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Abstract: To meet password selection criteria of a server, a user occasionally needs to provide multi-
ple choices of password candidates to an on-line password meter, but such user-chosen candidates
tend to be derived from the user’s previous passwords—the meter may have a high chance to acquire
information about a user’s passwords employed for various purposes. A third party password
metering service may worsen this threat. In this paper, we first explore a new on-line password
meter concept that does not necessitate the exposure of user’s passwords for evaluating user-chosen
password candidates in the server side. Our basic idea is straightforward; to adapt fully homomor-
phic encryption (FHE) schemes to build such a system but its performance achievement is greatly
challenging. Optimization techniques are necessary for performance achievement in practice. We
employ various performance enhancement techniques and implement the NIST (National Institute
of Standards and Technology) metering method as seminal work in this field. Our experiment results
demonstrate that the running time of the proposed meter is around 60 s in a conventional desktop
server, expecting better performance in high-end hardware, with an FHE scheme in HElib library
where parameters support at least 80-bit security. We believe the proposed method can be further
explored and used for a password metering in case that password secrecy is very important—the
user’s password candidates should not be exposed to the meter and also an internal mechanism of
password metering should not be disclosed to users and any other third parties.

Keywords: authentication; privacy; computer security; network security; cryptography

1. Introduction

In password-based authentication, a user must provide a pair of an id and password
to a server, in order to gain access. For the purpose, the user posing as a client should
enroll to the server with the pair in an early stage. A password is usually a string of up-to-
tens of characters, each of which users should type with a keyboard or on a touchscreen.
Password-based authentication is still widely used, although it is insecure as warned in
many previous research works: users are not good at memorizing longer character strings
while advancement of adversaries’ computational power demands longer passwords to
expand the password space [1].

Password metering is one of the promising solutions to deal with this problem. A pass-
word meter obtains a candidate password from a user who wants to register a password,
then evaluates whether a given candidate password supports a sufficient level of secu-
rity [2–4]. Figure 1 shows a conventional password meter. As in the upper part of Figure 1,
a password meter normally shows the conditions that a strong password should meet,
such as “at least six alphanumeric characters”. It also displays the strength of the candidate
password using the length of a bar or colors. It may express the security level of the
candidate using appropriate terms such as ‘very weak’, ‘weak’, ‘secure’, ‘very secure’,
or etc.
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Figure 1. Typical password meters.

In this way, the user’s security awareness is improved by allowing the password meter
user to choose a stronger and more secure password. Therefore, it is very important for
the password meter to provide accurate strength feedback to the user, and research on the
password meter has focused on improving its accuracy. The criteria for password strength
is generally the number of guesses or the time it took to crack the password. In the NIST
document [5], the entropy is measured according to the configuration of the password as a
standard for recommendation the usage of strong passwords, and the entropy means the
range(resolution) of a password that an attacker needs to estimate the password. The most
representative methods are studies that generate password candidates and measure the
number of guesses using Probabilistic Context-Free Grammar (PCFG) and n-gram Markov
chain model [4,6–14]. These stochastic approaches analyze frequently used words, patterns,
and grammar structures in passwords. Recently, research has been conducted to improve
the performance of such password guessing by using machine learning [15–19].

However, few studies have been conducted focusing on the security of the environ-
ment in which the password meter runs, not on the accuracy. Studies on estimating the
strength of passwords through password guessing suggest that password guessing meth-
ods can themselves be used as attack methods. In fact, well-known password cracking tools
such as John the Ripper [6] and Hashcat [14] are examples. Research on various password
meters ironically provides an effective tool for attackers. If an attacker can analyze the
password strength meter that the server uses to prevent the client from generating weak
passwords, this has a potential benefit in that the attacker can take a way around it. Infor-
mation about the dictionary used by many password meters, most easily conceived, is the
benefit that an attacker can gain from analyzing password meters. An attacker can increase
the performance of an attack tool by simply removing the words included in the dictionary
used by the server from his or her dictionary. How to check the repetition pattern and
measure the strength according to the length of the password are effective information
for an attacker. Therefore, the password meter must be carefully managed and it is also
important to keep the password meter up-to-date.

Password meters can be classified into two types: off-line meters and on-line meters.
In off-line meters, the metering program is downloaded to the client and runs locally. Thus,
the candidate passwords are not exposed to any entity, which provides the secrecy of the
candidate passwords. On the other hand, it provides an opportunity for attackers to easily
obtain the dictionary used by the meter and to analyze how passwords are measured.
It may affect the security of the system. Maintaining up-to-date meters are more difficult
task in off-line metering, as clients need to check whether the meter is up-to-date whenever
they need to update their passwords. On-line meters are easy to maintain because the
important parts of meters are in the server. The dictionary used need not be exposed,
which gives less chance to the attackers learn the words in the dictionary. Thus, if sufficient
amount of computation power is supported in the server, on-line metering looks preferable.
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Unfortunately, there is a crucial problem in on-line metering: the candidate passwords
are delivered to the meter, thus they are exposed to the meter. Therefore, if the meter is
malicious, users’ security may be breached. For example, suppose you are registering a
website run by the government. In this case, if you enter a number of candidate passwords
to the on-line password meter of that website. The intelligence agency of your country may
crack your other accounts easily with the collected password candidates.

The purpose of this research is to resolve this problem: we build up a password
meter such that the meter cannot acquire the information about the clients’ candidate
passwords. Nobody except the client who provides the candidate password knows its the
security level.

Figure 2 shows an overview of the proposed password meter. In order to realize the
proposed meter, we employ a fully homomorphic encryption (FHE) [20–22]. In an FHE
scheme, any efficient algorithm can be implemented with the operations that are supported
by the FHE scheme. This implementation works as a conventional implementation. How-
ever, the difference is that it takes ciphertexts that contain the values that can be inputs of a
conventional implementation, and the output is also of an encrypted form, which can be
decrypted with the same key as it was used in encrypting the inputs. More specifically, the
password meter’s input, strength measurement results, and information such as dictionary
used by the password meter must all be protected.

Figure 2. Encrypted password metering scenario.

Our new approach’s contributions are as follows:

• We propose a new type of on-line password strength meter that can be secured
during the password strength measurement process even if the client does not run
the password meter directly. More specifically, the password meter’s input, strength
measurement results, and any information such as dictionary used by the password
meter are all protected. Therefore, since the proposed method can be run on the server,
it can keep the password meter up-to-date and reduce the chances of an attacker to
analyze how the password meter works.

• We have achieved an efficient implementation of the entropy-based NIST metering [5]
which includes the dictionary membership operation with the encrypted password
candidates from a number of different users that use different public keys to encrypt
their (candidate) passwords. The experiment demonstrates that a single password
metering operation can be completed only with 67 s without exposing the password
candidate with a parameter supporting a reasonable level of security. We believe this
is the first password meter preserving the password secrecy of the users. Even though
there are more advanced metering techniques than the NIST metering, we also believe
these can be implemented as our approach when the performance of FHE will be
increased in the near future.
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• Unfortunately, simply applying an FHE scheme just makes an impractical implementa-
tion because of the nature of FHE. Thus, we apply various performance enhancement
techniques in order to minimize the required computation cost for metering. Specifi-
cally, the dictionary contains more than 50,000 words and the membership operation
can be executed even without performing a single recryption operation.

