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Abstract

Endogenous alpha oscillations propagate from higher-order to early visual cortical regions, consistent with the observed
modulation of these oscillations by top-down factors. However, bottom-up manipulations also influence alpha oscillations,
and little is known about how these top-down and bottom-up processes interact to impact behavior. To address this,
participants performed a detection task while viewing a stimulus flickering at multiple alpha band frequencies. Bottom-up
drive at a participant’s endogenous alpha frequency either impaired or enhanced perception, depending on the frequency,
but not amplitude, of their endogenous alpha oscillation. Fast alpha drive impaired perceptual performance in participants
with faster endogenous alpha oscillations, while participants with slower oscillations displayed enhanced performance. This
interaction was reflected in slower endogenous oscillatory dynamics in participants with fast alpha oscillations and more
rapid dynamics in participants with slow endogenous oscillations when receiving high-frequency bottom-up drive. This
central tendency may suggest that driving visual circuits at alpha band frequencies that are away from the peak alpha
frequency improves perception through dynamical interactions with the endogenous oscillation. As such, studies that
causally manipulate neural oscillations via exogenous stimulation should carefully consider interacting effects of bottom-up
drive and endogenous oscillations on behavior.
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Introduction

A dynamic balance between excitatory and inhibitory neural

activity leads to brain rhythms such as the prominent alpha band

oscillations (∼7–12 Hz) known to mediate visual information

processing and behavior (van Vreeswijk and Sompolinsky 1996;

Azouz and Gray 2000; Salinas and Sejnowski 2001; Brunel and

Wang 2003; Draguhn et al. 2004; Fries 2005; Mazzoni et al. 2008;

Atallah and Scanziani 2009; Isaacson and Scanziani 2011; Lopes

da Silva 2013; Akam and Kullmann 2014; Fries 2015). Previous

studies have shown that both top-down cognitive demands

and bottom-up visual stimulation impact measurements of

alpha oscillations such as amplitude, phase, and frequency.

Specifically, top-down factors such as expectation, goal-directed

attention, and working memory are associated with changes in

alpha oscillations (Foxe et al. 1998; Jensen et al. 2002; Sauseng
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et al. 2005; Klimesch et al. 2007; Rihs et al. 2007; Yamagishi et al.

2008; Kelly et al. 2009; Haegens et al. 2011; Rohenkohl and Nobre

2011; Bosman et al. 2012), consistent with findings that alpha

oscillations propagate in the feedback direction from higher-

to lower-order regions along the cortical hierarchy (von Stein

et al. 2000; Bollimunta et al. 2008; Fries et al. 2008; Buffalo et al.

2011; van Kerkoerle et al. 2014; Markov et al. 2014; Michalareas

et al. 2016). In addition, bottom-up factors such as opening one’s

eyes or viewing a salient stimulus modulate alpha oscillations

in regions involved in processing the incoming stimuli (Berger

1930; Pfurtscheller 2001; Rizzuto et al. 2003; Woertz et al.

2004; Lakatos et al. 2009). However, we know relatively little

about how bottom-up stimulus-evoked changes in rhythmic

activity interactwith endogenous alpha oscillations, even though

dynamic interactions between these processes likely shift alpha

frequency, amplitude, and phase (Aronson et al. 1990;Wang 2010;

Nelli et al. 2017).

To probe the interaction between endogenous alpha oscilla-

tions,we recorded scalp EEG as participants performed a change-

detection task at a fixed level of difficulty intended to hold top-

down factors constant (see Materials and Methods).We flickered

a visual stimulus at multiple frequencies around the alpha

band to drive bottom-up rhythms in visual cortex while partic-

ipants performed the task (Fig. 1A; see Materials and Methods).

Note that this manipulation is not intended to entrain the,

presumably top-down, generator(s) of the endogenous alpha

oscillation (Keitel et al. 2014; Haegens and Zion Golumbic

2018). Instead, this manipulation allowed us to characterize

changes in behavior and endogenous oscillatory dynamics as

a function of the offset between the frequency of the bottom-up

stimulus drive and each participant’s endogenous peak alpha

frequency.

Materials and Methods

Participants

Fifty-seven participants (33 in continuous version and 24 in

trial-wise version, see below; 29 male) were recruited at the

University of California San Diego and all data were collected at

UCSD’s Perception and Cognition Lab. All participants provided

written informed consent in accordance with the Institutional

Review Board at UCSD. Participants were compensated $15/h

for EEG. The age range of the participants was 19–30 years old,

and all participants had normal or corrected to normal vision.

Five participants showed poor task adherence and guessing

(2 in continuous version, 3 in trial-wise version), quantified

as a negative sensitivity metric for at least one of the flicker

frequency conditions in the detection task. This resulted in 52

total participants for all analyses unless noted. An additional

27 participants participated (16 male, age=21.7, range 18–

32 years old) in either the continuous (768 trials, n=15) or

trial-wise (672 trials, n=12) version of a behavioral control

experiment.

Apparatus and Stimuli

The experiment was implemented using Psychtoolbox in the

MATLAB programming environment running on a Windows PC

with the XP operating system.Participantswere positioned 60 cm

from the display and stimuli were presented on a 15-inch CRT

monitor with 1024× 768 resolution and 120 Hz refresh rate. The

luminance output of the monitor was linearized in the stimulus

presentation software.

Figure 1. Study motivation and task design. (A) Three hypothetical amplitude

spectra are shown and the peak alpha frequency is indicated with a dashed line.

We used steady-state visual-evoked potentials at 8 alpha frequencies (SSVEPs,

indicated by lightning bolts) to test whether bottom-up stimulus drive at a

participant’s peak frequency negatively impacts perception (right panel). (B) We

flickered a centrally presented checkerboard at 8 different frequencies tiling

the alpha band as participants performed a contrast change detection task

at fixation. Participants were either presented with a continuously flickering

checkerboard during which targets were separated by a variable intertarget

interval (“continuous flickering”), or a checkerboard that was removed from the

screen during a short intertrial interval (“trial-wise flickering”).

Task and Stimulus Procedure

To drive bottom-up rhythms in the alpha range, we flick-

ered a centrally presented checkerboard at 8 frequencies

encompassing the traditional alpha band (6.3, 7.1, 8, 9.2, 10, 10.9,

12, and 13.3 Hz; 25% Michaelson contrast and subtending 7.2◦

visual angle Fig. 1B). Participants were instructed to maintain

fixation on a black, centrally presented fixation dot, and

the target was a dimming of this fixation dot for 16 ms at

an unpredictable time. We determined a contrast threshold

necessary to maintain roughly 75% hit rates for each participant

in a short behavioral session before EEG data acquisition. We

report results collapsed over 2 versions of the task utilizing either

“continuous” or “trial-wise” stimulus drive, described in detail

below.

In the “continuous” version of the task, we flickered a

checkerboard at one frequency for a block of time lasting 151.8 s

(2.53 min), and each participant completed 2 blocks for each

frequency. The order of frequencies was randomized between

participants with the constraint that consecutive blocks of trials

did not use the same frequency. During each block, we presented

48 targets, leading to a total of 96 target presentations per
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frequency. Potential target times were selected pseudorandomly

from 1.2 to 148.8 s into the block with the only stipulation that

consecutive targets were separated by at least 1.2 s and at most

5 s. Participants could respond at any time.

In the “trial-wise” version, frequency was chosen pseudo-

randomly on each trial within a block, with 48 trials per block

and 10 total blocks. Fixation contrast changes only occurred

on 2/3 of trials, leading to a total of 60 trials per frequency.

