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Abstract: A [H2DPEphos][MnX4] [X = Br, Cl] tetrahalomanganates(II) with P,P’-diprotonated bis[2-
(diphenylphosphino)phenyl]ether cation has been designed and investigated in photophysics and EPR
terms. The complexes exhibit a green luminescence resulted from the Mn(II) d–d transitions (4T1→6A1)
with the wavelength-excitation dependence of the quantum yield. The solid [H2DPEphos][MnBr4]
complex exhibits a bright green phosphorescence (λmax = 515 nm) with the high luminescence
quantum yield depending on the excitation energy whereas the solid [H2DPEphos][MnCl4] complex
exhibits a very weak phosphorescence (λmax = 523 nm). The unexpected shorter luminescence lifetime
for the [H2DPEphos][MnCl4] than for the [H2DPEphos][MnBr4] at 300 K can be a result of the higher
non-radiative relaxation contribution. On the one hand, the non-covalent PH . . . X(Mn) interactions
quench the manganese(II) luminescence. On the other hand, the PH . . . X(Mn) interactions are a
pathway of the excitation transfer from [H2DPEphos]2+ to [MnX4]2−.

Keywords: manganese(II); luminescence; EPR; non-covalent interaction; DFT

1. Introduction

The luminescent manganese(II) complexes have been intensively studied over the
past few decades [1–5] on account of their interesting optical, thermal, and magnetic prop-
erties [6–12]. The luminescence of the manganese(II) complexes can be originated from
the metal perturbed intraligand transition [6,7] and from the Mn(II) spin-forbidden d–d
4T1(G)→6A1(S) transition [6,7]. In the last case, the emission maximum is strongly depen-
dent on the crystal field [5] parameters of the Mn(II) center. The emission of the Mn(II) center
can vary from green to near-infrared range for the tetrahedral and octahedral coordinated
Mn(II), respectively [13]. The coexisting of both Mn(II) coordination in the compounds can
lead to observing the dual green-red luminescence, but such examples are still rare.

Currently, special attention is paid to the organic–inorganic tetrahalomanganates(II) com-
pounds. The adjustable coordination geometry [13] make the nitrogen- and phosphonium-
based molecules promising counterions for obtaining effectively luminescent tetrahalo-
manganates(II). The bright green luminescence of the tetrahalomanganates(II) [13–18] with
the quantum yields varying in the wide range and reaching 100% (Table 1) make these
compounds good prospects for creating light emission devices. The organic cations and
[MnX4]2− anions in the tetrahalomanganates(II) compounds interact through the non-
covalent interactions. One of the types of non-covalent interactions is a hydrogen bond.
The hydrogen bonds have a strong influence on the tetrahalomanganates(II) compounds
defining the geometry, stability, and disordering of the [MnX4]2− center. The hydrogen
bonds can also increase or decrease the non-radiative relaxation probability of the excited
states of the cations and [MnX4]2− centers, influencing the luminescence lifetimes and
quantum yields [19,20]. It should be noted that the hydrogen bonds can also play a role in
the excitation transfer channel between different parts of compounds [20–23].
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Table 1. Photophysical data (peak position and luminescence quantum yield) for [MnX4]2−-
containing compounds.

Cation Halide Quantum Yield, % λEm, nm Ref.

Ph3P-Ph Br 98 516 [16]

Ph3P-Ph Cl 40 522 [17]

Ph3P-Benzyl Br 90 510 [13]

Ph3P-Benzyl Cl 32 509 [13]

Ph3P-Et Br 91 522 [13]

Ph3P-Et Cl 29 524 [13]

Ethylenebis- Ph3P Br 95 517 [18]

Ph(Me)3N Br 76 520 [2]

Ph(Me)3N Cl 89 522 [2]

Et4N Br 86 516 [2]

Et4N Cl 75 518 [2]

