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Abstract
To facilitate biomedical studies of disease mechanisms, a high-quality interactome that
connects functionally related genes is needed to help investigators formulate pathway
hypotheses and to interpret the biological logic of a phenotype at the biological process
level. Interactions in the updated version of the human interactome resource (HIR V2)
were inferred from 36 mathematical characterizations of six types of data that suggest
functional associations between genes. This update of the HIR consists of 88 069 pairs
of genes (23.2% functional interactions of HIR V2 are in common with the previous ver-
sion of HIR), representing functional associations that are of strengths similar to those
between well-studied protein interactions. Among these functional interactions, 57%
may represent protein interactions, which are expected to cover 32% of the true human
protein interactome. The gene set linkage analysis (GSLA) tool is developed based on
the high-quality HIR V2 to identify the potential functional impacts of the observed
transcriptomic changes, helping to elucidate their biological significance and comple-
menting the currently widely used enrichment-based gene set interpretation tools. A
case study shows that the annotations reported by the HIR V2/GSLA system are more
comprehensive and concise compared to those obtained by the widely used gene set
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annotation tools such as PANTHER and DAVID. The HIR V2 and GSLA are available at
http://human.biomedtzc.cn.

Introduction

Over the last two decades, advancements in omics tech-
nology have provided a set of powerful tools for better
elucidation of the mechanisms of human diseases and for
the acceleration of drug discoveries (1–3). Compared to
the traditional approaches, which focus only on the limited
significantly changed genes, tools that were developed with
omics technology can allow us to have a global overview of
the functional association network of genes present in a cell
or in an organism (4, 5). A high-quality functional interac-
tion network that groups functionally associated genes may
not only facilitate the elucidation of biological pathways,
helping investigators to focus on themore likely genes when
extending existing mechanisms, but also facilitate the inter-
pretation of biologically desired functional impacts at the
subsystem (or biological process) level.

Although omics technology offers several opportuni-
ties in human research, it also enables resolving many
challenges, such as achieving efficient analysis and inter-
preting vast and complicated omics data (6). To describe
the underlying design logic of physiological processes from
molecular-level descriptions, the existing omics data-based
methods used to obtain a high-level biological sense mostly
rely on enrichment analysis of the observed transcriptomic
changes (OTCs). Approaches based on enrichment analy-
sis evaluate whether these changed genes are enriched or
clustered in a certain biological process. To date, many
enrichment-based annotation tools have been developed to
analyse OTCs, including the widely used annotation tools
PANTHER (7), KEGG (8) and DAVID (9).

Actually, the OTCs can be successfully summarized into
established biological concepts in many cases through the
above strategies. In practical use, however, enrichment-
based methods are frequently reported to yield only
conceptually general terms (such as GO:0051704, a multi-
organism process) and have even been reported to not
enrich any annotation term. Similar to the no annotation
term case, the conceptually general terms also provide lit-
tle assistance to human research because no established
biological concepts can be used to accurately describe the
OTCs. However, if no established biological concepts exist
to accurately describe the OTCs, we sometimes still need
the established concepts to interpret the functional impacts
of the OTCs. For example, OTCs may lead collectively to
GO:2000563 (positive regulation of CD4-positive, alpha-
beta T cell proliferation), even when the OTCs themselves

are not enriched in these terms (please see the section
‘Discussion’ for details).

To meet this challenge, we developed gene set linkage
analysis (GSLA) to interpret the potential functional
impacts of the OTCs, especially when there are no estab-
lished biological concepts or suitable concepts available to
describe these changes. GSLA can classify an OTC as an
established biological function if this OTC has strong func-
tional associations with genes in the established biological
process.

