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OBJECTIVE—The complement system contributes to autoim-
mune injury, but its involvement in promoting the development
of autoimmune diabetes is unknown. In this study, our goal was
to ascertain the role of complement C3 in autoimmune diabetes.

RESEARCH DESIGN AND METHODS—Susceptibility to dia-
betes development after multiple low-dose streptozotocin treat-
ment in wild-type (WT) and C3-deficient mice was analyzed.
Bone marrow chimeras, luminex, and quantitative reverse tran-
scription PCR assays were performed to evaluate the phenotypic
and immunologic impact of C3 in the development of this
diabetes model.

RESULTS—Coincident with the induced elevations in blood
glucose levels, we documented alternative pathway complement
component gene expression within the islets of the diabetic WT
mice. When we repeated the experiments with C3-deficient mice,
we observed complete resistance to disease, as assessed by the
absence of histologic insulitis and the absence of T-cell reactivity to
islet antigens. Studies of WT chimeras bearing C3-deficient bone
marrow cells showed that bone marrow cell–derived C3, and not
serum C3, is involved in the induction of diabetes in this model.

CONCLUSIONS—The data reveal a key role for immune cell–
derived C3 in the pathogenesis of murine multiple low-dose
streptozotocin-induced diabetes and support the concept that
immune cell mediated diabetes is in part complement-dependent.
Diabetes 59:2247–2252, 2010

T
ype 1 diabetes is a T-cell–dependent autoim-
mune disease in which islet antigens are pre-
sented by antigen-presenting cells (APCs) to
autoreactive T cells, breaking self tolerance

(1,2). After attraction to the pancreas, the autoreactive
CD4 T cells cause �-cell injury in part through secreting
proinflammatory cytokines that directly act on the islet
cells (3), as well as by activating macrophages that amplify
injury (4).

In previous work, we showed that during cognate T

cell/APC interactions, immune cell–derived complement
activates locally, yielding C3a and C5a that bind to C3a/
C5a receptors (C3aR/C5aR) on both partners (5). The
resultant G-protein–coupled receptor (GPCR) signaling
further activates the APCs (upregulating costimulatory
molecule expression and innate cytokine production) and
directly induces survival and proliferation of the respond-
ing T cells. These concepts apply to in vivo immunity as
T-cell responses to autoantigens (6–8), transplant antigens
(9–12), and viruses (5,13) are diminished in mice in which
immune cells are deficient in C3 or C3aR/C5aR, whereas
T-cell immunity is enhanced in mice in which immune cells
are deficient in the cell surface complement regulatory
protein decay-accelerating factor (DAF, CD55) (8,10).

These results, along with a multitude of reports docu-
menting that complement contributes to autoimmune in-
jury (14–16), prompt the question of the possible
involvement of the complement effectors in promoting the
development of T-cell–mediated diabetes. This gap in the
understanding of the function of complement in type 1
diabetes is unexpected, given that complement effectors,
in particular C3a and C5a, are potent proinflammatory
mediators and that inflammation has long been linked in
the pathogenesis of type 1 diabetes.

To test the role of complement C3 on the development
of T-cell–mediated diabetes, we employed an established
model using multiple low-dose streptozotocin (MLDS)
treatment. We chose the MLDS model over the NOD model
because C3 and the diabetes susceptibility genes in the
NOD strain are closely linked on chromosome 17 (17,18),
thus impairing our ability to produce C3-deficient NOD
animals. Streptozotocin (STZ), a toxin that binds to the
GLUT2 receptor on pancreatic �-cells, has been used for
decades to induce diabetes in rodent models (19). When
administered at a single high dose (Hi-STZ, 180 mg/kg), it
induces necrosis of the �-cells without leukocytic infil-
trate. Collapsed islets and elevated serum glucose levels
are detectable within 2–3 days (20). In contrast, when STZ
is administered as multiple low doses (MLDS, 40 mg/kg
daily for 5 days), it induces distortion of the islet architec-
ture in conjunction with mononuclear cell infiltration.
Although elevated serum glucose can be detected as early
as day 7, typically 2 to 3 weeks are required for sustained
diabetes (19). Rather than necrosis, apoptosis is the un-
derlying mechanism of islet cell death, documented by
findings that animals deficient in islet-associated caspase-3
are resistant to STZ effects (21). Current concepts are that
apoptosis provides an environment in which islet autoan-
tigens can be processed and presented by infiltrating
APCs. Immune cell mediated injury by autoreactive T cells
that have escaped thymic deletion is the dominant patho-
genic mechanism (22). Consistent with this hypothesis,
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studies in the early 1980s demonstrated that T-cell–de-
pleted or –deficient (nude) animals are resistant to MLDS-
induced diabetes (23–25), and that T cells from animals
with MLDS-induced disease can transfer diabetes to naïve
mice (26,27).

Herein we report that immune cell C3 is required for
MLDS-induced diabetes, and strikingly, that the C3 must
derive from immune cells rather than from the serum. Our
results suggest that further studies are warranted in auto-
immune diabetes in humans.