• Our last contribution is to defend against side-channel attacks by ensuring that the
password meter always has the same execution time. Password meters that measure
strength using password guessing are terminated as soon as the generated guess
matches the input password, and the measured strength is correlated with the number
of password guesses, that is, execution time. Therefore, if the server can infer at which
step of the password meter the match was made by checking the execution time of
the password meter, the range of the input password can be greatly reduced. The
proposed method prevents such an attack by performing the operation provided by
the FHE over the ciphertext according to the same prescribed procedure.

The rest of the paper is organized as follows. Section 2 provides preliminary and
related work, which is followed by the motivation in Section 3. Section 4 provides the
proposed protocol. Then the performance evaluation is done in the following Section. The
final section makes conclusion.

2. Preliminary and Related Work

We present the related work in the password-based authentication, including pass-
word cracking, modeling, user survey, and metering. Then, we introduce FHE briefly.
Finally, we explain the NIST metering [5], which is implemented with a password secrecy-
preserving manner in this work.

2.1. Recent Literature on Password Cracking and Metering

Password cracking methods can be classified into two types: in on-line cracking, the at-
tacker provides his guessing passwords of a legitimate user through networks. On the other
hand, the off-line cracking assumes the attacker has the hashed passwords of legitimate
users so the attacker can easily check if his guessing password is correct by matching the
hashed result of the guessed password to the (obtained) hashed passwords of the legitimate
users. Brute-force attack and dictionary attack are two traditional methods for password
cracking. Recently the brute-force attack is not working well because of salting [1]. It is
known that the dictionary attack uses a dictionary that contains the words that people
select as passwords with high probability. By applying word-mangling rules to extend the
dictionary, the dictionary attack can increase its success rate [6,23]. Recently, when using a
dictionary collected by password leakage such as the Xato password corpus [24], such an
attack has been shown to be more efficient. Habib et al. and Ur et al. [25,26] suggest that a
password is generated based on Xato, thereby generating a reasonably strong password.

One of the widely-known questions in this area is if we can calculate how good
a password is in terms of security. A possible solution is the NIST password metering
method [5]. In this method, the entropy of a given password in calculated in order to
measure the security of it. The intention of the method is to calculate the randomness
of the password: as more different types of characters can be included, the size of the
character set from which each character in the password is increased, which makes the
size of the password space greater. Increasing the length of the password leads to a greater
password space. Unfortunately, what this approach misses is that passwords are not purely
randomly chosen and the distribution of the passwords is biased by the users’ preferences.
For instance, they choose easily memorable passwords and they consider their personal
information in making their passwords. Some researches such as Weir et al. [27] claim
that the NIST method somewhat overestimates the strength of passwords if their sizes are
longer than a certain threshold.

Currently, using guessability is a common approach to calculate the strength of a
password. It counts the required number of ‘guesses’ for attackers to reach the password.
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The required number of guesses is defined as the strength of the password. To make this
approach meaningful, the attacker should use smart attack methods that can reflect the
real-world attackers’ ability well. Therefore, one of the research directions in this field is to
pursue a smart attack method. Based on the definition of the guessability, we can easily
guess that a good attack method tries more frequently used passwords earlier to find a
user’s password because it is more probable that more frequently used passwords are the
passwords of users, which the attacker is finding, than less frequently used passwords.

To achieve this purpose, various password cracking methods have been
proposed [4,6–13]. They focus on analyzing the structures of the users’ passwords. There
are two representative approaches: Probabilistic Context-Free Grammar (PCFG) and n-
gram Markov chain [4,7,8,13,14]. Both measures the probabilities that some specific patterns
of strings are included in passwords. Thus, they can efficiently calculate the probability that
a given candidate password is used by users based on the combination of the probabilities
of the occurrences of all the components in the candidate password.

To learn these probabilities, they utilize the list of the exposed passwords to the public
such as the RockYou list [28]. There were some other approaches to model the distributions
of the user passwords such as Malone and Maher [29] and machine learning method such
as Bengio and Courville [30].

If the above cracking methods are combined with the guessability measure, each
password’s strength can be measured. Surely, password meters can be built up with the
cracking methods and the guessability measure [23,27]. Apart from this approach, there is
a work utilizing heuristic rule-based password meter [2]. Komanduri et al. [31] guides
users the next character to strengthen their passwords whenever they type a character as
a password. Zhang et al. [32] analyzes the relation between the old passwords and the
renewed passwords because of password expiration.

There have been some user studies and comparison works in this area. Dell’Amico
et al. [12] applies [6,7] on real-world user password sets and shows the success rate of
them. De Carné de Carnavalet et al. [3] compares various password meters maintained
by commercial companies such as Google, Apple, Microsoft, DropBox [33], and Drupal.
With the dictionary that is extended from the well-known cracking tools such as John the
Ripper [6] by including the words after mangling and leet transformation, it presents how
much portion of the words in the dictionary are regarded as secure passwords in each
of the password meters. Kelley et al. [8] analyzes the strength of the passwords made
with various composition rules based on the guessability measure. Mazurek et al. [10]
analyzes the strengths of the passwords from the people in a university, with a variant
of the PCFG model [7]. It analyzes the relation between users’ passwords and their
personal information. Egelman et al. [34] conducted research on the effect of password
meter in terms of the users’ choice of passwords. Recently, Ur et al. [11] compares the
previous password analysis methods such as [4,7], the well-known cracking tools such
as John the Ripper [6] and Hashcat [14], and a human-involved proprietary cracking
method by a password-cracking expert organization KoreLogic that uses its own dictionary,
mangling rules, mask list, and a cracking algorithm based on Markov chain in cracking
passwords. The performance analysis in Ur et al. [11] shows that the performance of
KoreLogic is the best. The performance of the combination of all four password analysis
and cracking methods was comparable to that of KoreLogic. The Password Guessability
Service (PGS) [13] is a tool for estimating password strength based on the research in
Ur et al. [11] and supports the results of neural networks modeling.

In recent years, with the development of AI technology, research on the use of deep
learning as a password guessing technique has been actively conducted. The first password
guessing method [15] using deep learning shows that neural networks can be used as a
password guessing technique, replacing the PCFG and Markov models. Melicher et al. [15]
uses the leaked password list as Recurrent Neural Network(RNN) [35]’s training data,
and creates a unit password for each character in the password guessing process. In the
case of Hitaj et al. [16], which uses deep learning as described above, a Convolutional



Sensors 2021, 21, 345 6 of 25

Neural Network(CNN) is used as a generator and discriminator of GAN [36] in the process
of guessing passwords. From Nam et al. [17,18], RNN and IWGAN were combined to
improve performance, and in particular, Nam et al. [18] improved its performance by
using a dual discriminator architecture. Nam et al. [19] is a follow-up study of them. It
does not simply use the leaked passwords as training data, but selectively uses candidates
that are more realistically probable. Apart from that, Pasquini et al. [37,38] studies use
the semantic correlation to provide lightweight deep-learning and easy-to-understand
feedback to users. Pasquini et al. [37] model the representation of leaked passwords in
the space of an instance of Generative Adversarial Networks [39] generator. It performs a
conditional password generation using geometric relationships. Pasquini et al. [38] extends
this to the character level.