Previously, we developed the GSLA tool to interpret
the potential functional impacts of OTC even though no
established biological concepts are available to define these
changes. GSLA evaluates whether the OTC has strong
functional associations with the other gene sets represent-
ing established biological processes. If genes in OTC are
densely associated with genes in a biological process, this
OTC is expected to interfere with this biological function.
GSLA has been successfully used in human andArabidopsis
transcriptome analyses (10, 11). The success of GSLA in
these two species relies critically on the high-quality inter-
actomes that were specially developed for GSLA in these
species (10, 12). In this study, we adapted and applied the
GSLA tool to the high-quality human interactome HIR V2
to extend its capability for interpretation of the potential
functional impacts of human OTC. In 2013, we devel-
oped a high-quality functional interactome, the predicted
Human Interactome Resource (HIR 2013) (10), and its
associated GSLA service to interpret the potential func-
tional impacts of OTCs. As an application example, this
approach supported the analysis of the multiomics profil-
ing of human bone marrow stem cells rescuing fulminate
hepatic failure (FHF) in pig models. The HIR and GSLA
identified a key signalling process that was not identi-
fied using other tools. Subsequent experiments confirmed
that the cytokine regulating this process improved ani-
mal survival in both pig and rat models (13). This report
describes the first identification of a potential therapeutic
strategy that may promote hepatic cell regeneration in FHF
pathophysiology.

Since 2013, researchers have generated abundant

data that suggest functional interactions among genes in

humans. In this work, we present an updated version, the

HIR V2, and its associated GSLA web tool. We show that
the HIR V2 exhibits the best performance among the avail-

able interactomes in grouping functionally related genes

http://human.biomedtzc.cn
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together. Here, the HIR V2 integrates six types of func-
tional association data from nine public databases (before
2018). The updated version of the HIR includes 88 069
functional gene associations, which are expected to cover
32.48% of the protein–protein interactions in humans.
Approximately 57.04% of these functional associations are
expected to represent protein–protein interactions. 20 432
of 88 069 functional gene associations are in common
between HIR V2 and HIR 2013. A case study also shows
that biological processes identified by the HIR V2 and the
GSLA web tool were more comprehensive and informative
for experimental investigators compared to the widely used
annotation tools PANTHER (7) and DAVID (9).

Materials and methods

Data integration for the prediction of functional
associations in humans

For the prediction of functional associations between
genes in humans, we selected six types of evidence,
which were collected from seven public databases for the
years prior to 2018, including 22 004 expression pro-
files (Coxpresdb) (14), 288 375 gene annotations (GOC)
(15), 59 617 subcellular gene localizations (Compartments)
(16), 156 859 domain interactions (IDDI (17) and Pfam
(18)), 20 567 phylogenetic profiles (DIOPT) (19), and 9220
human proteins and proteins from Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, Mus
musculus, Rattus norvegicus, Saccharomyces cerevisiae and
Schizosaccharomyces pombe used to compute interologs
(Inparanoid) (20) (Figure 1). From these six types of evi-
dence, 36 feature values were taken. We used these 36
feature values to measure the strength of functional asso-
ciations (Supplementary Table S1).

In addition to the above six types of evidence, protein–
protein interactions were also considered to be evidence of
high-strength functional interactions between genes (10).
In this work, we collected 319 696 protein–protein interac-
tions that were reported in experimental studies of humans
from two public databases, BioGRID (21) and IntAct (22)
(Figure 1 and Supplementary Table S2). To ensure the qual-
ity of the experimentally reported protein–protein interac-
tions, we filtered the interactions that were reported in less
than two independent studies and reported only in high-
throughput experiments. The remaining 4509 high-quality
protein–protein interactions were used for subsequent pre-
diction model training to obtain the inferred functional
associations that are as strong as protein–protein interac-
tions. In this work, the UniProt (23) and BioMart (24)
software were used to convert different gene IDs to unique
HGNC IDs according to the reference gene IDs of the
HGNC database (25) (Figure 1).

Computation and evaluation of feature value

Thirty-six feature values of six types of functional associa-
tion evidence were utilized to characterize the functional
interactions between human genes (Supplementary Table
S1). The detailed equations are on the HIR V2 website.
These 36 feature values include 1 homologous interac-
tion feature, 3 phylogenetic profile features, 23 domain
interaction features, 4 subcellular colocalization features,
2 coexpression features and 3 shared annotation features
(Supplementary Table S3).