We pseudorandomly chose target times to occur within 2208–

2525 ms after the onset of the flickering stimulus to allow time

for the exogenously driven rhythm to reach a stable steady state,

and the flickering stimulus lasted for a total of 3000 ms. For the

trial-wise version, the difference between the earliest and latest

target times were fixed to be at least 95% of the total possible

target onset time range (equal to 301 ms) to make sure target

times were unpredictable. Participants could respond any time

after the target or during the intertrial interval,whichwas chosen

between 1750 and 2250 ms pseudorandomly for each trial.

Behavioral Control Task

In the purely behavioral experimental control experiment, task

parameters were the same as in the main task except that the

central stimulus was flickered at a wider range of frequencies.

One frequency was in the alpha band (10 Hz), while the rest were

well outside the alpha band—0 Hz, or static, 1.5, 4.6, 10, 15, 20,

and 24 Hz.

Behavioral Metrics

For the continuous drive task version, a response was considered

a correct detection (a “hit”) if it occurred from 84 to 1000 ms

after a target. Any response made outside this temporal window

was considered a false alarm. In the trial-wise version of the

experiment, this minimum RT of 84 ms was also used. However,

since participants could respond anytime during the ITI in the

trial-wise version, RTs could exceed 1000 ms. A response made

during one of the 33.33% of trials on which no target was pre-

sented (“catch-trials”) was considered a false alarm in the trial-

wise version. From these hit rates and false alarm counts, we

computed estimates of sensitivity (d’): Z(hit rate)—Z(FA); and bias

(criterion): −0.5∗(Z(hit rate)+Z(FA)).

EEG Recording and Preprocessing

All EEG recordings took place in a sound-attenuated and electro-

magnetically shielded room (ETS Lindgren, Cedar Park, TX). EEG

and EOG were recorded with a Biosemi Active2 System (Ams-

terdam, the Netherlands) using a headcap with the standard

Biosemi 64 electrode layout. In addition to the 64 scalp electrodes,

1 reference electrode was placed on each mastoid (2 total), and

6 electrodes were placed around the eyes to identify and reject

trials with blink and saccade artifacts.All EEG datawere recorded

at a sampling rate of 1024 Hz. Precise target presentation and

participant response times were recorded as triggers in the EEG

data file.

After data collection, data from the scalp electrodes were re-

referenced to the algebraic mean of the 2 mastoid electrodes

and raw time series from each electrode were bandpass fil-

tered between 0.25 and 55 Hz to attenuate drift and 60 Hz line

noise. Trials were excluded if the subject displayed an artifact

or eyeblink 200 ms before or after a target (defined as either a

difference in more than 90 millivolts between sensors placed

above and below the eye or an amplitude greater than 95% of

timepoints). Datawere either aligned to the nearest “on” frame of

the flickering stimulus (for steady-state visual-evoked potential,

or SSVEP, analyses) or to the target (event related potential, or ERP,

analyses) before epoching. This was done because measuring

neural activity evoked by the steady-state flickering stimulus

relies on precisely estimating the phase-locked response, while

ERP analyses depend only on the time of target onset.

Peak Endogenous Frequency Estimation

In addition to the main task, we recorded scalp EEG data while

participants rested in order to independently estimate each par-

ticipant’s endogenous peak alpha frequency. Participants first

completed half of the experimental blocks, which took approxi-

mately 20 min for both experiments (8 blocks for the continuous

flicker, 5 blocks for the trial-wise flicker). Then, participants were

instructed to relax and fixate on a central fixation point for 3min

and then subsequently asked to close their eyes and relax for

3 min. We report peak frequency estimates from this latter, 3-

min eyes-closed portion of the data due to both precedent in the

literature and higher signal-to-noise ratios (SNR, see below, and

refs. (Zauner et al. 2012; Cohen 2014; Samaha and Postle 2015).

We computed spectra from raw, unfiltered data, which were

epoched into 2000 randomly chosen artifact free 4 s intervals.

Each epochwas chosen by pseudorandomly selecting a start time

across the entire 3 min of recording, so epochs could be partially

overlapping. Timepoints for which a channel was ±3 standard

deviations from the channel’s average were flagged for exclusion

due to artifacts. If the mean ±3 standard deviation was below

50 uV or exceeded 100 uV, we instead used 50 uV or 100 uV,

respectively, to flag artifact timepoints (Itthipuripat et al. 2015).

An entire channel was considered “bad” if more than 1.5% of

total timepoints exceeded this cutoff and was not used to select

epochs; otherwise, epochs were excluded from selection if they

included artifact-flagged timepoints in any channel (average

channel/epoch rejection counts were 9.7/28.2 and 9.4/20.4 aver-

aged over participants in the continuous and trial-wise versions

of the experiment, respectively) (Itthipuripat et al. 2015). We

extracted complex coefficients for these 2000 epochs at frequen-

cies from 2 to 20 Hz in steps of 0.1 Hz using overcomplete wavelet

Morlet decomposition with 0.15 fractional bandwidth. We used

wavelet decomposition as opposed to a windowed FFT so that

we could control the filter characteristics and spacing in the

frequency domain (note that fractional bandwidth is equivalent

to the bandwidth at full-width-half-max divided by the center

frequency) (Herrmann et al. 2005; Jahankhani et al. 2006). We

then estimated endogenous amplitude at each frequency as the

absolute value of the complex coefficients for each epoch before

averaging over all timepoints and epochs (Welch 1967).

Peak alpha frequency was estimated from these spectra by

extracting the frequency with maximal amplitude within the

range of 7–12.5 Hz. As the max function will take the maximum

value even if the signal is purely noise, for each participant,

we discarded channels that had low SNR, or low relative alpha

amplitude, at the estimatedmaximal frequency.At each channel,

we assessed SNR at the estimated peak frequency by identifying

inflection points in the amplitude spectrum by looking for a sign

change in it’s derrivative (i.e. where the alpha bump begins and

ends). If these inflection points were ill-defined and there was

more than one definitive sign change in the derivative, we used

±3 Hz from the frequency with maximal amplitude (e.g., if the

estimated peak frequency was 11.5 Hz, then we also estimated

amplitude at 8.5 and 14.5 Hz).We then computed SNR as the per-

cent increase of alpha amplitude at peak compared with these
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points and defined a cutoff of SNR=1 to identify channels where

there is no apparent alpha “bump” that rises above amplitude

at neighboring frequency bands. Thus, channels with an SNR<1

were considered to have no identifiable peak alpha frequency.

Note that this method will flag channels with multiple alpha

peaks as well as channels in which alpha amplitude does not rise

above the baseline spectrum.To compute stable and reliable peak

alpha frequency estimates,we averaged endogenous frequencies

across Oz and 4 neighboring electrodes in themain text, ignoring

“NaN” values (POz, Iz, O1, and O2; consistent with previous

literature) (Cohen and Gulbinaite 2017).

Rhythmic Entrainment Source Separation (RESS)

We used a source separation technique optimized for SSVEP in

order to both evaluate the strength of bottom-up sensory drive

and to investigate the dynamics of the endogenous, ongoing

alpha rhythm without confounding it with the bottom-up

sensory drive. We briefly describe the rhythmic entrainment

source separation (RESS) procedure we used to obtain spatial

filters and amplitude estimates, but note that details and

MATLAB scripts are provided in (Cohen and Gulbinaite 2017). For

each flicker frequency, covariance matrices of single trial data

were computed on data filtered at that frequency (covariance at,

or CA) as well as ±1 Hz from the flicker frequency (covariance

surround, or CS). We use this relatively narrow range since we

wanted to isolate the SSVEP frequency of interest, which is

experimentally manipulated and thus known a priori. We then

found the eigenvalues (evals) and eigenvectors (evecs) such that

CA∗evecs =CS∗evecs∗evals using MATLAB’s built-in “eig” function.