Herein, the synthesis and comparative investigation of the luminescent organic–
inorganic tetrahalomanganates(II) compounds, [H2DPEphos][MnX4] (X = Br and Cl,
DPEphos = bis[2-(diphenylphosphino)phenyl]ether), are reported. The [H2DPEphos][MnBr4]
shows a bright luminescence at 515 nm with 42–60% photoluminescence quantum effi-
ciency at room temperature depending on the excitation energy. The electron paramagnetic
resonance, low-temperature photoluminescence measurements, and DFT calculations were
performed to investigate the mechanisms of the excitation, radiative, and non-radiative
relaxation processes. This work extends a class of organic–inorganic manganese(II) com-
plexes with the hydrogen bond network, which plays an important role in the charge
transfer processes between organic cation and inorganic anion. It is shown that the non-
covalent PH . . . X(Mn) interactions can not only quench the luminescence but can also
be a pathway of the excitation transfer from the organic “antenna” to the manganese(II)
ion. It is worth noting that the work devoted to the bright green-luminescent tetrahedral
manganese(II) dihalide with DPEphos oxide ligand [15] has shown the organic ligand
acting as an effective UV-radiation antenna for the manganese(II) ion. This work highlights
the importance of the intentional choice of the organic fragments with certain properties
(especially an electronic structure and energy transfer possibilities through protons) when
considering the tetrahalomanganates(II) synthesize strategy. The indirect excitation pro-
cess of manganese(II) ion through the organic cation can be employed to improve the
luminescence efficiency.

2. Experimental Part
2.1. Synthesis and Characterization Data for 1 and 2
General Procedure for the Synthesis of Complexes 1 and 2

To a mixture of solid bis(2-diphenylphosphinophenyl)ether (DPEphos) (≥98.0%) and
MnCO3·xH2O (44–46% Mn) taken in the 1:1 molar ratio, a volume of 3 mL of concentrated
hydrohalic acid HX (X = Cl (37%) or Br (48%)) was added (Scheme 1). The mixture was
stirred at 50 ◦C for 1 h. The crystals formed were precipitated from the solution. The
crystals were collected through filtration and dried in the air. Using the same molar of the
hydrated manganese(II) halide salts MnX2 (instead of manganese(II) carbonate) leads to
the formation of the same products.

[H2DPEphos][MnBr4] (1) was prepared from MnCO33·xH2O (30.4 mg, 0.25 mmol)
and DPEphos (134.6 mg, 0.25 mmol) using hydrobromic acid HBr (48% HBr) as solvent.
Yield: 197 mg (86% Mn). Colorless prism-shaped crystals. IR spectrum is in ESI.
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[H2DPEphos][MnCl4] (2) was prepared from MnCO3·xH2O (30.4 mg, 0.250 mmol)
and DPEphos (134.6 mg, 0.25 mmol) using hydrochloric acid HCl (37% HCl) as solvent.
Yield: 166 mg (90% Mn). Colorless prism-shaped crystals. IR spectrum is in ESI.
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Scheme 1. Synthesis of complexes 1 and 2.

3. Methods

Suitable crystals were selected and mounted on a MITIGEN holder oil on an XtaLAB
Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystals were kept at a steady
T = 123.01 (10) K for 1 and T = 100.01 (11) K for 2 during data collection. Data were measured
using ω scans using CuKα radiation. The diffraction patterns were indexed and the total
number of runs and images were based on the strategy calculation from the program
CrysAlisPro [24]. The maximum resolutions were achieved θ > 73◦. The unit cells were
refined using CrysAlisPro [24]. Data reduction, scaling, and absorption corrections were
performed using CrysAlisPro [24]. A Gaussian absorption correction was performed using
CrysAlisPro [24]. Numerical absorption correction based on Gaussian integration over
a multifaceted crystal model empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved with
the ShelXT [25] solution program using dual methods and by using Olex2 [26] as the
graphical interface. The model was refined with ShelXL [27] using full-matrix least-squares
minimization on F2. All non-hydrogen atoms were refined anisotropically. Hydrogen
atom positions were calculated geometrically and refined using the riding model, but some
hydrogen atoms were refined freely. CCDC 2078076 and 2078077 contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Center at www.ccdc.cam.ac.uk/structures (accessed on
1 May 2021).

Corrected luminescence spectra were recorded on a Fluorolog 3 spectrometer (Horiba
Jobin Yvon) with a cooled PC177CE-010 photon detection module equipped with an R2658
photomultiplier; with continuous 450 W and pulsed (pulse time FWHM 3 µs) 50 W Xe-
lamps; with two Czerny–Turner double monochromators. Absolute values of quantum
yields were recorded using the Quanta-ϕ device of Fluorolog 3. Temperature dependencies
of luminescence were studied using Optistat DN optical cryostat (Oxford Instruments).
The luminescence quantum yield at 77 K was obtained relative to the quantum yield of the
same sample at 300 K [28].