To successfully separate protein interactions from ran-
dom gene pairs, not all of these 36 features are suitable.
Therefore, only those features showing strong correlations
with functional associations were retained, based on which
we could decrease the signal-to-noise ratio in the subse-
quent step of functional association interference. To evalu-
ate the power of the functional association indication of our
selected 36 feature values, the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve was
preferred. When computing the protein–protein interaction
inference, each feature value with different cut-offs will lead
to a series of sensitivities and specificities. We plotted the
sensitivities and specificities related to different cut-offs as
the ROC curve (X-axis, 1−specificity; Y-axis, sensitivity).
Feature values with AUCs higher than 0.6 were considered
informative, indicating strong functional associations (Sup-
plementary Figure S1). Eventually, a total of 18 features
with AUCs higher than 0.6 were selected for the subsequent
prediction of functional associations between human genes
(Supplementary Table S3 and Supplementary Figure S1).

Interference of functional associations between
human genes

The LibSVM package was used to train and predict func-
tional associations (26, 27) (Figure 1). We chose 4509
high-quality protein−protein interactions, which were con-
firmed by experiments and published before 2018, to serve
as positive examples representing the strong functional
associations between human genes. Gene pairs with nega-
tive examples were randomly generated (overlapping gene
pairs with positive examples were removed). Two random
gene pairs may have functional associations, although the
probability is low. Here, we set the positive-to-negative
ratio to 1:100 in the training dataset to reduce the false-
positive rate in the negative examples so that only a
notably small fraction of gene pairs have functional associa-
tions. This functional gene association prediction approach
may be considered an implementation of transfer learn-
ing. Based on the evidence of functional associations, both
protein interactions and functional gene associations may
be predicted. Here, protein interactions may actually be
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Figure 1. Workflow of the functional interaction prediction between human genes. High-quality experimentally reported protein interactions were
integrated from two databases andwere used as positive examples. Six types of functional association evidence from seven databaseswere collected
to infer putative functional interactions. A total of 18 high-quality feature values were selected from 36 feature values that characterize this evidence
with different mathematical representations. Random gene pairs with all positive examples removed were used as negative examples. The number
of negative examples was 100 times the number of positive examples.

considered one type of strong functional gene interaction.
Thus, ‘knowledge’ (i.e. the classification model) gained
from predicted protein interactions may be used for the
inference of functional associations between genes. In real-
ity, gold-standard protein interactions have been reported
by experiments; however, for strong functional gene asso-
ciations, no well-established gold-standard dataset exists.
When we predict the functional associations, the trans-
fer learning strategy may help us to address this lack of a
gold-standard dataset and to use the knowledge gained in
predicting protein interactions (i.e. a special form of strong
functional associations) to infer the functional associations
between genes.

For the prediction model training, we used the soft-
margin Gaussian kernel SVM algorithm. Two parameters,
σ (kernel width) and C (soft margin), were used to obtain
an optimal harmonic mean of the sensitivity and speci-
ficity and were optimized with a 5-fold cross-validation.

We trained the prediction model with the optimized σ and
C. An external validation dataset with 435 protein inter-
actions (published after 31 December 2017) and randomly
generated negative examples were used to validate the pre-
diction model. This model showed a sensitivity of 32.48%
and a specificity of 99.98%. Moreover, we evaluated the
sensitivity of HPRD, HI-III, HIPPIE, STRING and UniHI
to see how well the predicted interactions in each database
covered these new interactions. The comparison results are
shown in Supplementary Table S4.

After we applied this model to all human gene pairs,
a total of 83 125 predicted functional associations were
obtained. In addition to these inferred functional interac-
tions, we added 4944 experimentally reported interactions
to the HIR V2 dataset, which includes 88 069 interac-
tions. 20 432 (23.2%) of 88 069 functional interactions are
shared with HIR 2013 (Supplementary Figure S2). Since
2013, researchers have generated abundant data resources
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that can be used to generate a high-quality functional
interactome of human.