The password meters covered in this subsection focus on measuring password strength
more accurately, but the security threats of the running environment, mentioned in
Section 1, are not considered. Unfortunately, to the best of the authors’ knowledge, the
research on the protection of both the user’s password candidate and the result from the
password metering service has not been conducted. We believe this is the first research on
this topic. When choosing a new password to log in to a service and receiving feedback on
its strength, there is a concern about whether the information of the password candidates
is exposed to the outside. In that respect, it makes sense only to pass the password directly
encrypted by the user to the password meter, and the password meter which will be
explained in the rest of this paper, can cope with the security threats by not leaving any
information other than the encrypted password candidate inside the system.

2.2. Fully Homomorphic Encryption

The fully-homomorphic encryption (FHE) supports a set of boolean operations over
two binary strings that are hidden in the ciphertexts. The supported operations in the
set are universal, i.e., any efficient algorithm can be implemented using the operations
supported by an FHE scheme. They work with encrypted inputs [20]. The output is
also ciphertexts that can be decrypted with the same key as with which the input can be
decrypted correctly.

We use HElib (Homomorphic Encryption Library) [22] that implements a variant of
Brakerski et al. [21]. HElib’s implementation is explained in [22,40,41]. The following
algorithms are supported by the FHE scheme in HElib:

• Setup(1λ) takes the security parameter λ and outputs a system parameter params.
• SecretKeyGen(params) generates a secret key sk with params that is an output of

running Setup.
• PublicKeyGen(params,sk) takes params and sk and outputs a public key pk that is

associated with sk.
• Encrypt(params,pk,m) performs encryption with params, a public key pk, and a plain-

text m. m can be one of various forms: from one-bit data to a vector of many bits
depending on the way of implementation. It returns a ciphertext c.

• Decrypt(params,sk,c): it decrypts c to the original plaintext m if c is a result of running
Encrypt(params,pk,m) where pk is the public key that corresponds to sk.

• Encrypted_XOR(params,pk,c1,c2): it performs an xor operation with the underlying
plaintexts of c1 and c2. If c1 and c2 have one-bit plaintexts, it performs a bit-wise
xor operation with them. If the underlying plaintexts of c1 and c2 are represented
as vectors, it performs a slot-wise xor operation on each component of c1 and c2,
respectively. One assumption to make this algorithm work is that both c1 and c2 are
encrypted with the same public key. Otherwise it does not return a meaningful output.
The result of this operations is a ciphertext c that can be decrypted with the secret key
with which c1 and c2 can be decrypted.

• Encrypted_Multiply(params,pk,c1,c2): It performs the multiplication operation on the
underlying plaintexts of c1 and c2. It could be a slot-wise multiplication if the cipher-
texts have vector plaintexts as in the case of Encrypted_XOR. This operation is the
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same as the encrypted ’AND’ operation if the underlying plaintexts, or each of their
slot values, are just either 0 or 1. If they are defined over a certain ring, this operation
also follows the defined multiplication over the ring.

• Recrypt(params,pk,c) can be explained after introducing the ‘noise’ of a ciphertext.
In many of FHE schemes, a ciphertext contains a small amount of noise when it is
created for security reasons. Whenever we perform some computation with cipher-
texts, the resultant ciphertext has more amount of noise. If it is greater than certain
amount, the ciphertext cannot be decrypted, so before it reaches the amount, we need
to do this operation to reduce the amount of the noise it has. In fact, it creates a new
ciphertext of the same plaintext that the parameter ciphertext c has with less noise.
However, the resultant ciphertext initially has more noise than a ciphertext that is
created by Encrypt().

• Pack(params,pk,m0,m1, · · · , ml−1): If the plaintext space is a vector space, we can
define this operation. This returns an element m in the plaintext space where the
components are m0, · · · , ml−1. The length l and the type of each mis depend on the
plaintext space.

• UnPack(params,pk,m) is a reverse of Pack() algorithm. The output is m0, · · · , ml−1.
• Shift(params,pk,c,t) shifts the position of the plaintext component in each slot to its

left by t slots. This is defined only when the plaintext space is a vector space. t is
an integer, and it can be negative. In this case, it means shifting right by |t| slots.
We assume that the first t slots are set to zero. If it is negative, the last |t| slots are set
to zero.

• Rotate(params,pk,c,t) returns a new ciphertext where t-th slot’s underlying plaintext
value in c is in the first slot of the resultant ciphertext. t is a multiple of u that is
defined by the plaintext space. It does not consider what the other slots’ values of the
resultant ciphertext are.

• Frobenius(params,pk,c,t) produces a new ciphertext where the binary polynomial in
each slot of c is exponentiated by 2t, respectively.

A Plaintext Can Be Regarded as a Correct (but Not Secure) Ciphertext That Is Encrypted by
Any Public Key

One important property of the HElib’s FHE scheme [21,22] is that a plaintext of a
correct form can be treated as a valid ciphertext syntactically so we can suppose that
it is a ciphertext generated from any public key. We can perform Encrypted_XOR() or
Encrypted_Multiply() with a plaintext and a ciphertext if they were created using the same
params. The following is a more detailed description of some algorithms in the FHE scheme
in HElib [21,22].

• Setup(1λ) returns params=(R, d, n, q, χ, N), where R: ring description, d: degree, n:
dimension, q: odd modulus, χ: noise distribution, and N = N(λ)=nṗolylog(q).

• SecretKeyGen(params): Sample t from χn randomly. Let s := (1, t) = (1, t0, t1, · · · , tn−1)

∈ Rn+1
q . Output sk = s.

• PublicKeyGen(params,sk) generates a matrix B → RN×n
q uniformly at random. A

column vector with ’small’ coefficients ê is sampled from χN at random. Set b̂ :=
BtT + 2ê. Set pk := A := (b̂|| − B) ∈ Rn+1

q . Output pk. (Note that A · skT = A · sT =

b̂ · 1− B · tT = 2ê).
• Encrypt(params,pk,m): m ∈ R∈. Set a row vector m′ := (m, 0, · · · , 0) ∈ Rn+1

q .
Sample a column vector with small coefficient r̂ fromRN

2 at random and output the
ciphertext c := ĉ := m′ + r̂T ·A ∈ Rn+1

q .
• Decrypt(params,sk,c): Calculate mout := [[< c, sk >]q]2, where []q : R → [−q/2, q/2)

denotes the modular reduction function that reduces a real number x into an integer in
the range [−q/2, q/2) if q is an odd modulus. If q = 2, []q := mod 2 over real numbers.