For each participant and frequency, we extracted the eigenvector

with the maximum eigenvalue as a scalp map or spatial filter for

that SSVEP frequency. These spatial filters over all electrodes,

defined as the maximal eigenvector, were used in several

analyses and figures, as described below. First, we obtained

single-trial RESS timecourses by filtering data at each timepoint

and trial by that scalp map (evec
∗data). Next, PCA was computed

on data with the RESS scalp map projected out (described in

PC Subspace, Trajectories, and Statistics Materials and Methods

section). Finally, projections onto the brain seen on the brain

maps in Fig. 2D were generated by correlating the spatial filter

(i.e., maximal eigenvector) with a leadfield matrix developed

for the Biosemi 64 electrode montage by (Cohen and Gulbinaite

2017). A leadfield matrix is an approximation of how sensitive

each lead (electrode) likely is to underlying dipole sources, and

the leadfield itself and more information about its calculation

are found in (Cohen and Gulbinaite 2017). We assessed whether

the extent of this spatial filter differed with driving frequency

by quantifying the number of electrodes with loadings greater

than 75, 80, 85, 90, and 95th percentiles.We found no main effect

of flicker frequency F(7, 357)s = 1.7,1.2,1, 0.5, 1.3 with P’s = 0.09,

0.31, 0.42, 0.78, 0.26, respectively, with P values determined by

comparing to a null distribution of F values obtained by running

ANOVAs on counts after randomizing flicker frequencies 10 000

times.

Time Frequency Analyses

To determine whether we selectively drove bottom-up rhythms

at the flicker frequencies, both RESS and raw data were sub-

jected to wavelet decomposition. Data were averaged over all

trials of each flicker frequency and then complex coefficients

were extracted using overcomplete Morlet wavelet decompo-

sition with fractional bandwidth of 0.1 at each of the flicker

frequencies. Note that we used a fractional bandwidth of 0.1

due to the very narrow spacing between flicker frequencies.

For statistics comparing drive between detected and undetected

trials, we randomly resampled the minimum number of trials

100 times to balance between detected and undetected trial

counts. Five participants had ≤1 trial in which the target went

undetected for at least one of the flicker frequencies and thus

were excluded from these specific statistical comparisons.

Behavioral Peak-Centering

In order to directly assess modulations in behavior with respect

to each participant’s particular alpha frequency, we centered

behavioral metrics for each participant on their peak alpha fre-

quency as estimated during a separate eyes closed resting period.

To do this, we used a 1D shape-preserving piecewise cubic inter-

polation (“pchip”) because this algorithm interpolates locally,

meaning it is not subject to overshoots or introducing oscillations

(in the case that the data are not smooth) (Fritsch and Carlson

1980). Specifically, the pchip interpolating function p(X(j)) =Y(j),

satisfies the following conditions:

1. p’ is continuous.

2. p’(X(j)) is chosen so that p(x) respects monotonicity, meaning

if the data are monotonic so is p(x).

We chose to interpolate from −1.5 to +1.5 Hz around each

participant’s endogenous peak frequency in steps of 0.5 Hz for

all peak-centering analyses. This allowed us to peak-align all 52

participants under the criterion that that there is at least one

data point (i.e., stimulation frequency) less than and greater than

each of our participant’s peak alpha frequency. Furthermore, this

choice of a relatively narrow frequency range was motivated by

the scale of spontaneous shifts in endogenous alpha frequency

associated with enhanced cognitive performance (Samaha and

Postle 2015; Mierau et al. 2017; Nelli et al. 2017).

To confirm that the exact choice of interpolation algorithm

does not alter our conclusions, we repeated peak-centering

analyses using a wider interpolation band, a spline interpolation

technique, and a model that did not include a linear term

(Supplementary Fig. 4, Supplementary Table 1).

Nonlinear Regression Model

We next quantified whether there were modulations in behavior

due to changes in the frequency of bottom-up stimulus drive

with respect to the endogenous peak alpha frequency. To do

this, we fit each behavioral metric separately for each partici-

pant using a model with one linear regressor and 2 sinusoidal

regressors of one cycle each in order to capture nonlinear mod-

ulations in behavior in a relatively assumption-free manner

(y = βsin sin x + βcos cos x + βlinx + constant). The cosine regressor

reached aminimum at the peak frequency,while the sine regres-

sorwas simply an orthogonal cycle over the period defined by the

interpolation range (i.e., phase shifted by 90◦). We also included

an intercept and a linear term in the model and estimated beta

(β) values separately for each behavioral metric and participant.

To determine significance, we randomized the frequency axis

5000 times and estimated βs on each of these iterations.We then

performed t-tests against zero on both randomized and observed

βs, and computed P values as the probability of obtaining the

observed t-statistic compared with t-statistics obtained by ran-

domized frequency axes.

Finally, our nonlinear model appeared to capture the full

range of frequencies equally, as fit residuals were not impacted
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Figure 2. Exogenously driven alpha band rhythms. All errorbars indicate between-participant SEM. (A) Average amplitudes within each flicker frequency are plotted for

electrode-level (left) and RESS (right) pipelines. Line shading indicates flicker frequency, ∗ indicates significant main effect of exogenous drive at P<0.01 using one-way

repeated measures ANOVA. Right legend indicates the flicker frequency. (B) Amplitude at frequencies that were not presented were compared between electrode-level

(dotted black) and RESS data (black). ∗ indicates significantmain effect of analysis technique and an interaction between technique and frequency using a 2-way repeated

measures ANOVAwith technique and frequency as factors. (C) Response ratios computed as the amplitude at flickered frequencies divided by amplitudes at frequencies

that were not presented. Dotted lines used for electrode level, solid lines used for RESS. ∗ indicates significant main effect of exogenous drive at each frequency using

paired t-tests at P< 0.01. Gray line at one indicates that amplitude at a particular frequencywas equal to the average of all other frequencies. (D): Projection of topographic

weights used to isolate the driven rhythm using RESS (Cohen and Gulbinaite 2017). Black areas indicate high activation averaged over all subjects and flicker frequencies.

(E) The amplitude of driven rhythms decreases posttarget, an effect that was greater on trials in which the target was correctly detected. ∗ indicates significance at

P<0.01 using 2-way repeated measures ANOVA with time interval and detection as factors. Amplitude averaged over all stimulation frequencies at −1000:−500 ms and

+500:+1000 ms time windows to avoid target evoked effects. (F) Histogram of peak alpha frequencies for each subject as determined from resting portion of the task

(see Materials and Methods).
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by whether the flicker frequency was above, at, or below peak

alpha (one-way repeated measures ANOVA on average residuals

below, at, and above peak alpha: F(2,155)‘s = 0.80, 2.19, 0.66, 1.04

with P’s = 0.45, 0.12, 0.52, 0.36 for hit rates, RTs, sensitivity, and

bias respectively; F(2,128) = 0.09 with P=0.91 for false alarms as

this was computed excluding 9 participants with no false alarms

at at least 1 flicker frequency). Finally, we replicated our main

findings with both a reduced sinusoidal model and a polynomial

model (Supplementary Tables 1 and 2).

