ABC) transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated proteins
(MRPs) and breast cancer resistance protein (BCRP), is one of the causative mechanisms of
multidrug resistance (MDR) [1]. The inhibition on ABC transporter-mediated efflux from
cancer cells was believed to be one of the feasible strategies to overcome MDR [2]. Many
phytochemicals such as flavonoids, curcuminoids, taccalonolides, and terpenes have been
reported to show inhibitions on ABC transporters. Therefore, there are growing interests to
search for natural products as inhibitors of P-gp, MRPs and BCRP [3–5].

BCRP is the most recently reported ABC transporter and its tissue distribution highly
resembles P-gp in tumors and various organs, and shared broad specificity of substrates [6].
The substrates of BCRP included a variety of therapeutic agents such as anticancer drugs
(mitoxantrone, irinotecan, methotrexate, gefitinib), antiviral drugs (lamivudine, zidovu-
dine), antihyperlipidemic drugs (rosuvastatin), antidiabetic drugs (glyburide) and anti-
inflammatory drugs (sulfasalazine) as well as many acidic physiological substances such
as estrone-3-sulfate, 17β-estradiol 17-(β-D-glucuronide), and uric acid [7]. Thus, BCRP has
now been recognized by the USFDA to be one of the key ABC transporters involved in
clinically relevant drug disposition, drug interactions [7] and might also play important
roles in MDR [8].
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A variety of natural compounds have been investigated in the efforts of developing
MDR-reversing agents owing to their low toxicities [9]. Magnolol (MN) and honokiol
(HK) (chemical structures shown in Figure 1), major bioactive polyphenols of Magnolia
officinalis, have been shown to be safe and without troublesome adverse effects [10]. In
pharmacological aspect, MN exhibited numerous beneficial pharmacological activities,
such as anti-inflammatory [11,12], neuroprotection [13], antitumor [14,15], cardiovascular
protection [16], anti-angiogenesis [17], antioxidation [18] and antibacterial activities [19].
Being a structural isomer of MN, HK also showed various beneficial biological effects,
including neuroprotection [20], antitumor [21], anti-angiogenesis [22], antioxidation and
antibacterial activities [23]. Concerning the associations with MDR, MN and HK were
promising agents for reducing MDR via down-regulation of P-gp expression [24]. Moreover,
MN and HK were inhibitors of nuclear factor-kappa B (NF-κB) and reversed the MDR of
vinblastine, a substrate of P-gp [25].
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It has been recognized that epidermal growth factor receptor (EGFR) was overex-
pressed during the progression of a number of tumor types [26], and thus, suppressing the
EGFR signaling pathways was an effective therapeutic target in treating cancers [27,28]. On
the other hand, the induction of BCRP expression by EGF treatment has been demonstrated
in several cell lines, including human BCRP-transfected Madin-Darby canine kidney cells
(MDCKII-BCRP) [9,10]. Therefore, we speculated that BCRP expression was associated
with EGFR/PI3K signaling pathway. Till now, the modulations of MN and HK on BCRP
have not been reported yet. This study investigated the influences of MN and HK on the
function and expression of BCRP. Furthermore, the modulation mechanisms were explored.

2. Results
2.1. Cell Viability Assay

MTT assay indicated that various concentrations of tested drugs and Ko143, a potent
BCRP inhibitor used as positive control, at 0.25 µM all exerted no toxic influences on the
viability of MDCKII-WT and MDCKII-BCRP cells (Supplementary Materials).

2.2. Effects of MN and HK on the Function of BCRP

The effects of MN and HK on the intracellular accumulation of mitoxantrone (MXR), a
typical BCRP substrate, in MDCKII-BCRP cells by using flow cytometry method are shown
in Figure 2. The results showed that MN and HK at 100, 50, 25 and 12.5 µM significantly
increased the intracellular accumulations of MXR by 80%, 44%, 22%, 12% (MN), and 67%,
65%, 34%, 14% (HK), respectively. Ko143 at 0.25 µM significantly increased the intracellular
accumulations of MXR by 55%.
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Figure 2. Effects of MN (µM), HK (µM) and Ko143 (0.25 µM, a positive control of BCRP inhibitor)
on the intracellular accumulations of MXR in MDCKII-BCRP cells by using flow cytometry method.
* p < 0.05, ** p < 0.01, *** p < 0.001. Control: 0.01% DMSO in reaction buffer.