If we take a look at Encrypt(), c = m′ = (m, 0, · · · , 0) holds if we assume r̂ =
(0, · · · , 0)T . Thus, m′ can be a ciphertext of any public key because c = m holds regardless
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what A = pk is if r̂ = (0, · · · , 0)T . We call this procedure ‘nullified’ encryption because it
does not hide the encryption and can be performed without any user’s public key.

2.3. NIST Meter

The NIST SP-800-63 document [5] recommends a method that borrows the concept of
information entropy in order to represent the strength of a password. We can determine the
strength of a password with the method. In the method, the entropy of a given password is
calculated then the amount of time to crack the password is estimated. The estimated time
can be treated as guessability, the metering result of the password.

In the method, initially, the entropy of the password of which we want to measure the
strength is set to zero. whenever a password meets a specific rule respectively, a certain
number of bits are added to its entropy. The followings are the rules and their correspond-
ing bit-entropy.

After the entropy of the password is calculated with Table 1, we derive the required
crack time with the following formula:

crack_time = 2entropy−1 × 0.0001 (1)

The Formula (1) assumes that the attack can try one password in 0.0001 s. If it changes,
Formula (1) changes, too. With the calculated cracking time, we can decide the strength of
a given password using Table 2.

Table 1. Entropy assigning rules in NIST meter [5] (L: the length of password).

Condition Entropy

Le
ng

th

1 Add 4 bits

2∼8 Add 1.7 + 2.3L bits

9∼20 Add 8.1 + 1.5L bits

21∼ Add 18.1 + L bits

Existence of Non-alphanumeric characters and capital letters Add 6 bits

A dictionary of more than 50,000 words does not contain the password Add 6 bits

Table 2. Metering result calculation from the crack time (in s).

Crack Time Grade of Password Strength

∼102 very-weak

∼104 weak

∼106 so-so

∼108 good

>108 great

3. Motivation

Typically, an embedded password meter is activated while people register their pass-
words into an on-line service. The on-line service accepts their passwords only when
the password meter guarantees its strengths above a certain threshold. Since a password
metering is included in the password registration procedure, each on-line service maintains
its own password policy [11]. Thus, even the same password is assessed to have different
strengths depending on which on-line service’s meter is used. Because of that, people need
to use so many different passwords for each on-line service, which makes remembering
their passwords difficult. To overcome this, we can think of an independent password
metering service, where passwords’ strengths can be measured in a unified way.
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Unfortunately, this approach causes the problem of revealing the passwords of users
in various services to the password meter. Thus, the security of the password meter would
be extremely important. Users and services must also trust the password meter.

The motivation of our research lies here. We would like to break the assumption
regarding the high-security requirement and the trustiness requirement of the password
meter: by making it possible for the password meter to determine a given password’s
strength without exactly knowing the password. If it is possible, we can build up this
kind of unified password meter more easily: it can contribute to increasing the strength of
users’ passwords.

Even in the current situation, such a password meter is very useful in that users tend
to provide multiple password candidates to register. Some of them might be used for other
services and the users may not want to reveal them to the service that does not need them
for authentication.

In light of this, we suppose that the password meter is a passive adversary who
follows the honest-but-curious model.

4. Proposed Method

In this work, we realize an on-line password meter that supports the NIST password
metering with a high level of password privacy, even to the password meter itself. The
main technique we use to achieve this is FHE: with the operations supported by FHE, we
can implement the NIST meter which takes an encrypted input and produces an encrypted
output. However, simple straight-forward implementation of the meter cannot achieve
reasonable performance: our experiment found that this requires more than a day to check
a password. Therefore, we utilize many optimization techniques to reduce the computation
cost. The notations that will be used in this section are given in Table 3.

Table 3. Notation.

Notation Description

n The number of words in the dictionary used

s The number of plaintext slots that can be contained in a ciphertext

p The maximum length of a word and a password in characters

L The number of the characters in the password being checked

w The number of the nullified ciphertexts of the dictionary used, dn/se

PWi i-th representation of a password of a plaintext form

d The plaintext space in a slot is defined as GF(2d).

t The number of threads with which the password meter can run to execute the meter.

u The minimum number of the slots that can be shifted without heavy noise increasing.

<<<,>>> a rotation operation without heavy noise increasing

<<,>> a shift opertion that requires heavy noise increasing

· the encrypted multiplication operation

⊕ the encrypted exclusive or operation

S the multiplicative depth level of a shift operation

b the number of the hash tables being used

MRi i-th length-strength matcher table

m The degree of the cyclotomic polynomial of binary coefficiens.

Di [dn/se × j + l] The l-th ciphertext of thread #j which has the hashes of the s words of from the (dn/se × j + l − 1)× s + 1-th to
the (dn/se × j + l)× s-th order in the dictionary. The i-th hash function is used.

Cmax a constant with all slot set by 1.

Clsb a constant with the first of each k slot set by 1.

C1 a constant with the first slot set by 1.

D {D1[], D2[], · · · , Db[]} : the set of hashed dictionaries.

Thread[j]:A() the function A() is invoked by the thread j, which is an independent execution unit.
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4.1. Overview

Figure 3 shows an overview of the proposed protocol. At the beginning of the protocol,
a client sends the server two encrypted forms of the password she wants to meter. The
server performs some computation with the encrypted passwords after receiving the
encrypted passwords. Then, it sends the output back to the client. The client can obtain
the strength of the password after decrypting the result with its key. We assume that the
client encrypts her password correctly as the protocol instructs. She cannot obtain a correct
password metering result if she sends an inconsistent password.

Figure 3. Overview of the proposed meter.

The main part of the proposed protocol is the server part. Every component is working
with encrypted inputs, and its output is also of an encrypted form. In order to reduce the
overhead, the proposed scheme should have as little circuit-depth as possible. The width
of the circuit in each component should be minimized because once the depth of the circuit
exceeds a certain threshold, a recryption operation begins and the number of recryption
will be dependent on the width of the circuit at that circuit level. The main components
of the server implementation are three-fold: the dictionary checker (1), the composition
rule checker (2), the access of the length-strength table (3). They are independent circuits in
terms of the multiplication operation so the total multiplicative depth is not so high.

The result of each component is collected in the final selector circuit (4) to determine
the final output. We, fortunately, have found a way to implement the server part without
even a single recryption, which takes normally at least a couple of minutes even with a
very efficient parameter setting in a conventional desktop environment.

Algorithm 1 shows the pseudo-code description of the server part. Multi-threading is
applied in DictionaryChecker(). After that, four independent threads are working before
invoking Selector().