The following equation was used to estimate the
proportion of protein−protein interactions that were cov-
ered by the predicted functional interactome in humans.

Ninteractome× Sensitivity+(Nall−pairs−Ninteractome)

× (1− specificity) =Npredict

where Ninteractome is the expected number of all
protein−protein interactions in humans; Nall−pairs is the
number of all gene pairs in humans;Npredict is the number of
predicted gene associations; and sensitivity and specificity
are the prediction performance measures produced when
the prediction model was validated with the newly pub-
lished protein interactions. Solving this equation gives an
estimated human protein interactome size of 1.52 × 105,
which corresponds to one protein interaction among 1230
gene pairs. This result is similar to the reported fraction
of protein interactions in yeast (1/775, (28)). Based on the
estimated interactome size (1.52 × 105) and the estimated
sensitivity (32.48%, the conservative estimation from the
training stage sensitivity (32.88%) and the evaluation stage
sensitivity (32.48%)), the predicted interactions in the HIR
V2 are expected to include 86 359 protein interactions.
Therefore, 57.04% of the HIR V2 functional interactions
(49 249 out of 86 359) are expected to represent protein
interactions.

Gene set linkage analysis tool

The GSLA web tool was first developed together with the
predicted Human Interactome Resource (HIR 2013) (10)
to interpret the potential functional impact from the OTCs
in humans. Two hypotheses (Q1 and Q2) are assumed by
GSLA to ensure that the reported functional associations
between two gene sets are significant (Figure 2). Q1 mea-
sures whether the density of inter-gene-set gene associations
between two functionally associated gene sets is higher than
the density of background gene associations connecting
two random gene sets. Q2 assumes that the high density
between functionally associated gene sets can be observed
only in the biologically correct interactome and not in ran-
dom interactomes. In other words, when we compare the
density of the HIR V2 to a random gene association net-
work, both consisting of the same genes and with each
gene having the same number of neighbours, the HIR V2
will have a higher density. In a biological sense, Q1 exam-
ines the strength of the functional associations between
two gene sets, while Q2 verifies that the observed strong
functional association is the result of a biologically cor-
rect network topology (i.e. our knowledge of the molecular
mechanisms) rather than the result of the compositions of

these two gene sets. Some genes, known as hubs, have con-
siderably more neighbours than other genes. Therefore, if
the gene sets have many hubs, they are more likely to con-
nect to other genesets. To ensure the biological significance
of functional associations that were detected between two
gene sets, the second hypothesis (Q2) can remove the con-
founding factor of gene set composition. In general, Q1 and
Q2 are related and different hypotheses. They complement
each other so that the GSLA tool can increase its sensitivity
and specificity. We set density >0.01 for Q1 and P<0.001
for Q2 as the default criteria for GSLA when reporting the
functional associations between two gene sets.

Construction of the HIR V2/GSLA website

To deploy the online database, we used the LNMP system,
which is an integrated system that includes Linux, Nginx,
MySQL and PHP. The MySQL database was used to store
data. The web interface of the online database was devel-
oped using the Laravel framework using PHP. The front
end of the online database was implemented with the Vue.js
script library, which implements a single-page application
(SPA). Vue.js is an open-source JavaScript library designed
for SPAweb interface creation. Cytoscape (29) was used for
the visualization of the functional association networks.