EPR spectra were recorded on the Varian E-109 spectrometer in Q-band at 300 K. A
2,2-diphenyl-1-picrylhydrazyl (DPPH) standard sample was used to calibrate the magnetic
field of the spectrometer. The spectra were simulated in MATLAB (The MathWorks Inc.,
Natick, MA, USA) using the EasySpin program package for EPR [29].

X-ray powder diffractions (XRPD) were recorded in the 5 ÷ 32◦ 2θ range using
Shimadzu XRD-7000 powder diffractometer (CuKα tube with Ni filter, Bragg-Brentano
scheme with a vertical θ-θ goniometer, OneSight SSD-detector).

The structures of the complexes were optimized by a spin-unrestricted DFT method
(spin polarization—5) using the Amsterdam density functional [30,31] program with a

www.ccdc.cam.ac.uk/structures
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gradient exchange functional GGA (BP86—Becke [32] and Perdew [33,34]). Triple zeta po-
larized (TZP) basis sets and the no frozen core approximation were used in all calculations.
The initial positions of atoms were taken from the X-ray structure analysis. The frequency
analysis was carried out to check the nature of the stationary points (BP86, TZP) and
imaginary frequencies were not found. The calculation of the g-tensor [35] was made using
Spin-Orbit ZORA [36–38] approximation with a hybrid functional PBE0 [39,40]. The zero-
field parameters were obtained using the method proposed by van Wüllen and cowork-
ers [41,42]. The electronic excitations were calculated using the TD-DFT method [43,44]
(BP86, B3LYP [45], and CAM-B3LYP [46] functionals, TZP) and additionally with the
spin-flip approximation [47,48]. The quantum theory of atoms in molecules (QTAIM) [49]
extended transition state method with the natural orbitals for chemical valence theory
(ETS-NOCV), and the non-covalent interaction (NCI) calculations [50–56] were carried
out to investigate the non-covalent interactions using the ADF program (BP86, TZP). The
[H2DPEphos]2+ cation and [MnX4]2− anion were used as fragments to calculate ETS-NOCV.

FT-IR spectra were recorded on a Bruker Vertex 80 spectrometer at ambient temperature.
Differential scanning calorimetric measurements were performed using a heat flow

measurement method using a Netzsch TG 209 F1 calorimeter with a heating rate of
10 ◦C min−1, in a He flow of 30 mL min−1.

3.1. Structural Descriptions

The single-crystal X-ray diffraction analysis reveals that complexes 1 and 2 crystallize
in centrosymmetric space group P-1. The unit cell contains two [H2DPEphos]2+ cations and
two [MnX4]2− anions that are not related by symmetry and have slightly different geometry
parameters (Z′ = 2). The inversion center located not on the fragments completes the unit
cell (Z = 4). Unfortunately, the presence of a center of symmetry makes the presence of
triboluminescence unlikely. Complexes consist of isolated [MnX4]2− anions surrounded
by the [H2DPEphos]2+ cations. Every Mn(II) atom in 1 and 2 is four coordinated by the
four halide atoms. The positions of the manganese and halide ions are disordered in the
crystal. The disorder of [MnX4]2− fragments can be resulted from the thermal (vibration)
motion of atoms and/or the deviation of the nuclei position in each unit cell from the
position averaged for the whole crystal. The coordination geometry around the Mn(II)
can be described as a distorted tetrahedron with the Mn-X distances (and X-Mn-X angles)
varying in the range of 2.320–2.680 Å (105.0–115.9◦) for 1 and 2.295–2.406 Å (102.4–116.6◦)
for 2. The dihedral angles between phenyl rings of the diphenyl ether fragment are 118.0◦

and 118.8◦ for 1 and 117.8◦ and 118.2◦ for 2 which is close to values for diphenyl ether
(Ph2O, CCDC RAFFIO) (118.3◦) and DPEphos (CCDC GAJRIT) (118.9◦). The C-O-C angles
are 69.5◦ and 70.1◦ for 1 and 68.1◦ and 68.8◦ for 2 whereas the C-O-C angle is 75.6◦ for Ph2O
and 67.2◦ for DPEphos. Along with increasing the C-O-C angles in 1 and 2 relative to the
corresponding DPEphos angle, the P-P distance also significantly increases from 4.876 Å
for DPEphos to 5.193 Å and 5.218 Å for 2 and 5.247 Å and 5.269 Å for 1. The P-Mn-P angles
are 70.2◦ and 71.0◦ for 1 and 70.9◦ and 71.2◦ for 2.