We explain these components and the ways to encode the input password before
encryption to make PW1 and PW2 interpret their output in the following subsections.
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Algorithm 1: Pseudo-code of the proposed protocol

1 Function Password_Verification(D,PW1,PW2,MR1,MR2,MR3,Cmax,Clsb,C1,
w,d,t,b,u,p,s):

2 condition1 ← DictionaryChecker(D, w, PW1, t, Cmax, d, b, u) // (A)∼(C) in
this module

3 Threading[1..4]{
4 condition2 = Thread[1]:CompositionRuleChecker(PW2, u, p, C1)

// (D)∼(I) in this module
5 g1=Thread[2]:LengthStrengthMatcher(PW2, MR1, Clsb, u, p)
6 g2=Thread[3]:LengthStrengthMatcher(PW2, MR2, Clsb, u, p)
7 g3=Thread[4]:LengthStrengthMatcher(PW2, MR3, Clsb, u, p) // (J)∼(M)

in this module
8 }
9 return Selector(g1, g2, g3, condition1, condition2, C1) // (N)∼(P) in this

module

4.2. Dictionary Checker

The most time-consuming component is the dictionary checker because more than
50,000 words need to be compared with the input candidate password being metered. One
of the challenges in building this component is how to encode words in the dictionary
in an efficient way. Basically, a ciphertext contains a number of polynomials of binary
coefficients that are defined over a certain polynomial ring. The number of polynomials
and their degrees are decided by the parameter used. Figure 4 shows the structure of
a ciphertext [40,42]. Every slot contains a binary polynomial of degree d (i.e., Every
ai,j ∈ {0, 1}). There are orders among the slots. We can compute either an addition (i.e.,
XOR between coefficients in the same position) or a multiplication between the same slots
in the two ciphertexts.

Users can obtain the coefficients after decryption. The multiplication is a polynomial
multiplication over GF(2d) with an irreducible polynomial.

Figure 4. The structure of a ciphertext.

Normally, only the constant terms are used to encrypt a plaintext because multiplica-
tion is the same as a bit-wise AND operation in this case. We can embed more bits to other
coefficients. However, if so, the multiplication operation is not the same as the bit-wise
AND operation thus, it is very difficult to manipulate the underlying bits in the ciphertext.

A naive approach to implement the dictionary checker is to embed the words in
the dictionary into multiple ciphertexts and they are compared with the ciphertext that
contains the password. In this case, for example, if we use the ASCII encoding to represent
a character, because it needs 7-bits to encode a character, in total, 7p slots are required to
embed a word into a ciphertext, where p is the longest word in the dictionary. Then the
number of ciphertexts required to embed all the words in the dictionary is dn/( s

7p )e. We
also embed the password bs/(7p)c times into a single ciphertext. Then, we perform the
XOR operations with the ciphertext of passwords and each of the ciphertexts that contain
the words in the dictionary. Then, if the password is in the dictionary, one consecutive p
slots have zero values. This approach has two problems: one is that too many ciphertexts
are required because only one bit is used in every slot. Another is that to check whether
consecutive p slots have zeros we need a lot of multiplication operations, which leads to an
intolerably long time to obtain the result.
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We have found a solution to overcome these problems. In our approach, one slot
contains one word. Thus, only dn/se ciphertexts are needed to embed all the words in
the ciphertexts. We use a secure hash function that takes a string of an arbitrary bit-length
and produces a d bit output. Every word in the dictionary is hashed and the hashed result
is included in the ciphertext. The same thing is done with the password. Thus, PW1 is
a ciphertext that is composed of the hashed password in every slot. Now, there is still
a question that is unresolved: how can the search operation be performed? We utilize
a clever technique. The point is the field inversion operation. After xoring each of the
dictionary ciphertexts with the password ciphertext. The slot-wise field inversion operation
is performed on each output of the xor operation. In this case, the result is a non-zero
element in GF(2d) in every slot, except the case where the input slot of the inversion
operation has a zero element (this function is called the trace function [40]). By performing
the multiplication operation with the input of the inversion and the output of the inversion,
we can obtain a ciphertext where every slot has either 0 or 1. The existence of the zero-value
slot means it is highly likely that the password is in the dictionary. Then, the result of
this multiplication is xored with a ciphertext that contains only one in every slot. As a
result of the final operation, the resultant ciphertext contains a slot of one only when there
is a match between a hash of the password and a hash of a word in the dictionary. The
cost of the inversion operation is inexpensive thanks to the Frobenius map. Of course, we
have false-positives. However, we can reduce them significantly by utilizing multiple hash
functions. We talk about this issue in the next section. In addition to this, we make the
algorithm multi-threaded so that it can work faster if there are multiple computation units.

The Algorithm 2 describes the DictionaryChecker() function. The sub-functions used
in the DictionaryChecker() are also described in Algorithm 3. Trace(X[], d) computes the
multiplicative inverse of the element X[] and performs the multiplication with the original
element. If the original element is zero, the result is also zero. Note that ResultXOR(R1[],w,t)
executes xoring the first w elements in R1[] in parallel with t threads, and m-Multiply(X[],d)
performs the encrypted multiplication on the first d elements in X[]. We omit the detailed
description due to the page limit of the initial submission.

Figure 5 shows the dictionary encoding. each Di[j] contains the nullified ciphertexts
of the hashes of s dictionary words.

Di =

(1�i�b)

Hashed

Word1

Di[j]     =

(1�j��n/s� )
Hashed

Word2

Hashed

Words

s slot

Di[1] Di[j] Di[�n/s�]

1 slots

Nullified Ciphertexts

1 slot

a binary polynomial of degree d

Figure 5. Dictionary encoding.

Figure 6 shows the encoding of PW1. PW1 is composed of b ciphertexts, where each
PW1 [i] (1 ≤i≤ b) has the result of hashing the password with the i-th hash function in each
slot. Each slot represents a binary polynomial of d-degree. Note that the ciphertexts in
PW1 are encrypted by the user’s public key.



Sensors 2021, 21, 345 13 of 25

Algorithm 2: Pseudo-code of Dictionary Checker

1 Function DictionaryChecker(D, w, PW1[], t, Cmax, d, b, u):
2 for i← 0, i < b, i ++ do

// (A),(B) in this module
3 R[i]←i-DictionaryRule(Di[], w, PW1[i] , t, Cmax, d, u)

4 return condition1=m-Multiply(R[], b) =⇒ (C)
5

6 Function i-DictionaryRule(Di[], w, PW1[i], t, Cmax, d, u):
7 Thread[1..t]{

for j← 1, j <= t, j ++ do
8 start← dw/te × (j-1)
9 finish← dw/te×(j-1)+dw/te+1

10 if finish>m then
11 finish←w+1

12 // (A) in this module
13 Thread[j]:i-DRPart(Di[], R1[], start, finish, PW1[i], Cmax, d)

14 }
15 R← ResultXOR(R1[], w, t)
16 for j← 0, j < u, j ++ do
17 tmp[j]← (R <<j ) =⇒ (B)

18 R← tmp[0]⊕tmp[1]⊕ · · · ⊕tmp[u-1]
19 for j← u, j < s, j← j× 2 do
20 R← (R <<<j )⊕R

21 return R

Algorithm 3: Pseudo-code of i-DRPart(), WordMatcher(), and Trace() function.