Behavioral Distributions and K-Means Clustering

When plotted on a circular histogram, beta weights from the

sinusoidal regression model indicated a bimodal distribution

in how bottom-up alpha drive interacts with each participant’s

peak frequency to impact behavior (Fig. 3). We quantified this

multimodal distribution with circular Kolmogorov–Smirnov

tests. As a standardized circular equivalent to testing against

a normal distribution, we compared the observed distributions

to 1000 Von Mises distributions randomly sampled with equal

mean and variance as our observed behavioral distribution. To

investigate these groupings, we performed K-means clustering

on the nonlinear (sine and cosine) beta values for all behavioral

metrics estimated from our regressionmodel. This 52 participant

×10 feature matrix of beta values was the input to MATLAB’s k-

means algorithm, and we used the default squared Euclidean

distance as the minimization distance metric. We iterated

through the process 100 times, and within each iteration, we

reinitialized the centroid cluster positions 5 times to find a lower

localminimum.The participant groupingwith the lowestwithin-

cluster sum of point-to-centroid distances was chosen out of

these 100 iterations.

To assess the number of clusters that were most parsimo-

nious with the data, we repeated the above process using cluster

sizes ranging from 1 to 6. Both the sum and mean of all within-

cluster sum of point-to-centroid distances received the largest

reduction from 1 to 2 clusters compared with any number of

clusters beyond 2 (Supplementary Fig. 2). Additionally, we com-

puted silhouette statistics for our cluster assignments to assess

goodness of fit. This metric compares the relative distances

between each data point to other points in its assigned cluster

and between each data point to points in the next nearest cluster.

Values close to one indicate that a given observation is a good fit

for its cluster (Rousseeuw 1987). Specifically, for each participant

i, silhouette value s is defined as:

s(i) =
b(i) − a(i)

max
{

b(i),a(i)
} ;−1 ≤ s

(

i
)

≤ 1

where a(i) is the average distance between i and other datawithin

the same cluster, and b(i) is the smallest average distance of i

to all points in any other cluster. Silhouette values for 2 clus-

ters were highest, with sum=20.03 and mean±SE=0.39±0.02

(paired t-tests on silhouette values: t(51)‘s = 3.4, 3.1, 2.6, and 3.9,

with P’s = 0.001, 0.003, 0.01, and 0.0003 for clusters from 3–6,

respectively). For these reasons, we chose to separate partici-

pants into 2 clusters.

To check the robustness of our k-means clustering effect, we

repeated this partitioning with 3 alternative modeling pipelines.

First, using a spline interpolation scheme to center the behavioral

data on each participant’s peak alpha frequency (instead of the

p-chip interpolation in the main analysis), we found that 49

of the 52 participants were partitioned into the same group.

Second, if we ran the same regression model without a linear

term, we found that 47 of the 52 participants were partitioned

into the same group. When we interpolated from −2 to +2 Hz

(instead of −1.5 to 1.5 Hz) using the p-chip algorithm, we found

that 45 of 52 participants were partitioned into the same group

(Supplementary Table 1). Finally, we also replicated our main

findings using sensitivity as the only input to the clustering algo-

rithm (Supplementary Fig. 5). T-SNE plot used for visualization

was computed using MATLAB’s built-in tsne algorithm.

PC Subspace, Trajectories, and Statistics

To address whether the observed behavioral effects were associ-

ated with the impact of bottom-up stimulus drive on the dynam-

ics of the endogenous alpha oscillation, we defined an indepen-

dent “endogenous alpha” principal component (PC) state space

using data from the resting block. First, the full 3 min of resting

data was bandpass filtered from −1 to +1 Hz around each par-

ticipant’s peak alpha frequency using a third-order zero-phase

digital Butterworth filter. We removed timepoints for which EEG

amplitude was ±3 standard deviations away from the mean

from the data. We then correlated the resulting electrode-by-

time matrix with itself and performed PCA on this electrode-by-

electrode correlation matrix as in Baria et al. 2017 and retained

the first 10 PCs that explained the most variance, PCvecs.

Then, for each participant, we computed PC trajectories

on task-engaged data that had the RESS scalp map projected

out. Specifically, we took the eigenvectors (evecs) that did not

account for bottom-up drive in the RESS pipeline and task

engaged (data) onto these eigenvectors: no_ressDat =pinv(evecsT)∗

evecsT∗data (pinv indicates the Moore–Penrose pseudoinverse).

This step was done to isolate the nonentrained components of

the task-engaged data. Note that without the removal of the

first RESS component from evecs, this equation is equal to the

identity matrix. All of these methods were performed exactly

as outlined in (Cohen and Gulbinaite 2017). Both this step and

using resting data to form the PC subspace were done with the

aim of isolating the task-engaged endogenous alpha oscillation

from exogenously driven rhythms. We then filtered this eigen-

projected data from −1 to +1 Hz around each participant’s

peak alpha frequency using a third-order zero-phase digital

Butterworth filter. We projected each timepoint and trial of

this task-related, but RESS subtracted, data from all channels

into the space formed by the span of the first 1–10 PCs of the

independent resting data, which were defined as described in

the previous paragraph. Thus, task-engaged data without RESS

were projected into the PC subspace defined on the independent

resting data using PCvecs
′∗ no_ressDat. Finally, we calculated both

the Euclidean distance and velocity for each trial of the task-

related data in the independent endogenous alpha state space

and then averaged over either detected or undetected trials.

Because our results showed significant between-participant

differences in how flicker frequency and peak alpha frequency

interact to impact behavior, we predicted state space velocity

using a linear mixed effects model. This model included flicker

frequency, peak alpha frequency, and their interaction as fixed

effects, and each participant as a random effect, which may also

allow for better generalization from our current sample of 52

participants to the general population. We assessed the empir-

ical significance of each term by comparing t-values computed

by testing observed beta coefficients against zero to t-values

obtained after 5000 random assignments of condition labels.

Degrees of freedom for these test statistics were computed as

N-P where N was the number of observations and P was the

number of fixed effects, according toMATLAB’s default “residual”
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Figure 3. Modeling of behavioral data with a sine/cosine model. (A) Behavioral metrics for each participant were centered on their respective peak alpha frequency.

T-tests were performed for behavior at each frequency in relation to the peak alpha frequency, significance is marked with ∗ for P<0.01 and + for P< 0.05 marked along

x-axis. Shaded areas indicate between-subject SEM. (B) Each participant’s behavioral data was fit separately using 2 nonlinear regressors (sine and cosine) and a linear

regressor (left panel). Hit rate fits for 3 example participants are shown, with beta values for each regressor and the resultant fit (black dotted lines, middle panels).

Actual behavioral data (solid gray lines) are plotted alongside these fits. Right panel: nonlinear βs can be visualized simultaneously on a polar plot. Regions with +

indicate that drive at or above peak alpha is associated with an increase in a particular behavioral metric. Regions with—indicate decreases when participants receive

drive at or above their peak alpha. Example regressors are plotted along the perimeter. (C) Visualization of nonlinear regressors. The polar plot legend is reproduced

(left panel). Radial distance indicates the number of participants for the gray shaded histograms (inner line indicates 5 participants; outer line indicates 10). Black line

corresponds with the mean vector over all participants, where the outermost radial line labeled with n=10 is the maximal vector length. + indicates significance at 0.05

and ∗ indicates significance at 0.01 computed based on t-tests against zero on βs for the regressor indicated by shading color—light gray is cosine, gray is sine, and black

is linear. Unfilled gray histograms are 5 examples of Von Mises distributions. At the bottom right of the polar plots, + indicates that at least 95% of the sampled Von

Mises distributions were significantly different from the observed distribution at P< 0.05, ∗ indicates that at least 99% sampled VonMises distributions were significantly

different from the observed distribution at P<0.01.

setting. We also ran linear mixed effects models using the same

design matrix to predicted event-related potential (ERP) ampli-

tude and phase locking index (PLI computed as in Busch et al.