The non-covalent CH . . . X(Mn) and PH . . . X(Mn) interactions between [H2DPEphos]2+

and [MnX4]2− fragments form a 3D intermolecular contacts framework. The shortest PH
. . . X(Mn) distance is 2.532 Å for 1 and 2.465 Å for 2 which is close to the distances in the
PH4X compounds [57,58]. The presence of PH . . . X(Mn) and CH . . . X(Mn) interactions
may be one of the reasons resulting in the disordering of the [MnX4]2− anions following
the PH . . . X(Mn) and CH . . . X(Mn) vibrations (see below).

According to the obtained luminescence and magnetic properties for 1 and 2, the
different properties for the non-equivalent cations and anions, and the disordering atoms
were not experimentally noticed. The non-equivalence and disordering probably lead to
the broadening of the luminescence and EPR spectral lines.
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3.2. Photophysical Properties

The solid samples of 1 and 2 exhibit broadband temperature-dependent photolumi-
nescence in the visible region (Figures 1 and 2). The photophysical data for 1 and 2 are
collected in Table 2. The luminescence maximum λmax = 515 nm and 523 nm at 300 K
for 1 and 2, respectively, red-shifts to λmax = 520 nm and 527 nm at 77 K for 1 and 2,
respectively. At the same time, the narrowing of the spectral line and increasing of the pho-
toluminescence integral intensity is observed. Such temperature behavior is typical for the
tetrahalomanganates(II) [14]. It should be noted that the luminescence maximum for both
complexes is the wavelength-excitation independent in the energy range λEx = 240–500 nm.
However, the quantum yield of the luminescence ΦPL decreases with the energy excitation
decreasing from 2% under excitation λEx = 300 nm to ≈0.1% under λEx = 447 nm for 2 and
from 60% under λEx = 300 nm to 42% under λEx = 453 nm for 1 at 300 K. Such behavior
can be associated with the charge transfer process realized between the [H2DPEphos]2+

cation and the [MX4]2− anion through PH . . . X(Mn) and CH . . . X(Mn) hydrogen bonds
(see below).
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Table 2. Photophysical data for polycrystalline complexes 1 and 2.

1 (Br) 2 (Cl)

λmax(300 K) [nm] a 515 523

τ(300 K) [µs] a 177 100

ΦPL(300 K) [%] a 42 ≈0.1

kr(300 K) [s–1] a,b 2.4 × 103 ≈1.0 × 101

knr(300 K) [s–1] a,c 3.3 × 103 ≈1.0 × 104

ΦPL(300 K) [%] e 60 2

kr(300 K) [s–1] e,b 3.4 × 103 2.0 × 102

knr(300 K) [s–1] e,c 2.3 × 103 9.8 × 103

Chromaticity
(300 K) [x, y] d

0.164;
0.750

0.259;
0.569

λmax(77 K) [nm] a 520 527

τ(77 K) [µs] a 304 2900

ΦPL(77 K) [%] a ≈100 40

kr(77 K) [s–1] a,b 3.3 × 103 1.4 × 102

knr(77 K) [s−1] a,c <3.3 × 102 2.1 × 102

ΦPL(77 K) [%] e ≈100 ≈100

kr(77 K) [s–1] e,b 3.3 × 103 3.4 × 102

knr(77 K) [s−1] e,c <3.3 × 102 <3.4 × 101

Chromaticity
(77 K) [x, y] d

0.216;
0.656

0.205;
0.744

∆E [cm−1] 900 1100

10Dqtet [cm−1] 1730 1960

B [cm−1] 638 608
a Excitation wavelengths are λEx = 453 nm and 447 nm for 1 and 2, respectively; b Radiative decay rate: kr =
ΦPL/τ; c Non-radiative decay rate: knr = τ−1 − kr; d CIE 1931 color space; e Excitation wavelength is λEx = 300 nm.