Results

Functional gene association network evaluation

To evaluate the quality of the updated version of the func-
tional gene association interactome in humans, we mea-
sured the ability of the HIR V2 to group functionally
associated genes together. In this study, we assessed the
function prediction performance of a gene with its network
neighbours. We compared the quality of our predicted func-
tional interactome with other human interactomes in a
guilt-by-association gene function prediction assay, includ-
ing HIPPIE (30), HPRD (31), PICKLE (32), STRING
(33) and PrePPI (34). Apart from the above five public
human interactomes, we also added our previous version
of HIR (HIR 2013) (10) for interactome quality compari-
son. For each gene in each interactome, its GO biological
process annotations were predicted as the terms enriched
in the annotations of its first-degree network neighbours.
In our evaluation, the term enrichment tool PANTHER
(7) was used to compute enriched terms. Because the data
integrated by the HIR V2 represent the period before 31
December 2017, we collected 13 648 genes from the GO
database with new annotations added after 31 December
2017. These genes contain a total of 398 441 annota-
tions, 118 748 of which were newly reported since 2018.
These genes and their annotations were used to evaluate the
quality of our inferred human interaction network HIR V2.
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Figure 2. Two hypotheses of GSLA used to ensure that the identified significant functional associations between two gene sets are biologically
meaningful. Q1 tests whether the density of functional associations between two biologically meaningful gene sets is higher than that of random
gene pairs. Q2 tests whether the strong functional associations observed between two gene sets can be observed only from the biologically correct
network rather than from any random interactomes.

A precision-recall curve was used for the comparison
of the overall prediction performance of new annotations
across seven interactomes. Recall measures the proportion
of these 118 748 new annotations that are successfully
predicted, while precision measures the proportion of
PANTHER-predicted annotations that are consistent with
the known annotations (both new and old annotations
are included). The inclusion of the old annotations in
precision measurement may bias the precision estimates
because the shared GO annotations were used as a pre-
diction feature to generate the functional gene association
network. Each annotation predicted by PANTHER has
an enrichment significance value. Setting a higher cut-
off value will result in more reported annotations and a
higher recall but also a higher false-positive rate. In con-
trast, setting a lower cut-off value will result in fewer
reported annotations and a lower recall but also a higher
precision. Therefore, the precision-recall curve has the
advantage of showing precision and recall rates on dif-
ferent cut-offs so that a more comprehensive view of the

interactome quality can be achieved. A higher AUC of
the precision-recall curve indicates a better interactome
that supports the ‘guilt-by-association’ prediction of gene
functions.

As shown in Figure 3, the HIR V2 ranks highest with
a significant margin relative to the other interactomes,
indicating its strong ability to group functionally related
genes together. Notably, the second place was occupied
by the previous version of the HIR (HIR 2013). This
version was published in 2013 and still performed better
than several interactomes that included very recent data.
Although the curves of HIPPIE, HPRD and PICKLE have
high-precision regions, they did not reach the high-recall
regions. In contrast, the curve of STRING and PrePPI
reached the high-recall region, and its precision always
stayed in the low-recall region and did not show a con-
siderable increase. Based on the observation of STRING,
it was suggested that STRING has a high proportion of
weak functional gene associations. Therefore, during func-
tion prediction,STRING may raise the false-positive rates.
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Figure 3. Assessment of the capabilities of seven interactomes to group functionally associated genes together. The precision-recall curves of gene
function prediction using different interactomes are illustrated. Precisionmeasures the proportion of correct annotations identified by an interactome,
while recall measures the proportion of new annotations that are identified by an interactome.

In general, both versions of the HIR showed a balance
between coverage and accuracy. The overall qualities of the
HIRs, even the version published in 2013, exceed those of
the other compared interactomes.

Web interface of the HIR V2/GSLA

The interface of our developed HIR V2 is user-friendly. The
HIR V2 has two search modes: a single gene search mode
and a multiple gene search mode (Figure 4A). We provided
two search options with gene names andHGNC IDs to gain
access to the HIR V2. The results of the single search mode
show putative functional associations involving the query
gene, and the results of the multiple search mode show
functional associations between the query genes. Figure 4B
presents the functionally associated interactions reported
by the HIR V2 in tabular form. These reported functional
interactions are also shown in a graphical view on the right
side of the query interface. If users are interested in a func-
tional interaction, they need only to click on this edge to
check the feature values for the interaction prediction in our
model. Here, we also provide a score value to measure the
prediction reliability of the functional interactions between
genes. A score between 0 and 1 indicates that the decision
is within the error margin. Smaller scores are associated
with lower confidence. A score that equals 1 indicates that
the decision is outside the error margin and is therefore of
good reliability. Similar to the graphical view of the func-
tional associations, the thickness of the line is positively
correlated with the functional association prediction reli-
ability. In addition to the lines, users can click the nodes
to view detailed information on their gene of interest. On
the HIR V2 website, we also provide a full dump of our
predicted interactome for download. More details about

the HIR V2/GSLA are provided in the help section of our
website.