2.3. Intracellular Accumulations of MN and HK in MDCKII-WT and MDCKII-BCRP Cells

An HPLC-UV analytical method was established and validated in this study for the
determination of MN and HK in cell lysates. The calibration ranges of MN (2.5–80 µg/mL)
and HK (1.3–40 µg/mL) in cell lysates were with good linearity (the correlation coefficients
of MN and HK were 0.9998 and 0.9996, respectively). The intracellular accumulations
of MN and HK in MDCKII-WT and MDCKII-BCRP cells after incubations with MN and
HK are shown in Figure 3. The intracellular concentrations of MN in MDCKII-BCRP cells
after 30-min incubations were significantly lower than the corresponding concentrations
in MDCKII-WT cells by 38%. Likewise, the intracellular concentration of HK in MDCKII-
BCRP cells was significantly lower than the corresponding concentrations in MDCKII-WT
cells by 27%. The results indicated that MN and HK are substrates of BCRP.
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Figure 3. Intracellular accumulations of MN (100 µM) and HK (100 µM) in MDCKII-WT and MDCKII-
BCRP cells after incubation for 30 min determined by HPLC-UV analysis and corrected with protein
contents. ** p < 0.01.
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2.4. Effects of MN and HK on the Expressions of BCRP, EGFR, and PI3K

By using immunofluorescence assay, the expressions of BCRP in MDCKII-WT and
MDCKII-BCRP cells after treating with MN and HK, individually, for 24 h and 48 h, are
shown in Figure 4. The results indicated that MN and HK decreased the expression of
BCRP in MDCKII-BCRP cells.
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On other hand, through western blot analysis, the protein expressions of p-EGFR,
p-PI3K and BCRP in MDCKII-BCRP cells after treating with MN and HK, individually,
for 24 h and 48 h are shown in Figure 5. The results showed that after treatment with
MN and HK for 48 h, the protein expressions of p-EGFR were significantly reduced by
12% and 25%, the protein expressions of p-PI3K were significantly decreased by 14%
and 41%, and the protein expressions of BCRP were significantly reduced by 47% and
17%, respectively, indicaing that MN and HK decreased the expressions of p-EGFR, p-
PI3K and BCRP. Moreover, Figure 5 also showed that the modulation effects were in a
time-dependent manner.
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3. Discussion

This study employed cell model to investigate the involvement of MN and HK in
the BCRP-mediated transport and their modulation mechanism on BCRP. MXR was used
as a substrate of BCRP. The transport assays showed that both MN and HK increased
the intracellular accumulation of MXR, proving that MN and HK acted as inhibitors of
BCRP. In order to verify whether MN and HK were substrates of BCRP, the intracellular
accumulations of MN or HK in MDCKII-WT and MDCKII-BCRP cells were compared.
The results showed that the intracellular accumulations of MN and HK in MDCKII-BCRP
cells were significantly lower than those in MDCKII-WT cells, indicating that the efflux
transports of MN and HK were mediated by BCRP. Taken together, MN and HK were
substrates and inhibitors of BCRP.

In order to understand the modulation mechanism of MN and HK on BCRP, the
influences on the EGFR/PI3K signaling pathway cells were investigated by using MDCKII-
BCRP cells. The present results showed that MN and HK inhibited the protein expressions
of p-EGFR and p-PI3K, thereby inhibiting BCRP expression, indicating that MN and
HK down-regulated BCRP via the EGFR/PI3K signaling pathway. Recently, MN and
HK have been reported as promising anticarcinogenic and anticancer agents through in-
hibiting PI3K/AKT/mammalian target of rapamycin (mTOR) signaling pathway [29]. In
addition, MN triggered the apoptosis of human prostate cancer cells by suppressing the
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EGFR/PI3K/AKT signaling pathway [30]. Similarly, HK inhibited proliferation, invasion,
and induced apoptosis through EGFR/PI3K/AKT signaling pathway [31]. Besides, MN
and HK were shown to inhibit the protein expression of NF-κB, which was one of the major
downstream targets of EGFR/PI3K and involved in a variety of processes, such as inflam-
matory, immune responses and MDR [32–35]. Therefore, our present results indicating that
MN and HK inhibited EGFR/PI3K signaling pathway was in good agreements with these
previous findings [29–31].

The PI3K/AKT/mTOR pathway was a key link modulating the MDR of cancers [34,36,37].
Moreover, if this signaling pathway was blocked, BCRP expression would be inhibited, and
the MDR was probably reversed [27]. The present study revealing that MN and HK decreased
the function and expression of BCRP through inhibiting the phosphorylation of EGFR and
PI3K suggested that MN and HK were promising candidates for overcoming the MDR of
chemotherapy using BCRP substrate drugs. In brief, this was the first study to demonstrate
that MN and HK were substrates/inhibitors of BCRP and worthy of further investigations
as a single anticancer agent or in combined therapeutics with other anticancer drugs such as
mitoxantrone, topotecan and gefitinib etc. [38,39].