2009 VanRullen 2016) instead of state space velocity. Endogenous

ERP and PLI data were also quantified from task-engaged data

after projecting the RESS scalp map out. We then averaged ERPs

and PLIs over the 5 posterior electrodes used in previous analyses

(O1, Iz, Oz, POz, O2).

Results

Task Design and Behavior

We flickered a centrally presented checkerboard at 8 frequencies

spanning the alpha band while participants performed a target

detection task at fixation (6.3, 7.1, 8, 9.2, 10, 10.9, 12, and

13.3 Hz; Fig. 1B). The target was a 16 ms decrease in the lumi-

nance of a black, centrally presented fixation dot. Participants

(N=52) completed a short behavioral session to determine

a luminance decrement threshold before the EEG recording

session. This resulted in average hit rates of 72.27±15.98%

during the EEG recording session (false alarm rates= 4.69±6.55%

and RTs=585.06±216.14 ms, respectively; mean±SD; see

Materials and Methods). Alongside these measures, we also

calculated each participant’s ability to distinguish the target

from noise (sensitivity or d’), and their tendency to report a

target as “present” regardless of ground truth (bias). Overall,

participants were able to dissociate signal from noise with

relatively conservative criteria for reporting a target (sensitivity:

2.94±0.86 SD, bias: 0.8±0.43 SD).

Participants completed 2 slightly different versions of the

task; in one version, the stimulus was flickered at one fre-

quency for an entire block of trials (“Continuous flickering”), and

in the other version, the flicker frequency changed on every

trial (“Trial-wise flickering”). We found significant response to

exogenous drive and consistent behavioral effects in the 2 ver-

sions, and so report results collapsed across these versions in

the main text (see Materials and Methods and Supplemental

Results).
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Rhythmic Responses to Exogenous Drive

To confirm that our flickering stimulus drove brain rhythms at

the intended frequency, we employed an algorithm designed to

isolate the topography of exogenously driven rhythms (RESS;

see Materials and Methods) (Cohen and Gulbinaite 2017). We

validated these results against the traditional approach of

using the raw EEG signal from an occipital electrode (Oz;

see Materials and Methods). For both RESS and electrode-level

data, we calculated the average amplitude at each flicker

frequency in a 2000 ms window around target presentation

(−1000 ms to +1000 ms). This produced 2-dimensional SSVEP

frequency× calculated frequency amplitude matrices for each

participant (i.e., for 6.3 Hz SSVEP trials, we calculated the

amplitude at all 8 alpha frequencies; for 7.1 Hz SSVEP trials, we

calculated amplitude at all 8 frequencies, etc.). Both electrode-

level and RESS analyses confirmed above-chance rhythmic

responses at each flicker frequency (Fig. 2A; ME of stimulation

in one-way repeated measures ANOVA; RESS: F(1,103) = 75.96,

P<10−10; Electrode: F(1,103) = 48.67, P<10−8).

RESS Better Isolates Exogenously Driven Rhythms
from Endogenous Oscillations

Although both electrode-based and RESSmethods (see Materials

and Methods) effectively estimated SSVEP amplitudes, electrode-

based amplitude estimates included more “bleed” from endoge-

nous alpha rhythms (endogenous alphamean±SD=10.08±0.92;

Fig. 2A—increase in amplitude estimates at 10 Hz: ME of wavelet

frequency: F(7,357) = 13.6, P<10−14, Frequency—Technique

interaction: F(7,357) = 10.33, P<10−11; Fig. 2B—baseline increase

at nonpresented frequencies: ME of technique: F(1,51) = 216.25,

P<10−15; see Materials and Methods).

We calculated response ratios as the amplitude at each

flicker frequency divided by the amplitude at all other fre-

quencies and found that using RESS resulted in more speci-

ficity, as expected (Fig. 2C; ME of technique: F(1,357) = 237.6,

P<10−15; paired t-tests: higher ratios at driven frequencies

3.79≤ t(51)‘s≤ 9.8, P’s≤0.0003; lower ratios at nondriven fre-

quencies −7.1≤ t(51)s≤ −2, P’s≤0.044). Spatial maps obtained

through RESS indicated a posterior topography, consistent with

our intent to drive bottom-up rhythms in the alpha band (Fig. 2D).

This map is averaged over all flicker frequencies as we did not

find a main effect of frequency on the spatial spread of the

exogenously driven rhythms (one-way ANOVA ME of flicker

frequency: F(7, 357)s ≤ 1.7, P’s ≥ 0.09; see Materials and Methods).

Thus, it appears the bottom-up stimulus-driven rhythms are

distinct and separable from the endogenous alpha oscillation,

consistent with previous results finding that both top-down and

bottom-upmanipulations impact alpha rhythms (von Stein et al.

2000; Pfurtscheller 2001; Rizzuto et al. 2003; Woertz et al. 2004;

Klimesch et al. 2007; Bollimunta et al. 2008; Fries et al. 2008;

Lakatos et al. 2009; Buffalo et al. 2011; Rohenkohl and Nobre

2011; van Kerkoerle et al. 2014; Markov et al. 2014; Michalareas

et al. 2016; Nelli et al. 2017; Haegens and Zion Golumbic 2018).

Note that we revisit the RESS analysis later to further explore

the dynamics of the interaction between endogenous and

exogenously driven alpha oscillations.

Lastly, we replicated classic results indicating that SSVEP

amplitudes reflect attentional engagement (Morgan et al. 1996;

Müller et al. 1998) (Fig. 2E). Specifically, we observed increases in

amplitude before a target and on trials during which the target

was detected (ME of pre- vs. posttarget: F(1,45) = 13.3, P<0.001;

time epoch×detection interaction: F(1,45) = 15.2, P<0.001).

These changes in amplitude suggest that the bottom-up

stimulus driven rhythms are subject to modulation by top-down

attentional processes often associated with endogenous alpha

oscillations. We next explore whether there is an interactive

impact of the endogenous and driven rhythms on behavior.

Behavior in Response to Bottom-Up Drive Aligned
to Endogenous Alpha Frequency

To assess whether behavior is impacted by an interaction

between bottom-up drive at different frequencies and endoge-

nous alpha oscillations, we first aligned behavioral metrics

to each participant’s peak alpha frequency as estimated

during a separate block of EEG recording in which par-

ticipants were not viewing a stimulus or performing any

task (Fig. 3A: see Materials and Methods; nonshifted plots in

Supplementary Fig. 1A). Bottom-up exogenous drive at peak

alpha as compared with below peak alpha generally improved

behavior through reducing bias, increasing hit rates, and decreas-

ing reaction times (Fig. 3A; paired t-tests between peak and each

driving frequency: bias: −1 Hz t=−2.38, P=0.02,−0.5 Hz t=−4.66,

P<0.0001; hit rates: −1 Hz t=2.48, P=0.017, −0.5 Hz t=2.90,

P=0.006; RT: −1.5 Hz t=−2.73, P=0.009, −1 Hz t=−2.91, P=0.005,

−0.5 Hz t=−3.23, P=0.002; false alarms: +1.5 Hz t=2.31,

P=0.025; all other P’s>0.05). Additionally, we found linear trends

for enhanced performance with increasing flicker frequency

(multiple linear regression betas/P’s: sensitivity: 0.04/0.003; bias:

−0.008/0.2; hit rates: 0.93/<10−8; FA: −0.09/0.28; RTs: −4.5/<10−9).