On our HIR V2 website, users can access the GSLA
online service to interpret the potential functional impact
of an uploaded gene set. Figure 4C shows the main inter-
face of GSLA, which provides six types of human gene IDs
for users to query OTCs, including the gene name, HGNC
ID, UniProt ID, Ensembl gene ID, Ensembl protein ID and
NCBI Entrez ID. Here, the search type of HGNC IDs of
query OTCs is suggested because the internal server can
recognize only the HGNC ID. Therefore, all types of IDs
submitted to our online service are automatically mapped
to the HGNC ID before further computation (Figure 4C).
Users can optimize the criteria of reported significant func-
tional associations by GSLA (Q1 and Q2 tests, as described
above). Moreover, an email address is requested before
submission. We recommend users to utilize the top 50–200
changed genes of OTCs during querying when they need
to obtain optimal functional impact interactions. The top
10 lines of the result file provide the analysis parameters
(Figure 4D). Below is a table that presents the function-
ally associated biological process, functional associations
between genes in reported biological processes and the
genes in the query OTCs.

Using the HIR V2/GSLA system to reanalyse the
Treg-DC dataset

Regulatory T cells (Tregs) play a pivotal role in main-
taining immune homeostasis, including the maintenance of
immune tolerance to the self and the prevention of excessive
immune responses (35–38). The suppressive function of
Tregs is to inhibit the activities of CD4+ and CD8+ effector
T cells, natural killer (NK) cells and dendritic cell (DC)mat-
uration (39–42). However, these suppressive activities that
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Figure 4. Interface of the HIR V2 and GSLA. (A) Two search options in the HIR V2. (B) Search result page. A right click on the edge will show the
interaction details. (C) Interface of the GSLA. (D) Results of a GSLA task.

are mediated by Tregs can contribute to the immune escape
of pathogens or tumours (43). One suppressive modality of
Tregs, through suppression of the DCs to indirectly dampen
immune activation, attractedMavin et al. due to the limited
amount of research on the modulation of the DC func-
tion by human Tregs (44). They discovered novel evidence
that Treg-treated DCs (Treg-DCs) impaired CD8+ T cell
alloreactive responses and skewed CD4+ naive T cell polar-
ization to a regulatory phenotype owing to the decreased
IL-12 secretion by Treg-DCs.

Because previous studies focused only on the very nar-
row range of the ability of Treg-cultured DCs to stimulate
CD4+ T cell proliferation, they performed a microarray
analysis to search for molecular evidence of Treg-mediated

modulation of the DC function to further our understand-
ing (GEO database, GSE72893) (44–46). Mavin et al.
reported that Treg-DCs are a discrete population of mature-
DCs and immature-DCs. Compared to mature-DCs, 51
and 93 Treg-DC genes were significantly over- or under-
expressed. In this study, we reanalysed the differentially
expressed genes in the microarray dataset GSE72893 (44).
As shown in Figure 5, both DAVID andGOontology analy-
sis identified cytokine-mediated pathways, which is consis-
tent with the results of the original publication (Supplemen-
tary Tables S5 and S6). However, both tools missed several
functional impacts that were experimentally reported in the
same publication, such as the suppression of CD8+ pro-
liferation and the reduction of IL-6 secretion, as well as
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Figure 5. Functional interpretations produced by the HIR V2/GSLA. Compared to GO enrichment analysis and DAVID, the annotations produced by
GSLA are more comprehensive and more accurate.