4. Materials and Methods
4.1. Chemicals and Reagents

MN (purity > 98%) and HK (purity > 98%) were purchased from ChemFaces (Wuhan,
PRC). Ko143 (purity 96%) was obtained from Enzo Life Sciences, Inc. (Farmingdale, NY, USA).
MXR (purity 99%) was obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).
Dimethyl sulfoxide (DMSO), formic acid, sodium dodecyl sulfate (SDS), 3-(4′,5′-dimethylthiazol-
2′-yl)-2,5-diphenyltetrazolium bromide (MTT), butylparaben and triton X-100 were sup-
plied by Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Fetal bovine serum (FBS)
was obtained from Biological Industries Inc. (Kibbutz, Beit Haemek, Israel). Penicillin-
Streptomycin-Glutamine, Dulbecco’s modified Eagle medium (DMEM), 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid, Hank’s buffered salt solution (HBSS)and trypsin/EDTA
were purchased from Invitrogen (Grand Island, NY, USA). Antibodies against ABCG2 and
GAPDH were purchased from GeneTex (San Antonio, TX, USA). Polyvinylidene fluoride
transfer membranes (Immobilon P) and chemiluminescence (ECL) were obtained from Milli-
pore Corp. (Bedford, MA, USA). 4′,6-diamidino-2-phenylindole (DAPI) staining solution and
goat anti-rabbit IgG H&L (DyLight™ 488) antibody were purchased from Abcam (Cambridge,
UK). Acetonitrile (ACN) and methanol with LC grade were obtained from Mallinckrodt
Baker (Phillipsburg, NJ, USA). Milli-Q plus water (Bedford, MA, USA) was used throughout
this study.

4.2. Cell Lines and Culture Conditions

MDCKII-WT and MDCKII-BCRP cells were kindly provided by Prof. Dr. Piet Borst
(Netherlands Cancer Institute, Amsterdam, Netherlands). Cells were grown in Dulbecco’s
modified Eagle medium supplemented with 10% fetal bovine serum, 100 units/mL of
penicillin, 100 µg/mL of streptomycin and 292 µg/mL of glutamine at 37 ◦C in a humidified
incubator containing 5% CO2. The medium was changed every other day and cells were
subcultured when 80% to 90% confluency was reached.

4.3. Cell Viability Assay

The effects of MN, HK and Ko143 on the viability of MDCKII-WT and MDCKII-BCRP
cells were evaluated by MTT assay, modified from a previous study [40]. After seeding
the cells into a 96-well plate for overnight incubation, these tested drugs were added and
incubated for suitable time depending on each experimental design, then 100 µL of MTT
(5 mg/mL) was added and incubated for additional 3 h. DMSO solution was added to lyze
the cell and then the cell viability was measured at 595 nm by a microplate reader (BioTek
instruments lnc., Winooski, VT, USA).
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4.4. Effects of MN and HK on the Function of BCRP

MDCKII-BCRP cells were used to evaluate the effects of MN and HK on the efflux
transport of MXR, a fluorescent typical substrate of BCRP [41]. Briefly, cell suspension
(5 × 105 in each reaction tube) was pre-incubated with a series concentration of MN and
HK, and Ko143 (0.25 µM, an inhibitor of BCRP) at 37 ◦C for 15 min. MXR (5 µM) was
then added and co-incubated for another 30 min. After incubation, cells were washed
and re-suspended in ice-cold phosphate buffered saline. The intracellular fluorescence of
MXR was measured by a FACScan flow cytometer. The transport studies were performed
in triplicates.

4.5. The Intracellular Accumulations of MN and HK in MDCKII-WT and MDCKII-BCRP Cells

In order to verify whether MN and HK are substrates of BCRP, MDCKII-WT and
MDCKII-BCRP cells were used for comparison. The cells were seeded onto 12-well plates
at a density of 3 × 105 cells per well. After 3-day culturing, the medium was removed and
washed with ice-cold phosphate-buffered saline. Four hundred microliters of MN or HK
(100 µM in pH 7.4 HBSS) was added into each well and incubated at 37 ◦C for 30 min. After
washing, cell lysates were obtained after trypsinization with 300 µL of 0.5% Trypsin-EDTA
and lyzed by liquid nitrogen. The cell lysate (100 µL) was added to 100 µL of pH 5.0 buffer,
50 µL of ascorbic acid, 50 µL of 0.1 N HCl and partitioned with 300 µL of ethyl acetate
containing 40 µg/mL of butylparaben as internal standard. After centrifugation, the ethyl
acetate layer was dried by nitrogen gas and reconstituted with 50 µL of acetonitrile, and
20 µL was subject to HPLC-UV analysis. For calibrator preparation, cell lysate (100 µL)
was spiked with various concentrations of MN (2.5–80.0 µg/mL) or HK (1.3–40.0 µg/mL)
and then mixed with 100 µL of pH 5.0 buffer, 50 µL of ascorbic acid, 50 µL of 0.1 N HCl,
then partitioned with 300 µL of ethyl acetate containing 40 µg/mL of butylparaben. The
later procedure was identical to that described above for cell lysates. The intracellular
concentrations of MN and HK were calculated after correction with protein contents.