The photoluminescence excitation spectra of both complexes (Figures 1 and 2) consist
of the well-resolved lines in the range 350–500 nm and partially resolved broadband at
higher energy. The analysis of the excitation spectra is carried out using the Tanabe–Sugano
approach [59] with the tetrahedral/octahedral symmetry approximation to estimate the
crystal field splitting parameter (Dqtet) and Racah parameter (B) [60,61]. The reduction of the
parameter BMn from the free ion value B0

Mn = 923 cm−1 [62] is observed (β = B/B0
Mn = 0.69

and 0.66 for 1 and 2, respectively). Such reduction indicates the formation of the covalent
bonds involving manganese orbitals and/or that the effective positive charge on the metal
decreased. Contrariwise to the B parameter, the Dqtet parameter for 1 is less than for 2,
which is in good agreement with the ligand field theory. Based on the obtained data in
combination with the EPR data (see below), the observed luminescence originated from the
4T1(G)→6A1(S) transition and can be ascribed to the phosphorescence. The efficiency of the
[MnX4]2− phosphorescence depends on the intersystem crossing processes caused by the
presence of the halide ions. The spin-orbit coupling constant for Br is significantly bigger
than for Cl, leading to the intersystem crossing process for 1 being bigger than for 2.

The temperature dependences of the luminescence decays are obtained to estimate the
activation energy for the thermal quenching process. The luminescence decays are described
by the monoexponential function for complexes 1 and 2 in 77–300 K temperature range:

I(t) = I0 ∗ exp
(
− t

τ

)
(1)

where I0 is the intensity at t = 0 and τ is the lifetime. It should be noted that the lumines-
cence lifetime is wavelength-excitation independent. The luminescence lifetimes increase
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from 177 µs and 100 µs at 300 K to 304 µs and 2900 µs at 77 K for 1 and 2, respectively. The
temperature dependences of τ are fitted by the following equation (Figure 3):

τ(T) = τ0/
(

1 + C ∗ exp
(
−∆E

T

))
(2)

where τ0 is the temperature-independent radiative lifetime, C is the dimensionless parame-
ter which can be seen as the ratio between the non-radiative and radiative probabilities,
and ∆E is the activation energy for the thermal quenching process which is equal to the
∆E = 1300 K (900 cm−1) and 1600 K (1100 cm−1) for 1 and 2, respectively. The thermal
behavior depends on the potential energy parameters. The thermal quenching process
is originated from the crossing of the excited state potentials with ground state potential
following energy dissipation via the vibrations. At least three different pathways of the
non-radiative transitions for the [MnX4]2− core can be highlighted. The non-radiative
relaxation can occur between the 4T1(G) and 6A1(S) states directly and through 4T2(G) and
charge transfer states. Together with the above-mentioned increasing of the intersystem
crossing process probability, the 4T2(G) level is closer to 4T1(G) in 1 than in 2 (Table S11).
These can explain the observed different thermal behavior of the investigated complexes.
In addition, the PH . . . X(Mn) vibrations can play an important role in the quenching pro-
cesses. The two main PH . . . X(Mn) vibrations have energy ∆E = 2133 cm−1 (777 km/mol)
and 2333 cm−1 (349 km/mol) for 2 and ∆E = 2155 cm−1 (679 km/mol) and 2370 cm−1

(240 km/mol) for 1. It can be assumed that the above-mentioned vibrations result in the
high ratio of the non-radiative transition rates to radiative transition rate and, consequently,
the unexpected short luminescence lifetime and low quantum yield for 2 at 300 K.
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For deeper investigation of the PH . . . X(Mn) interactions, the quantum theory of atoms
in molecules (QTAIM) and the extended transition state method with natural orbitals for
chemical valence theory (ETS-NOCV) calculations were carried out for 1 and 2. According
to the QTAIM calculation (Figure S8), the (3,−1) bond critical points exist between hydrogen
and halide ions, including the bonds between PH and X(Mn) fragments. This approach gives
a quantum mechanical description of the topology of the weak bonds in molecules. The
detailed information about weak interactions in 1 and 2 was obtained using the ETS-NOCV
approach with non-covalent interaction (NCI) analysis. The calculation of the deformation
density ∆ρi shows that the interaction between the [H2DPEphos]2+ cation and the [MnX4]2−