several functional impacts that were reported in indepen-
dent studies of similar subjects, such as the negative reg-
ulation of CD4+ cell proliferation and the involvement
of certain chemokine receptors (i.e. CCR2 and CXCR3)
(Supplementary Table S7). The GSLA analysis based on
the previous version of HIR only reported chemokine
receptors related to biological processes (Figure 5 and Sup-
plementary Table S8). Overall, DAVID reported 134 bio-
logical process terms in 18 clusters, GO ontology analysis
reported 47 terms, HIR 2013/GSLA reported 17 terms
and the HIR V2/GSLA reported 67 terms. Among these
terms, 39 (29.10%), 35 (74.47%), 7 (41.18%) and 32
(47.76%) were supported by previously published results,
which indicates that HIR V2/GSLA reported the second
most annotations, second to GO ontology analysis. A
deeper comparison between GO ontology analysis and HIR
V2/GSLA showed that many annotations reported by GO
ontology analysis are very general, such as response to
virus (GO:0009615), defence response to other organisms
(GO:0098542), innate immune response (GO:0045087),
etc. (Supplementary Table S5). In contrast, most of the
HIR V2/GSLA terms are very specific, such as regu-
lation of CD8-positive, alpha-beta T cell proliferation
(GO:2000564). Overall, the HIR V2/GSLA tool reported
comprehensive and specific annotations without unaccept-
ably low accuracy. Many annotations identified by HIR
V2/GSLA but missed by other tools may provide clues for
further research, as reported in the researches by Mavin
et al. (44). and Francozo et al. (47).

Discussion

To build the reference interactome for humans, many
efforts have been made prior to our study. To date, many

human interactomes have emerged that provide experimen-
tally reported protein−protein interactions or predicted
molecular interactions. For example, BioGRID (21) and
IntAct (22) collect the molecular interactions that are
reported by experiments. Others provide the molecular
interactions that are predicted, such as STRING (33). Actu-
ally, the molecular interactions reported by experiments
are considered more accurate than those reported by pre-
diction. However, the number of experimentally reported
molecular interactions is too small. In addition to the
limited number, molecular interactions reported by high-
throughput experiments show a high rate of false positives
(48) and occupy the majority of experimentally reported
molecular interactions. Moreover, some experimentally
confirmed molecular interactions do not have biological
significance, such as true interactions with no shared sub-
cellular compartments in normal physiological conditions.
In contrast, the predicted molecular interactions show lim-
itations in reliability. STRING is a widely used predicted
interactome. The entire database of STRING has a total of
7 195 686 predicted human interactions, which cover a very
high proportion of the human interactome (78.63%); how-
ever, the reliability is only 1.66%, indicating that 1.66%
of STRING interactions were expected to represent protein
interactions. Therefore, in the evaluation of the new gene
annotation prediction described above (Figure 3), the HIR
V2 performs better than both the experimentally reported
interaction database and the predicted interactomes. Sur-
prisingly, the previous version of the HIR developed in
2013 still performs better than the other interactomes.
Both the HIR V2 and HIR 2013 show balanced sensi-
tivity and reliability (Figure 3). In conclusion, the HIR
V2 is a high-quality reference protein interaction network
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that complements the existing resources for functional gene
interaction analyses.

Based on our high-quality HIR V2, GSLA is able to
interpret the functional impacts of OTCs in humans. The
high precision and high coverage of the HIR V2 can help
GSLA report significant functional associations between
gene sets. The strategy of GSLA is to evaluate the density
of functional gene interactions between individual genes in
two gene sets. The previously developed interactomes can-
not satisfy this requirement, as we described above. After
the evaluation of the functional impact prediction of these
interactomes, the HIR V2 showed the best performance.
TheHIR 2013 also faced this phenomenon (10). The power
of existing human interactomes for GSLA is not as effec-
tive as the high-quality interactomes that we specifically
developed for humans.