4.6. Effects of MN and HK on the Expression of BCRP

Cells were seeded into 12-wells plates at a density of 1 × 104/wells and incubated
with MN (12.5 µM) and HK (12.5 µM), individually, at 37 ◦C for 24 h and 48 h [42].
After the supernatant was removed, methanol was added and stood for 10 min. After
washing, 0.1% Triton X-100 was incubated for 10 min, washed 3 times with PBS, and
incubated with 1% bovine serum albumin (BSA) for 1 h. Cells were then washed 3 times
in PBS, and then incubated with primary antibody overnight at 4 ◦C. After washing, cells
were incubated with the DyLight™ 488-conjugated goat anti-rabbit IgG antibody (Jackson
ImmunoResearch, West Grove, PA, USA) at room temperature for 2 h. After washing,
cells were incubated with the 4′,6-diamidino-2-phenylindole (DAPI) for 10 min in the dark.
The imaging of cells was acquired by using confocal laser scanning microscopy (Nikon,
TE2000-U, Tokyo, Japan).

4.7. Effects of MN and HK on BCRP Expression and EGFR/PI3K Signaling Pathway

After treatment with MN (12.5 µM) and HK (12.5 µM) for 24 h and 48 h, individually,
the cells were lyzed with radioimmune precipitation (RIPA) buffer (Merck, Darmstadt,
Germany) and collected. The samples were separated by 10% SDS-polyacrylamide gel
electrophoresis and then transfered onto polyvinylidenedifluoride membranes (Immobilon,
Millipore, Bedford, MA, USA). The membranes were blocked at room temperature for
1 min in the blocking buffer (Goal Bio, Taipei, TW), and then washed 3 times with 0.1%
TBST (Tris-buffered saline with 0.1% Tween® 20 detergent). After washing, the blots
were incubated with p-EGFR, EGFR, p-PI3K, PI3K, BCRP and β-actin primary antibodies,
individually, at 4 ◦C overnight. Then the blots were washed 3 times with 0.1% TBST, and
reacted with secondary antibodies at room temperature for 1 h. The bands were detected
by using the ECL kit (Advansta Inc., San Jose, CA, USA).
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4.8. Data Analysis

The statistical software SPSS was used for analyzing the differences among treatments
by using unpaired Student’s t-test, taking p < 0.05 as significant.

5. Conclusions

MN and HK decreased the function and expression of BCRP through inhibition on
the EGFR/PI3K signaling pathway. This is the first study revealing that MN and HK were
substrates/inhibitors of BCRP and they are potential candidates to overcome MDR of
BCRP substrate drugs.

Supplementary Materials: The following are available online. Figure S1: Effects of MN (µM) and
HK (µM) on the cell viability of MDCKII-WT and MDCKII-BCRP at 1 h. (Mean ± S.D.) Control:
0.01% DMSO in reaction buffer, Figure S2: Effects of MN (µM) and HK (µM) on the cell viability of
MDCKII-BCRP at 24 and 48 h. (Mean ± S.D.) Control: 0.01% DMSO in reaction buffer.

Author Contributions: Conceptualization, Y.-C.H. and S.-P.L.; methodology, Y.-C.H. and S.-P.L.;
software, C.-P.Y., P.-Y.L. and S.-Y.C.; validation, S.-Y.C. and P.-Y.L.; formal analysis, S.-Y.C. and P.-Y.L.;
investigation, C.-P.Y., P.-Y.L. and S.-Y.C.; resources, Y.-C.H. and S.-P.L.; data curation, S.-Y.C. and
P.-Y.L.; writing—original draft preparation, C.-P.Y. and P.-Y.L.; writing—review and editing, Y.-C.H.,
S.-P.L. and C.-P.Y.; supervision, Y.-C.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan (MOST 108-
2320-B-039-041-MY3), China Medical University, Taiwan (CMU109-MF-20) and Medical University
Hospital, Taiwan (DMR-108-146).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are not available.

Conflicts of Interest: The authors have declared no conflict of interest.

Sample Availability: Samples of the compounds in this study are available from the authors.

Abbreviations

ABC, ATP-binding cassette; ACN, acetonitrile; AKT, protein kinase B; BCRP, breast
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mal growth factor; EGFR, EGF receptor; ERK, extracellular signal regulated kinase; FBS,
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