To determine whether linear trends were specific to drive in

the alpha band or extended to neighboring frequency bands,

we ran a behavioral version of the task using a wider range of

frequencies (0 Hz, or static, 1.5, 4,6, 10, 15, 20 and 24 Hz; see

Materials and Methods). We found only a slight decrease in RTs

as a function of increasing frequency, indicating that the effects

observed in the main study do not extend to other frequency

ranges (Supplementary Fig. 3; linear regression on 7 stimulation

frequencies>0; sensitivity: P=0.16; bias: P=0.19; Hits: P=0.57;

false alarms: P=0.13; RT: β = −0.64 ms, P=0.012).

Although the reported behavioral modulations appear to be

specific to the alpha band, it was not clear whether the observed

behavioral patterns were due to linear trends or nonlinear mod-

ulations with respect to peak alpha frequencies. Indeed, simply

comparing peak and off-peak frequencies and computing linear

trends poorly captured the complex behavioral patterns at the

single subject level (Fig. 3B).

To better capture different patterns of behavior, we designed

a model with sine and cosine regressors along with con-

stant and linear terms (Fig. 3B; Supplementary Table 1; see

Materials and Methods). The sin and cosine functions were

chosen because they form a basis set that can compactly sum-

marize nonlinear patterns regarding the impact of exogenous

drive on behavior (Fig. 3B right panel). For example, positions

at the top of these polar plots correspond with decreases in

the behavioral measure with exogenous drive at peak alpha

frequency. This analysis revealed that RTs were actually faster

with bottom-up alpha drive at peak alpha compared with above

or below peak alpha (Fig. 3C, Black vectors indicate mean over

all participants; βs for nonlinear regressors are in z-score units;

βcos = 0.445 ± 0.16 SE, P=0.005). We also observed a marginal

decrease in bias with drive above peak alpha (βsin = 0.38±0.17 SE,

P=0.037), and marginal linear trends in hit rates, RTs, and

sensitivity (βlin = 0.41 ± 0.19 SE, P=0.033; βlin = −0.64 ± 0.24 SE,

P=0.012; βlin = 0.46± 0.22 SE, P=0.046; significance evaluated via

randomization tests; see Materials and Methods).



Central Tendency in Bottom-Up Drive Impact on Visual Processing Nelli et al. 9

When visualised on a polar plot, our behavioral metrics

showed bimodal distributions in their nonlinear patterns

(Fig. 3C). This motivated us to more carefully characterize this

cross-participant heterogeneity in behavioral patterns in the

following section.

Distinct Patterns in the Impact of Bottom-Up Stimulus Drive
on Behavior

Instead of a normal distribution, we observed multiple modes

in behavioral patterns in response to bottom-up alpha band

stimulus drive (compare the filled histograms that reflect

observed data to the unfilled histograms that reflect a uni-

modal distribution with the same mean in Figure 3C; circular

Kolmogorov–Smirnov tests against 1000 Von Mises distribu-

tions with equal mean and variance: sensitivity: P<0.01 for

1000/1000; bias: P<0.05 for 968/1000; hit rates: P<0.05 for

989/1000; FA: P<0.05 for 974/1000; RTs: P<0.05 for 966/1000;

see Materials and Methods). To understand these multimodal

behavioral distributions in response to alpha drive, we used

an unsupervised k-means clustering algorithm to divide

participants into groups (see Materials and Methods). Separation

into 2 groups produced the most parsimonious account of the

data as assessed through the “elbow method” and silhouette

values (Supplementary Fig. 2; 2 vs. 3–6 groups silhouette value

t(51)‘s = 3.4, 3.1, 2.6, 3.9; P’s = 0.001, 0.003, 0.01, 0.0003).

This participant partitioning resulted in 21 participants in

Group 1 (gray circles) and 31 participants in Group 2 (white

circles; Fig. 4A; see Materials and Methods; all unreported behav-

ioral effects in this and the following paragraph indicate a failure

to reach statistical significance). Bottom-up drive at peak alpha

frequency reduced sensitivity, largely through increased false

alarm rates, for participants in Group 1 (sensitivity: βcos = 1.03,

P=0.0008; false alarms βcos = 0.59, P=0.003; Fig. 4A bottom row).

When receiving bottom-up drive above at compared with below

peak alpha, these participants also showed reduced sensitivity

as a result of both lower hit rates and more false alarms, as

well as slower reaction times (hit rates βsin = 0.70, P=0.028;

RT: βsin = −0.93, P=0.001; false alarms βsin = −1.2, P<10−15;

sensitivity: βsin = 1.18, P<10−15; Fig. 4A). Thus, multiple related

behavioral metrics indicate impaired perceptual performance

when receiving alpha drive at or above peak alpha for the first

group of subjects.

On the other hand, participants in Group 2 showed higher

sensitivity, driven by higher hit rates and fewer false alarms,

when driven at, versus away from, the endogenous alpha

frequency (sensitivity βcos = −0.71, P<10−15; hit rate βcos = −0.65,

P=0.003; false alarms: βcos = 0.59, P=0.003). Additionally,

drive above peak alpha frequency increased sensitivity by

increasing hit rates and reducing false alarms, as well as

resulting in faster RTs (sensitivity: βsin = −0.63, P=0.0016; hit

rate βsin = −0.93, P<10−15; βlin = 0.70, P=0.27; false alarms:

βlin = −0.77, P=0.02; RT: βsin = 0.83, P=0.0004). Thus, several

related behavioral metrics suggest that bottom-up drive at

or above each participant’s peak alpha frequency generally

enhanced performance in the second group of participants

(Fig. 4A).

We confirmed that these participant groups did not differ

on their overall response to bottom-up stimulus drive (RESS

response ratios for Group 1=4.18±0.25 and Group 2=4.32±0.39

SE for; 2-way ANOVA on RESS response ratios with Group and

Experiment version as factors: main effect of participant group:

F(1,51) <10−4, P=0.99) or on the experiment type the participant

participated in (assessed using both ANOVA and Chi-squared

tests: experiment-by-participant group interaction in 2-way

repeatedmeasures ANOVA: F(1,51) = 0.58, P=0.45; χ2(1,51) = 0.008,

P=0.78, significance based on 10000 randomized participant

groupings).

Behavioral Groupings Are Linked to the Frequency
of the Endogenous Alpha Rhythm

We next asked whether the source of these divergent patterns in

behavioral response to bottom-up drive could be related to either

the amplitude or frequency of the endogenous alpha oscillation.

Importantly, note that participants were grouped based only on

their behavioral response to bottom-up alpha stimulation (Fig. 3).

We found no difference between the overall amplitude of

resting alpha between Group 1 and Group 2 in any electrode

(Wilcoxon Rank Sum test significance determined by compar-

ing z-statistics to 10 000 z-statistics obtained after randomizing

group assignment: P’s≥0.28, −0.67≤ z’s≤1.15; electrode Oz; see

Materials and Methods). However, there was a significant differ-

ence in peak alpha frequency between the groups: Participants

in Group 1 had a peak frequency of 10.49 ± 0.15 Hz compared

with 9.81±0.16 Hz in Group 2 (mean±SEM; z=2.69, P=0.004;

electrode Oz). In addition, participants in Group 1 had numeri-

cally higher peak alpha frequencies over all electrodes, with an

average of 10.53 Hz compared with 10.02 Hz for Group 2, and

this elevation was significant in 52 out of 64 electrodes after

FDR correction (Fig. 5A; Wilcoxon Rank Sum test significance

comparing z-statistics to 10 000 z-statistics obtained after ran-

domizing group assignment after FDR correction at 0.05: 0.303–

0.764 Hz, 1.8≤ z‘s≤2.92, 0.0015≤ P’s≤ 0.04; all frequency differ-

ences ≥0.1 Hz). We repeated this analysis using different inter-

polation and regression pipelines and found consistent results

(Supplementary Table 1; see Materials and Methods). Finally, we

note that since sensitivity and criterion are computed from hit

and false alarm rates, several of the behavioral metrics are inter-

related. As such, we verified that peak alpha frequency differs

with behavioral groupings based solely on the sensitivity metric

(Supplementary Fig. 5).