The HIR V2/GSLA system extends the capability of
the existing enrichment-based gene set annotation tools.
Enrichment-based annotation tools categorize the OTCs
into established biological processes. Here, GSLA shows
the advantage of interpreting the functional impacts of
OTCs when there is no established biological concept.
In this case, other enrichment-based tools cannot give
instructive annotations, while the HIR V2/GSLA system
may still help investigators better understand how the
observed change connects to related physiologies. In addi-
tion, the HIR V2 provides a useful and high-quality func-
tional association resource to researchers that enables them
to describe the molecular mechanism of their genes of
interest.

The HIR V2 database contains experimentally reported
interactions integrated from major interaction reposito-
ries and the most comprehensive prediction of the human
interactome with a high reliability. The website of HIR
V2 features a user-friendly query interface, providing rich
annotation on the relationships between two proteins. A
graphical interaction network browser has also been inte-
grated into the web interface to facilitate the mining of
specific pathways. HIR V2 is not only a resource for large-
scale mining of human interaction networks but also an
exploratory tool for cell/molecular biologists to under-
stand more about the relationships between the proteins in
specific cellular processes.
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CD4+CD25+ T regulatory cells inhibit cytotoxic activ-
ity of T CD8+ and NK lymphocytes in the direct cell-to-cell
interaction. Clin. Immunol., 112, 258–267.

40. Chang,W.-C., Li,C.-H., Chu,L.-H. et al. (2016) Regulatory
T cells suppress natural killer cell immunity in patients with
human cervical carcinoma. Int. J. Gynecol. Cancer, 26,
156–162.



Page 12 of 13 Database, Vol. 00, Article ID baab009

41. Pedroza-Pacheco,I., Madrigal,A. and Saudemont,A. (2013)
Interaction between natural killer cells and regulatory T cells:
perspectives for immunotherapy. Cell. Mol. Immunol., 10,
222–229.

42. Onishi,Y., Fehervari,Z., Yamaguchi,T. et al. (2008) Foxp3+
natural regulatory T cells preferentially form aggregates on
dendritic cells in vitro and actively inhibit their maturation.
Proc. Natl. Acad. Sci. USA, 105, 10113–10118.

43. Maldonado,R.A. and Von Andrian,U.H. (2010) How tolero-
genic dendritic cells induce regulatory T cells. Adv. Immunol.,
108, 111–165.

44. Mavin,E., Nicholson,L., Rafez Ahmed,S. et al. (2017) Human
regulatory T cells mediate transcriptional modulation of den-
dritic cell function. J. Immunol., 198, 138–146.

45. Barrett,T., Wilhite,S.E., Ledoux,P. et al. (2013) NCBI GEO:
archive for functional genomics data sets—update. Nucleic
Acids Res., 41, D991–D995.

46. Edgar,R., Domrachev,M. and Lash,A.E. (2002) Gene
expression Omnibus: NCBI gene expression and hybridiza-
tion array data repository. Nucleic Acids Res., 30,
207–210.

47. Françozo,M.C.S., Costa,F.R.C., Guerra-Gomes,I.C. et al.
(2019) Dendritic cells and regulatory T cells expressing CCR4
provide resistance to coxsackievirus B5-induced pancreatitis.
Sci. Rep., 9, 14766.

48. Feng,T., Basu,P., Sun,W. et al. (2019) Optimal design for high-
throughput screening via false discovery rate control. Stat.
Med., 38, 2816–2827.


	HIR V2: a human interactome resource for the biological interpretation of differentially expressed genes via gene set linkage analysis
	Introduction
	Materials and methods
	Data integration for the prediction of functional associations in humans
	Computation and evaluation of feature value
	Interference of functional associations between human genes
	Gene set linkage analysis tool
	Construction of the HIR V2/GSLA website

	Results
	Functional gene association network evaluation
	Web interface of the HIR V2/GSLA
	Using the HIR V2/GSLA system to reanalyse the Treg-DC dataset

	Discussion
	Ethics approval and consent to participate
	Consent for publication
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Authors' contributions
	References