anion results in the decreasing of the density ρi on the X and H nuclei of the PH . . . X(Mn)
fragments and the increasing of the density ρi in the area between the (P)H and X(Mn) ions.
The NCI analysis shows the presence of the PH . . . X(Mn) attractive interactions both in 1
and 2 (Figure S9). Obtained results indicate the possibility of the occurrence of the charge
transfer processes between [H2DPEphos]2+ cation and the [MX4]2− anion.
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It is interesting to compare the properties of the obtained complexes and the proper-
ties of the tetrahedral manganese(II) with bis[2-(diphenylphosphino)phenyl]ether oxide
(DPEPO) ligand [15] crystallizing in the same P-1 space group. The [MnBr2(DPEPO)]
and [MnCl2(DPEPO)] complexes exhibit the intense room-temperature luminescence with
the maximum at λ = 502 nm and 507 nm, quantum yield ΦPL = 70% and 32%, and lu-
minescence lifetime τ = 0.5 ms and 2.2 ms, respectively. Authors assume that the high
efficiency of luminescence is caused by the effective intersystem crossing process and the
energy effectively transfers from DPEPO ligand to Mn(II) ion. The close situation can
be realized in complexes 1 and 2. Indeed, the quantum-chemical calculations obtained
for [H2DPEphos]2+ cation, [H2DPEphos][ZnCl4], and [H2DPEphos][ZnBr4] show that the
phosphorus and hydrogen (PH . . . X(Mn)) orbitals involved in the electronic excitations
with the high oscillation strength in the energy range up to 5 eV (248 nm). The energy of
the singlet-singlet transition (CAM-B3LYP functional) with high oscillation strength equals
to ∆E

(1ππ
)

= 4.46 eV (278 nm) and ∆E
(1ππ

)
= 4.59 eV (270 nm) for [H2DPEphos][ZnCl4]

and [H2DPEphos][ZnBr4] (Table S13), respectively. Whereas the energy of the singlet-
triplet transition equals to ∆E

(3ππ
)

= 3.31 eV (375 nm) and ∆E
(3ππ

)
= 3.23 eV (384 nm)

for [H2DPEphos][ZnCl4] and [H2DPEphos][ZnBr4] (Table S13), respectively. The singlet-
singlet and singlet-triplet transitions are calculated for the cations with the atom position
taken from the [H2DPEphos][ZnCl4] and [H2DPEphos][ZnBr4] to investigate the changes
of the transition energies in the [H2DPEphos]2+ cation resulting from the interaction with
the [ZnX4]2− anion (Table S14). For both cation geometries, the transition energies are close
and equal to ∆E

(1ππ
)

= 4.66 eV (266 nm) and ∆E
(3ππ

)
= 3.23 eV (384 nm). The interac-

tion of the [H2DPEphos]2+ cation with the [ZnX4]2− anion results in the decreasing of the
∆E
(1ππ

)
and ∆E

(1ππ − 3ππ
)

energies. Nevertheless, the ∆E
(1ππ − 3ππ

)
energy gap is

still higher than 5000 cm−1 and equals to 1.15 eV (9325 cm−1) and 1.36 eV (10,987 cm−1)
for [H2DPEphos][ZnCl4] and [H2DPEphos][ZnBr4] (Table S13), respectively. According
to the Reinhoudt’s empirical rule [15], the intersystem crossing process is effective in the
[H2DPEphos]2+ cation with ∆E

(1ππ − 3ππ
)

> 5000 cm−1. At the same time, the energies
of the G state sublevels of the manganese(II) ion for 1 and 2 are less than 2.92 eV (425 nm),
lower than the estimated ∆E

(3ππ
)

energy. Therefore, the energy can be transferred from
the [H2DPEphos]2+ cation to the Mn(II) ion of [MX4]2− through PH . . . X(Mn) hydrogen
bonds [63]. The above-mentioned mechanism can explain the wavelength-excitation de-
pendence of the luminescence quantum yield while the luminescence maximum, linewidth,
and lifetime do not exhibit wavelength-excitation dependence and the reasons for the lumi-
nescence thermal quenching features of both complexes. The possible energy absorption
and emission processes and energy migration pathways are shown in Figure 4.
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3.3. Electron Paramagnetic Resonance