/* R1: an array of result ciphertexts for each dictionary constant
in Di. */

1 Function i-DRPart(Di[], R1[], start, finish, PW1[i], Cmax, d, u):
2 for j←start, j<finish, j++ do

// (A) in this module
3 WordMatcher(Di[], R1[], j, PW1[i], Cmax, d, u)

4 end function

/* R1: an array of result ciphertexts for each dictionary constant
in Di. */

5 Function WordMatcher(Di[], R1[], j, PW1[i], Cmax, d, u):
6 R1[j]=Di[j]⊕PW1[i]
7 R1[j] = Trace(R1[j], d) // (A) in this module

// For each R1’s slot to the power of 2d-1,Frobenius automorphism
used.

8 R1[j] = R1[j] ⊕Cmax

9 end function

/* X: a ciphertext */
10 Function Trace(X, d):
11 for i←0, i<d, i++ do
12 XF[i]=Frobenius(X, i) // Frobenius(X, i) = X2i

// X20×X21×· · · ×X2d−1
= X2d−1 = X×X−1

13 return X=m-Multiply(XF[], d) =⇒(A)
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Hashed 
Password

PW1[i]=

(1�i�b)

Hashed 

Password

Hashed 

Password

s slots

1 slot

1 slot

PW1[i]: a ciphertext of the hashed password by using i
th

 hash tables

PW 1 =

Ciphertext

PW1[1]

Cipertext

PW1[i]

Ciphertext

PW1[b]

a binary polynomial of degree d

Figure 6. PW1 encoding.

4.3. Composition Rule Checker

This checker determines if a given (encrypted) password includes both a capital letter
and a special letter. It is composed of the circuits: CapitalLetter and SpecialLetter, as shown
in Figure 7. Each circuit just outputs either 0 or 1 in the first slot of the result. By multiplying
them, the result can be obtained.

PW2 SpecialLetter

PW2 CapitalLetter a 0 … 0

s slots

A=

b Ignored partB =

Multiply
Output:  a ciphertext, condition2

cdt2 0 … 0

cdt2 is 1 if a capital letter exists and a special letter exists. 

Otherwise 0.

Figure 7. Composition Rule Checker.

In order to perform it efficiently in the server, the user encodes the password with the
following manner. u slots are used to encode a character in the password. Let us call each
of these u-slots Chari, where i refers to the relative position in the ciphertext that begins
with 1. u is greater than 10 and the ciphertext should be able to contain at least up slots.
Each tagi is of 1-slot. The details of the encoding is given in Figure 8. The blank means the
character of ASCII code 0.

A detailed description of the composition rule checker is given in Algorithm 4.

Char1PW2 =

(1 ciphertext)

Chari Charp

tag1Chari =

(1�i�p)
ASCII Code

1 slot

p*u slots

tag1 = 1 if Chari is an alphabet letter, else 0

tag2 = 1 if Chari is an capital or number letter, else 0

tag3 = 1 if Chari is not blank, else 0

0 � 0

u slots

u slots

s slots

0 � 0

tag2

1 slot

tag3

1 slot 7 slots (u-10) slots

Figure 8. Encoding the characters in password to PW2.

It is composed of CapitalLetter and SpecialLetter circuits. CapitalLetter just checks
if there is a character where both tag1 and tag2 are set to 1. Since the shift operation is



Sensors 2021, 21, 345 15 of 25

very cheap if the number of slots shifted is a multiple of u, we can efficiently construct it.
SpecialLetter checks if there is a u-slot unit where tag1 and tag2 are zeros and tag3 is one.

Algorithm 4: Pseudo-code of CompositionRuleChecker().

1 Function CompositionRule(PW2, u, p, C1, Clsb):
2 Threading[5,6]{

// (D)∼(F) in this module
3 A← Thread[5]:CapitalLetter(PW2, u, p, C1)
4 // (G), (H) in this module
5 B← Thread[6]:SpecialLetter(PW2, u, p, Clsb)
6 }

7 return condition2←A·B=⇒(I)

8 Function CapitalLetter(PW2, u, p, C1):
9 A←PW2·(PW2 <<1) =⇒(D)

for i←0, i<p, i++ do
10 AR[i]←A<<<i×u

11 A←m-OR(AR[], p) =⇒(E)// bitwise-or

12 return A←A·C1 =⇒(F) // for clear

13 Function SpecialLetter(PW2, u, p, Clsb):
14 B←(PW2⊕Clsb)·((PW2 <<1)⊕Clsb)·(PW2 <<2) =⇒(G)

for i←0, i<p, i++ do
15 AR[i]←B<<<i×u

16 return B←m-OR(AR[], p) =⇒(H) // bitwise-or

4.4. Length-Strength Matcher Table

The main task of this circuit is to calculate the strength of a given password based
on its length. However, depending on the results of the composition rule checker and
the dictionary checker, the strength becomes different even if we fix the length. There
are three cases: the dictionary checker circuit outputs 1 and the composition rule checker
circuit outputs 0 (no entropy increasing), the dictionary checker circuit outputs 0 and the
composition rule checker circuit outputs 1 (12-bit entropy increasing), and otherwise (6-bit
entropy increasing). For each case, we build up a table that maps the length of the password
to the corresponding strength of it, respectively. Then, we obtain the results of accessing all
three tables and they are sent to the selector.

Now, let us explain how to construct tables. In each case in the above, if the length of
the password is determined, we can calculate the total entropy. Then, with the entropy, we
can calculate the crack time with which we can grade the password strength using Table 2.
We put this strength value in the table where the index corresponds to the length of the
password used to calculate it. The following Figure 9 shows the content of the tables.

Figure 9. The content of length-strength matching tables; The red color is dangerous and the stronger the password goes to
the right.
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Actually, we build up tables such that each table is a ciphertext where indexes are
represented using the relative order among u-slot-unit positions in the ciphertext, and the
corresponding strengths are encoded in the first three slots in the u-slot unit. The structures
of the tables MR1, MR2, and MR3 are as follows in Figure 10. To come up with the PW2,
i-th value in the table is included in the i-th u-slot unit in the corresponding ciphertext.

Nullified Cipertext

MRi[1]
MRi =

(1�i�3)
MRi[j] MRi[p]

mri,jMRi[j]=

(1�j�p)
3 slots

p*u slots

0 � 0

u slots

u slots

mri,j: the j
th

 metering value of MRi[]

s slots

0 … 0

Figure 10. Length–strength matcher table.

Since we do not know which value will be used as the final result. We access all three
tables to obtain the corresponding value of an encrypted form.

Now let’s talk about how to access each table. In PW2, tag3 indicates if the current
character is a blank or not, which means that every tag3 is zero after the last character of
the password. We use this to make the first three slots in the u-slot unit, which is mapped
to the last password character, are set to one and the rest of the slots are set to zeros. If it is
multiplied by the MRi, only the values that are mapped to the length of the password are
alive and the others are set to zeros. We copy this value to the first three slots in every u-slot
unit in the resultant ciphertext using the rotation operation. This procedure is formally
described in the Algorithm 5. The results g1, g2, and g3 which are the execution result of
the Algorithm 5 with MR1, MR2, and MR3, respectively, are sent to the selector.