Thus, participants that performed worse when receiving

stimulus drive at or above their peak alpha frequency had

naturally faster endogenous alpha oscillations (Group 1), while

the other group of participants that actually benefited from

alpha drive at or above their peak frequency had naturally slower

endogenous alpha oscillations (Group 2).

Nonlinear Patterns in Behavior Are Predicted by Endogenous
Alpha Frequency

While these groupings are intriguing, we next investigated

whether the behavioral pattern of response to bottom-up

stimulus drive depended on alpha frequency in a continuous

manner. We did this by computing circular-linear correlations

between peak alpha frequency and the angle of each partici-

pant’s nonlinear behavioral pattern
(

computed as tan−1 βsin
βcos

)

.

Peak alpha frequency was indeed continuously associated

with patterns of hit rates and RTs in the same manner

as previously described—subjects with higher endogenous

frequencies displayed lower hit rates and faster RTs with

exogenous drive at peak alpha (Fig. 5C; hit rate: r=0.404, P=0.01;

RT: r=0.425, P=0.006). We also observed weaker correlations

for bias and false alarms (bias: r=0.34, P=0.048; false alarms:

r=0.382, P=0.038; P values based on comparison to a null

correlation distribution obtained by randomizing peak alpha
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Figure 4. Behavioral groupings. (A) Polar plot interpretation guide (left panel) is plotted alongside single participant vectors (top row), where participants are color coded

according to their behavioral group (Group 1 is gray; Group 2 is black and white). The outermost ring indicates a combined nonlinear regressor � vector length of 2.5.

Middle row shows group average vectors for Group 1, Group 2, and all participants (black), where the outermost radial ring is the largest possible vector length. Bottom

row shows the behavioral patterns separately for each participant group. Errorbars show between-subject SEM. Between-group means are removed for comparison

purposes; see Supplementary Figure 1B for figures preserving group means. (B) t-SNE plot for visualizing subject behavior in a 2-dimensional space. Participants were

color coded by group membership determined with the k-means clustering algorithm.

Figure 5. Relationship between behavior and peak alpha frequency (A) Behavioral group was associated with peak alpha frequency. Group 1 showed higher peak alpha

frequencies over all electrodes (left scalp map). The center scalp map shows z-statistics for each electrode, and the right most scalp map circles electrode areas that

were not significant after FDR correcting P values obtained through comparison with 10000 randomizations of participant group at 0.05. (B) Peak alpha for the 2 groups

at channelOz (indicated with yellow circle in topographic map on right side of panel A. Group1 is in black; group 2 is outlined in red. (C) Circular-linear correlations

between single participant nonlinear vectors and their peak alpha frequency were computed for each behavioral metric. Black dots indicate averages over 45-degree

bins, gray rings indicate steps of 1 Hz. Rho correlation values significant at P< 0.01 are accompanied by ∗, P<0.05. Guide to the right indicates the observed behavioral

pattern, be it an increase (red) or decrease (blue) with stimulation above peak alpha frequency.

frequency 10000 times). Thus, these correlations are consistent

with the finding that participants with fast endogenous alpha

oscillations performed worse when driven at or above peak

alpha, while participants with slow endogenous oscillations

showed the opposite pattern. Interestingly, peak alpha frequency

was not correlated with the magnitude of the linear trend

term (P’s>0.3 for all behavioral metrics). Thus, we observed an

association between nonlinear perceptual patterns in response

to alpha drive and peak alpha frequency but did not observe

a relationship between alpha frequency and the linear term or

between behavior and alpha power (Supplementary Fig. 6). We

also replicated these relationships with a polynomial model of

behavior (Supplementary Table 2). This indicates that instead

of depending on 2 specific groups, there is a continuous
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relationship between endogenous alpha frequency and the

impact of bottom-up stimulus drive on behavior.

State Space Velocity Is Modulated by Interactions between
Endogenous and Driven Frequencies

So far, we found that distinct behavioral patterns in response

to bottom-up stimulus drive are linked to the frequency of each

subject’s endogenous alpha rhythm. We next explored the pos-

sibility that the observed subject/group distinctions in behavior

are related to differential dynamics in the endogenous alpha

oscillation under slow versus fast exogenous alpha drive. To

test this, we formed a state space from the principle compo-

nents (PCs) of variation in the independent resting session data

(filtered ±1 Hz around each participant’s peak alpha frequency

using a third-order zero-phase digital Butterworth filter; see

Materials and Methods). Then,we projected the RESS scalpmaps

out of the task-engaged EEG data to attenuate the influence

of the bottom-up drive (see Materials and Methods), and subse-

quently filtered these data around each participant’s peak alpha

frequency (±1 Hz around peak alpha frequency, third-order zero-

phase digital Butterworth filter; see Materials and Methods). We

then projected the task engaged data into the state space formed

from the first 1–10 PCs that explained the most variance in

the resting data to ensure any observed effects were robust to

the dimensionality of the state space (Fig. 6A right panel shows

percent variance explained; analysis based on Baria et al. 2017,

see Materials and Methods). It is important to note that we chose

to form the state space from the independent resting data so that

projection of the task-related data into this state space, and any

resulting conclusions, would not be biased by dynamics incurred

by alpha drive during the task.

We found that trajectories for trials on which the target

was detected traversed a greater distance in the state space

compared with trials where the target went undetected (%

change in Euclidean distance; Fig. 6A,B; timepoints from 33 to

642 ms after target presentation survive FDR correction at 0.05

using 2 PCs: 2.4≤ t(51)s≤3.0). We summarized this pattern more

compactly by computing state space velocity (e.g. distance per

unit time), which we found was faster when the target was

detected (500mswindow indicated by gray shaded area in Fig. 6B;

2–10 PCs: 3.0≤ t(51)‘s≤ 3.8, P’s≤0.002; nonsignificant for 1 PC:

t(51) = 1.3, P=0.25). These results are consistent with previous

work positing that the rapid and transient neural dynamics

observed with conscious perception may be computationally

advantageous because they are both robust to differences in the

initial brain state and naturally contextualize incoming stimuli

(Maass et al. 2002; Misha et al. 2008; Buonomano andMaass 2009;

Baria et al. 2017).

Given our finding that perception was impaired when

participants with fast endogenous alpha oscillations were driven

at or above their peak frequency, we next tested whether high-

frequency alpha drive resulted in decreased posttarget state

space velocity for participants with high peak frequencies (and

vice versa for low-frequency participants; velocity averaged

over 500 ms as indicated by gray shading in Fig. 6B). Indeed,

we observed a significant interaction between endogenous and

driven frequency. As observed before, low-frequency alpha drive

resulted in more rapid state space traversal for participants

with fast endogenous oscillations, the same low-frequency drive

resulted in slower state space traversal for participants with

naturally slow endogenous oscillations (Fig. 6C top left panel).