The Q-band EPR spectra of polycrystalline complexes 1 and 2 were recorded at room
temperature under non-saturated conditions (Figure 5). The EPR spectra were described
by the spin-Hamiltonian:

Ĥ = β ∗ B ∗ g ∗ Ŝ + D
[

Ŝ2
z −

S ∗ (S + 1)
3

]
+ E

[
Ŝ2

x − Ŝ2
y

]
(3)

with parameters presented in Table 3., data were analyzed using the EasySpin program [29].
The hyperfine interaction for Mn(II) ion is ignored due to the absence of the resolved
line that is typical for this ion in the spectra. According to the obtained data, the ground
state of the Mn(II) is an orbital singlet 6S5/2 (S = 5/2, L = 0) and the crystal field splitting
does not remove the degeneracy of orbital levels. The external magnetic field can remove
the degeneracy of spin levels. However, the interaction of the unpaired electrons can
result in the lifting of spin levels degeneracy without an external magnetic field. This is
so-called zero-field splitting (ZFS) which is usually defined via D and E parameters. The
two different types of interaction between unpaired electrons contribute to the total zero-
field splitting Dtot = DSS + DSOC. The first interaction is a spin–spin dipole–dipole DSS
interaction between metal ions. The second is a spin-orbit coupling DSOC term. The last part
consists of four different types of excitations presented in the one-electron approximation
as α→β (spin-flip excitation corresponding to the spin-pairing ∆S = –1) and the charge-
transfer transitions β→α, β→β, and α→α [64]. The first term (α→β) mainly defines the
efficiency of the luminescence and corresponding forbidden d–d transitions. Other terms
can play an important role in the quenching processes by energy dissipation. The complex 1
is characterized by the relatively high value of the parameter D with the contribution of the
α→β term compared with other charge-transfer terms and DSS term. Whereas the complex
2 is characterized by the significantly less value of the parameter D and the contribution of
the charge-transfer terms being predominant. This fact can explain the observed difference
of the luminescence efficiency between 1 and 2 additionally to the reasons mentioned in
the photophysical properties section.
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Table 3. Experimental and calculated EPR parameters for polycrystalline complexes 1 and 2.

1 2

S 5/2 5/2

gexp
a 2.005 2.000

gcalc
a 2.008 2.003

|D|exp[MHz] b 4200 1760

|D|calc[MHz] b 4800 2007

|E|exp[MHz] b 903 380

|E|calc[MHz] b 525 356
a g—g-tensor, b D and E—zero-field splitting (ZFS) parameters.

4. Conclusions

The luminescent organic–inorganic halomanganate(II) compounds with P,P’-diprotonated
bis(2-diphenylphosphinophenyl)ether have been synthesized and investigated. The ground
state of the Mn(II) ions in the complexes is an orbital singlet 6S5/2 (6A1). The luminescence
of complexes is caused by the 4T1(G)→6A1(S) transition under 240–500 nm excitation
energies. The low excitation energy (~500–300 nm) leads to the (M + X) transition due
to the spin-orbit coupling and the spin-flip processes in the [MnX4]2− anion. The EPR
spectrum of 1 is characterized by the zero-field splitting with the significant contribution
of the spin-orbit spin-flip α→β term. The spin-flip α→β term of 2 is significantly less
and this can explain the lower excitation of the luminescence for 2 in the low energy
excitation range.

Under higher energies (>300 nm), the [H2DPEphos]2+ cation can absorb the light
due to the 1ππ transitions involving the orbitals of the PH groups connected to the man-
ganese(II) through the PH . . . X(Mn) bonds. Then the intersystem crossing occurs from the
1ππ state to the 3ππ state also containing the PH group orbitals followed by the charge
transfer process from [H2DPEphos]2+ cation to [MnX4]2− anion through the PH . . . X(Mn)
bonds. In this case, the two different excitation pathways ((M + X) and 1ππ→3ππ→(M+X)
transitions) can take place. The PH . . . X(Mn) bond plays an important role not only in
the charge transfer processes but also in the luminescence quenching processes for both
above-mentioned Mn(II) excitation pathways.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22136873/s1. Crystallographic data, X-ray powder diffraction data, IR spectra, calorimetric
data, and DFT calculation data. CCDC: 2078076 and 2078077.
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