Algorithm 5: Pseudo-code of LengthStrengthMatcher()

1 Function LengthStrengthMatcher(PW2, MRi, Clsb, u, p):
2 DE←(PW2 <<2)·Clsb =⇒(J)
3 DE←DE⊕(DE>>1)⊕(DE>>2)=⇒(K)
4 DE←DE⊕(DE<<u)=⇒(L)
5 gi ← DE·MRi =⇒(M)
6 for j←1, j<p, j++ do
7 gi ←(gi <<<j×u)⊕gi

8 return gi

4.5. Selector

We can easily construct the selector with the outputs of the dictionary checker and the
composition rule checker so that only the intended output among g1, g2, and g3 remains in
the output of the selector in the Algorithm 6.
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Algorithm 6: Pseudo-code of Selector()

/* condition1 : the result of DictionaryChecker()
condition2 : the result of CompositionRuleChecker()
g1, g2, g3 : the results of LengthStrengthMatcher() */

1 Function Selector(g1, g2, g3, condition1, condition2, C1):
2 case1← condition1·(condition2⊕C1) =⇒(N)-1
3 case3← (condition1⊕C1)·condition2 =⇒(N)-2
4 condition1← condition1·C1 =⇒(N)-3
5 case2← condition1⊕(condition2⊕C1)

6 case1← case1⊕(case1 >>1)⊕(case1 >>2) =⇒(O)-1
7 case2← case2⊕(case2 >>1)⊕(case2 >>2) =⇒(O)-2
8 case3← case3⊕(case3 >>1)⊕(case3 >>2) =⇒(O)-3

9 return g1·case1⊕ g2·case2⊕ g3·case3 =⇒(P)

5. Performance Evaluation

This section analyzes the proposed method in terms of computational cost and com-
munication cost. In the first subsection, we analyze the proposed method in detail. We first
provide the number of operations required in the proposed circuit. Then, we provide the
depth of the proposed circuit and the width of the circuit in each depth in order to predict
the performance of the proposed circuit in various parameters easily. In the second sub-
section, we show the evaluation result by running the proposed scheme in a conventional
desktop environment. We provide the size of the compressed ciphertexts that we made in
the experiments.

5.1. Theoretical Analysis
5.1.1. Number of Unit Operations in Components

We first analyze the number of unit operations in each circuit in Table 4. Because we
assume the multi-threading is possible, each component is divided into multi-threading
part and non-multi-threading part, and analyzes the number of operations in each part sep-
arately, in terms of the various parameters. The most dominant operation is the multiplica-
tion operation in the multi-threading part of the dictionary checker, which requires O( b·d·n

s·t ).

5.1.2. Circuit Depth and Width Analysis

Because the recryption operation is quite heavy and slow, we need to analyze how
many recryptions may happen on various parameters. To achieve this, we have to analyze
the proposed method’s required multiplicative depth and the width of the circuit in each
multiplicative circuit-level because a recryption operation is needed whenever a certain
multiplicative depth is reached in computation from the last recryption, and the width at
that depth determines the number of recryptions operations necessary.

With the analysis of them, practitioners can easily estimate the required recryptions
on the various parameters that are not covered in this paper. Figure 11 shows the analysis
result. The main part is the Gantt chart where the number of required recryption is given in
each multiplicative depth if the recryption operation is occurring at that depth. The three
components of the circuits run in parallel in terms of increasing circuit depth. Thus, the
number of recryptions in a given circuit depth is determined by the sum of those in each
component at that depth.

The result is divided into two cases based on the condition on the size of p, d, and
b. The total multiplicative depth is very close to the greater value in dlog d e+ dlog be+
4and8 +dlog p e because S < 2.
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Table 4. Analysis on the number of unit operations.

Dictionary Checker

Non-multithreading part Multithreading part

Operation Number of operations Thread no. Operation Number of operations

XOR b ·
(
u− 1 + dlog s

u e
)

1 ∼ t XOR b ·
(
2 · d n

s e/t + d n
s − 1e/t

)
Multiply b− 1 i-DRPart Multiply b · (d− 1) · d n

s e/t

Rotate b ·
(
dlog s

u e
)

Rotate 0

Frobenius 0 Frobenius b · (d− 1) · d n
s e/t

Shift b · (u− 1) Shift 0

Composition Rule Checker

Non-multithreading part Multithreading part

Operation Number of operations Thread no. Operation Number of operations

XOR 0 1 XOR 2 · (p− 1)

Multiply 1 CapitalLetter Multiply p + 1

Rotate 0 Rotate p− 1

Frobenius 0 Frobenius 0

Shift 0 Shift 1

2 XOR 2p

SpecialLetter Multiply p + 1

Rotate p− 1

Frobenius 0

Shift 2

Length Strength Matcher

Non-multithreading part Multithreading part

Operation Number of operations Thread no. Operation Number of operations

XOR 0 1 ∼ b XOR p+2

Multiply 0 Multiply 2

Rotate 0 Rotate p−1

Frobenius 0 Frobenius 0

Shift 0 Shift 3

Selector

Non-multithreading part Multithreading part

Operation Number of operations Thread no. Operation Number of operations

XOR 12 − XOR 0

Multiply 6 Multiply 0

Rotate 0 Rotate 0

Frobenius 0 Frobenius 0

Shift 6 Shift 0

(A)∼(P) in Figure 11 are mapped to (A)∼(P) in Algorithms 1–6. They refer to the lines
that affect the multiplicative depth and width analysis.

5.2. Experimental Analysis

We have performed an experiment on the execution of the proposed method in a
conventional desktop environment. The machine has Intel(R) Xeon(R) ES-1650 v3 @ hexa-
core processor From Intel, Santa Clara, CA, USA. where twelve threads can be executed in
parallel. It also has 64GB RAM. Our implementation was executed on Ubuntu 16.04LTS.
We utilized HElib 1.2 [22] with the parameters shown in Table 5, which is written in C++14
and uses the NTL 11.3.2 mathematical library. We set p = 32 because the longest word in
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the dictionary is 32. In the word list file of [6], n = 52,801 dictionary D was constructed
with only English words.

Figure 11. Multiplicative depth analysis.

Table 5. Parameters for experiment.

Param1 Param2 Param3 Param4

Cyclotomic ring (m) 28,679 = 7×17×241 31,775 =52×31×41 46,063 = 73×631 49,981 = 151×331

Lattice dimension (φ(m)) 23,040 24,000 45,360 49,500

Plaintext space (=GF(2d)) GF(224) GF(220) GF(245) GF(230)

Number of Slots (=s) 980 1200 1008 1650

Security Level 93 93 86 94

Maximum multiplicative
depth to reach the

first recryption
22 24 24 24

u 10 30 14 11
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5.2.1. Unit Operation Time

We measured the execution time of each operation by 1000 times. The average result
is shown in Figure 12. The execution time depends on the size of the parameter m shown
in Table 2.