This interaction between endogenous and exogenously driven

frequency was observed on trials where the target was detected,

but not on trials where the target was undetected (Fig. 6C bottom

right panels; linear mixed effects model predicting velocity

computed using 1–10 PCs; detected interaction: −2.1≤ t(412)

s≤−1.8, P’s≤0.04; undetected interaction: 0.37< t(412)s<0.73,

P’s≥ 0.2; ME of drive—detected: 1.6≤ t(412)s≤ 1.8, P’s≤0.049;

undetected: P’s≥ 0.18; see Materials and Methods). We note

this interaction was not present in alpha band phase locking

or the amplitude of the ERP, indicating a selective impact of

alpha drive on endogenous state space dynamics (interaction

effect for detected/undetected trials: phase locking index:

t(412)‘s =−1.3/−0.02, P’s = 0.18/0.98; ERP: t(412)s =−0.4/−0.07,

P’s = 0.71/0.95; see Materials and Methods). Additionally, state

space velocity increased with peak frequency on all trials,

consistent with previous results showing enhanced behavioral

performance for subjects with faster alpha oscillations (Fig. 6C:

ME of peak frequency—detected: 3≤ t(412)s≤ 5.5, P’s≤ 0.001 for

PCs 1–10; undetected: 1.7≤ t(412)s≤ 2, P’s≤0.048 for 3, 5–10 PCs)

(Klimesch et al. 1993; Angelakis et al. 2004; Richard Clark et al.

2004; Cecere et al. 2015).Again, this impact of peak frequencywas

not observed in phase locking or ERP amplitude (PLI: P’s≥0.11,

ERP: P’s≥ 0.77). Thus,high-frequency alpha band drive in subjects

with fast endogenous alpha oscillations leads to slower state

space traversal and worse performance, while the same high-

frequency drive leads to more efficient state space traversal in

subjects with naturally slow alpha oscillations.

Discussion

Here, we used a flickering stimulus to drive bottom-up rhythms

at multiple frequencies in the alpha band while participants

performed a visual detection task. This manipulation success-

fully drove posterior rhythms that could be isolated from the

endogenous alpha oscillation via source separation, allowing us

to investigate the combined effects of stimulus-driven rhythms

and endogenous alpha oscillations on perception.

When perceptual performance was aligned to each partici-

pant’s endogenous alpha frequency, we observed different per-

ceptual patterns in response to bottom-up drive that were sys-

tematically associated with the frequency of each participant’s

endogenous alpha rhythm. Specifically, participants with faster

endogenous alpha oscillations showed impaired behavior when

driven at or above this endogenous frequency, while participants

with slower alpha oscillations showed enhanced behavior when

driven at or above their endogenous alpha frequency. Thus, the

perceptual impact of bottom-up alpha drive depends on individ-

ual endogenous alpha frequency.

We next investigated whether these distinct behavioral

responses could be explained via changes in the dynamics of

the endogenous alpha oscillation under different frequencies of

exogenous drive. First, we found an association between rapid

changes in the state of the endogenous alpha oscillation and

more accurate perceptual processing, consistent with previous

results (Baria et al. 2017). Using this metric, we also found

that naturally fast endogenous alpha oscillations traversed

the state space slower under high-frequency bottom-up drive,

which may reflect a reduction in efficiency based on its

association to impaired behavioral performance. This same

high-frequency drive also may have led to more efficient state

space traversal in participants with slow alpha rhythms, as

inferred from improved behavioral performance (and see Baria

et al. 2017). This interaction between endogenous and driven

alpha frequency suggests that driving neural circuits at alpha

band frequencies away from the peak endogenous frequency

leads to more efficient oscillatory dynamics. Further work with
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Figure 6. Endogenous alpha state space. (A) Top and bottom rows show average trajectories in the PC state space, for example participants on detected (left panels) and

undetected (right panels) trials. Black circles denote target onset, black X denotes average reaction time, and timepoints start 500 ms before the target (purple) and end

1000 ms after the target (yellow). Variance explained is plotted for all participants as a function of the number of PCs (middle panel; shaded area indicates minimum to

maximum across participants). Topographic maps corresponding to the first and second PCs are included for these 2 participants to display their physiological basis.

Insets show the trajectories only from stimulus onset to average time of response. (B) Percent change in Euclidean distance traveled on detected—undetected trials

plotted from 500 ms before the target to 1000 ms after the target. Black dots indicate timepoints with t-statistics that remained significant after comparison with 5000

t-statistics computed from randomized condition labels and FDR correction at P< 0.01. Left panel: Difference in distance traveled in the 2-dimensional PC state space.

Gray shaded rectangle indicates timepoints used for analysis in C. Right panel: Difference in distances traveled computed in 1-, 5-, and 10-dimensional state spaces are

also plotted, and significance is computed and plotted identically as for left panel. (C) Velocity in a 500 ms posttarget epoch on trials in which the target was detected

(top left panel) and on trials when it was not (top right panel). Participants were median split based on peak alpha frequency to display the interaction between driven

frequency and peak alpha frequency. Errorbars indicated standard error. T-values (middle row) from linear mixed effects models fit separately for detected (light gray)

and undetected (dark gray) velocities. The x-axis displays models fit separately for PCs 1–10. Bottom panel shows P values determined from 5000 randomizations of

velocity between participants.
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spatially targeted neural recordings, such as local field potentials,

will be necessary to characterize the spatial extent of these

exogenously driven rhythms and the circuit-level mechanisms

of their interaction with generators of the endogenous alpha

oscillation.

Overall, we found a symmetric relationship between the fre-

quency of endogenous alpha oscillations and exogenous stimu-

lus drive. Low-frequency alpha drive leads to enhanced percep-

tion and more efficient dynamics when endogenous alpha oscil-

lations are naturally fast. In contrast, high-frequency alpha drive

improves perception—potentially via more efficient dynamics—

when endogenous oscillations are slow (Figs 4–6). Interestingly,

this suggests that driving early visual circuits away from the

endogenous alpha frequency while remaining within the fre-

quency bounds of the alpha band may be beneficial, perhaps by

decoupling the bottom-up circuits that process incoming stimuli

from the endogenous alpha oscillation. Alternatively, this central

tendency may suggest that the middle of the alpha band is an

optimal dynamic range for bottom-up stimulus processing and

visual perception. We speculate that this convergence could be

due to the stereotypy of the large-scale anatomical wiring of

the visual system (Van Essen and Maunsell 1983; Felleman and

Van Essen 1991; Van Essen 2005; Takemura et al. 2016) and the

role of network size in the temporal dynamics of information

propagation (Draguhn et al. 2004; Buzsáki 2006; Lea-Carnall et al.

2016).

Further work is needed to address the intriguing possibility

that a similar central tendency in oscillatory frequency governs

the dynamical mechanisms by which endogenous alpha oscil-

lations support visual perception. For example, most prior work

concerning endogenous alpha oscillations focuses on their role

in inhibitory processing (For review, see Klimesch et al. 2007;

Palva and Palva 2007; Jensen and Mazaheri 2010; Başar and

Güntekin 2012; Jensen et al. 2012; Zauner et al. 2012). However,

it is unknown if endogenous frequency factors into the dom-

inant alpha-as-inhibition theoretical framework, as few of the

empirical reports forming the basis of the inhibition hypothesis

consider peak alpha frequency as a key variable (Nelli et al. 2017).

We speculate that considering alpha frequency could help unify

the inhibitory framework with seemingly disparate results that

also indicate a role for alpha oscillations in enhanced processing

(for review, see Foster and Awh 2019). Likewise, studies using

casual manipulations of brain rhythms, such as SSVEPs, rhyth-

mic microstimulation, or optogenetics, should more carefully

consider how exogenous manipulations interact with endoge-

nous oscillations. A failure to do so may result in effects that are

idiosyncratically tied to the exact choice of stimulation frequency

with respect to endogenous oscillatory activity.
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Supplementary material can be found at Cerebral Cortex Commu-

nications online.
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