Figure 12. Execution times of unit operations.

Figure 13 shows the execution time of the trace function on various parameters. Since
we use this function to check if a given encrypted password is contained in the dictionary,
it is used a lot of times. From the figure, we can see that it also looks highly dependent on
the size of the ring (m).

From Figures 12 and 13, only the first two parameters are competitive in terms of
execution time.

Figure 13. Execution time of the trace function.

5.2.2. False Positive Ratio in Dictionary Checking

Since the proposed approach utilizes a bloom filter [43], we have to analyze the
false-positive ratio in the dictionary checking. We have performed experiments with
the parameters that are introduced at the beginning of this section. In each experiment,
we generate 1 million random passwords whose lengths are in the range between 20
and 30 characters (inclusive), where each character can be typed. By regenerating the
password when the generated password is in the dictionary, we could avoid any word
in the dictionary is included in the generated random passwords. Then, we run the hash
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function with them and check if their hash values are included in the hash values of the
words in the dictionary. We could count the number of random passwords whose hash
values are the same as any word in the dictionary, and it is the number of times hash
collisions occur. In other words, when performing a dictionary-check, it corresponds to a
false-positive for determining that there is a random password that does not exist in the
dictionary. Figure 14 shows the false-positive ratio value from both experiments and the
conventional formula to derive the false-positive ratio in the bloom filter. The formula
derived from [43] is (FP) ≈ (1− e−kD/N)k where D is fixed to 58201 (i.e., # of words in the
dictionary), k = b, and N = 2d. We can see that the cases where the estimated false-positive
rate is below 10−5 % produce zero collision in the corresponding experiments. We also
could check that the practical parameter (Param1 with b = 1) just produces 1% of the
false-positive rate.

Figure 14. False positive ratio in dictionary checking on various b and parameters.

5.2.3. Total Execution Time

Table 6 shows the experiment result regarding the total execution time. The composi-
tion rule checker and the length strength meter are working in parallel. So, only one of them
whose execution time is longer than the other affects the total execution time. Actually, the
dictionary checker is an independent circuit but it needs all the threads supported by the
environment. Thus, the other components cannot be executed until the dictionary checker
ends its execution.

In the proposed method, the process that requires the highest computational over-
head is DictionaryChecker, which checks the dictionary D containing n = 58,201 words,
and the overall performance is significantly different in Table 6 by the execution time of
DictionaryChecker. As can be seen in Figure 13, the Trace function occupies the highest
proportion in DictionaryChecker. Since the trace function calculates the inverse of the
polynomial that composes the slots of the ciphertext, the higher the degree d of Table 2,
the higher the computational overhead. In addition, since b is the number of hashes that
encode the dictionary D, the number of ciphertexts that DictionaryChecker should perform
increases in proportion to b. From the Table 6 we can see that Param1 and Param2 with
b = 1 support reasonably fast execution time.
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Table 6. Total execution time (in s).

b Parameter
in HElib

Dictionary
Checker

Working in Parallel
Selector Execution

TimeComposition Rule
Checker

Length Strength
Meter

1 Param1 53 7 11 3 67

Param2 50 8 6 3 61

Param3 1154 25 19 10 1189

Param4 348 34 30 12 394

2 Param1 108 7 8 3 119

Param2 101 8 6 3 112

Param3 2318 25 19 10 2353

Param4 705 34 30 9 748

3 Param1 162 7 9 3 175

Param2 153 7 6 3 175

Param3 3450 25 18 9 3484

Param4 1055 34 30 9 1098

5.2.4. Key Size for FHE

We measured the size of the public key pk and secret key sk of FHE for each parameter
setting given in Table 2, and the result is shown in Table 7. pk is required to encrypt
the password candidate to be passed to the password meter and to perform operations
over the encrypted data provided by the FHE in the password meter. In the case of sk,
it is only needed when decrypting the final result, and this key is not shared with the
password meter.

Table 7. A single key size for fully homomorphic encryption (FHE) (in MB).

Param1 Param2 Param3 Param4

pk 22.149 21.969 86.516 94.414

sk 27.422 27.102 106.593 116.320

5.2.5. Ciphertext Size

We measured the size of a single ciphertext in order to estimate the communication
cost of the proposed protocol. The result is given in Table 8. The client gives two ciphertexts,
PW1 and PW2, to the server and the server gives the client a single ciphertext that contains
the metering result. From Table 8, we need the resource to transmit several MB data
through the network. Note that the individual length of the password used in the proposed
method does not affect the execution time and size of the ciphertexts. In the case of PW1,
since it is encoding using a hash function, it is irrelevant to the password length. In the case
of PW2, as shown in Figure 8, the maximum length of the password that can be available is
p = s/u calculated as s and u given in Table 2. All the processes of the proposed method
are performed in the form of the encrypted password, and the password meter cannot be
executed by distinguishing the length of the password used. Therefore, it can be seen that
only the maximum length p affects the execution of Algorithms 4 and 5. We limited the p
to 32, which can be considered long enough in the experiment.
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Table 8. Size of a single (compressed) ciphertext.

Param1 Param2 Param3 Param4

size (in MB) 3.9 4.3 17 19

6. Conclusions

In this paper, we have proposed a new type of on-line password metering scheme
where the meter is very difficult to obtain the information about the password being
measured. The proposed method takes an encrypted password as input, measures its
strength, and returns the result in the encrypted form. In this process, the password meter
performs the operation provided by FHE over the ciphertext according to the prescribed
procedure. Thus, this gives us a high level of privacy to the passwords being tested. The
fact that the password check is performed according to the same predefined procedure for
all encrypted inputs can prevent side-channel attacks of the server, which can be made by
measuring the execution time of the password meter.

Table 9 is a comparison of the existing password meters with the proposed method for
several factors that affect security. The proposed method can utilize a lot of resources on
the server-side and is easy to maintain the password meter as up-to-date as possible. The
proposed password meter does not disclose any information because the input password,
the measured strength, and the dictionary used are all encrypted. This is in contrast to the
existing methods where the candidate password whose strength is being measured and the
dictionary should be of a plaintext form, which helps the hackers to crack users’ passwords
a lot if they are exposed.

Table 9. Security Properties of the proposed method in contrast to current meters.

The Proposed Method Current Meters

Protection of password
candidates to be entered O X

Protection of metering results O X

Protection of dictionary D, used in
the meter O Only if meter uses hased

dictionaries or nothing.

Maintaining up-to-date O Only the on-line meters.
O: protected, X: not protected.

Additionally, we utilized FHE with clever implementation techniques such as some
smart ways of encoding the passwords and Bloom Filter to make the proposed scheme of
practical performance. This approach enhances password security because the users do
not have to reveal their passwords in metering.

We also believe that the FHE application techniques used in this work can be used for
many other applications requiring privacy, such as machine learning [44] and Internet of
Things [45] fields.
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