RESEARCH DESIGN AND METHODS

Reagents and antibodies. Anti-mouse CD45.1-PE, CD45.2-PerCP-Cy5.5, anti-
mouse IFN-� and biotinylated anti-IFN-� mAb, anti-Annexin V-PE (BD Bio-
sciences; San Jose, CA); anti-mouse C3-FITC (MP Biomedicals; Solon, OH);
alkaline phosphatase-conjugated antibiotin antibody (Vector Laboratories;
Burlingame, CA); streptavidin-HRP conjugate (Dako; Carpinteria, CA); colla-
genase P (Roche; Mannheim, Germany); zymosan A (Sigma Aldrich; St. Louis,
MO); streptozotocin (Alexis Biochemicals; Farmingdale, NY).
Mice. BALB/cJ (H-2d), C57BL/6 (H-2b), B6.SJL-Ptprca Pepcb/BoyJ (CD45.1),
B6.C3�/�, and RAG-1�/� (B6.129S7-Rag1tm1Mom/J), nude (B6.Cg-Foxn1nu/J)
male mice were purchased from Jackson Laboratory (Bar Harbor, ME).
B6.C3�/� mice were backcrossed (�10 generations) to BALB/c to obtain
BALB/c.C3�/�. C3 deficiency was confirmed via zymosan A C3-binding assay
(11). Male mice were used at 6 to 10 wks of age, housed under specific-
pathogen–free conditions, and treated in strict compliance with regulations
established by the Institutional Animal Care and Use Committee.
Diabetic model, islet isolation, and islet transplantation. To induce
diabetes, male mice (6–10 weeks of age) were injected intraperitoneally for 5
consecutive days with streptozotocin (40 mg/kg) dissolved in cold 0.1 mol/l
citrate buffer pH 4.5 as previously described (26). Tail-vein glucose was
measured between 10 A.M. and 12:00 P.M., and mice were considered diabetic
when blood glucose levels were �200 mg/dl in two consecutive measurements
on the OneTouch Ultra Blood Glucose Meter (LifeScan; Milpitas, CA). In some
experiments, mice were treated with a single 180-mg/kg body weight intra-
peritoneal injection of STZ. Islet isolation and transplantation were previously
described (28). Isolated islets from male B6 mice were cultured overnight and
incubated with STZ (0.5 mg/ml) for 1 h, washed, and transplanted beneath the
renal capsule of diabetic male B6 recipients (29). Islets were transplanted 10
days after initiating MLDS or 5 days after Hi-STZ treatment in the recipient
mice. Intraperitoneal glucose tolerance testing was performed on day 7 after
transplantation and the area under the curve (AUC) was calculated.
Generation of bone marrow chimeric mice. Bone marrow (BM) cells were
collected from male WT or C3�/� mice of B6 background. Recipient male B6
mice had been lethally irradiated with 900 rads (2 doses of 450 rads with a 3-h
resting period) from a cesium source using a Mark I Model 137Cs irradiator
(JL Shepherd & Associates; San Fernando, CA). Six hours after irradiation,
recipient irradiated mice received 8 � 106 BM cells via the tail vein. Chimerism
of �90% donor origin was confirmed at week 8 by staining for CD45.1 versus
CD45.2, and systemic C3 was assayed by flow cytometry via zymosan binding
followed by staining (11).
Adoptive cell transfer. Splenocytes from male WT or C3�/� mice of B6
background were obtained by gently grinding moistened spleen through a
70-�m filter and washing the cells. Erythrocytes were lysed with ACK Lysis
Buffer (Invitrogen; Carlsbad, CA). Splenocytes were resuspended in sterile
PBS at a concentration of 3 � 106/200 �l for intraperitoneal transfer into male
B6.C3�/� mice. Twenty-four hours after adoptive transfer, recipient B6.C3�/�

mice were treated with MLDS.
Annexin V staining. Isolated islets were cultured overnight with STZ (0.5
mg/ml) at 37°C in humidified air and 5% CO2. Islets were disrupted into a
single-cell suspension and Annexin V staining and analysis was performed as
manufacturer instructed.
Flow cytometry. All flow cytometry experiments were performed using a BD
FACSCanto II (BD Biosciences; San Jose, CA) and data were analyzed on
FlowJo software (TreeStar; Ashland, OR).
Quantitative real-time PCR. Total RNA was extracted from the distal
portion of the pancreas devoid of lymphoid tissue using TriZol solution (Life
Technologies; Carlsbad, CA) and cDNA was generated with oligo(dT) primers.
PCR was performed on a CFX96 Real Time System (Bio-Rad; Hercules, CA)
with the FastStart QuantiTect SYBR Green PCR kit (Qiagen; Valencia, CA) as
described (28). Quantitative real-time PCR (qRT-PCR) data were normalized
to cyclophylin. Primer sequences are available on request.
Histopathology and insulitis evaluation. Islet grafts were harvested and
fixed in optimal cutting temperature compound. Frozen sections were cut into

5-�m–thick sections and islet morphology and leukocyte infiltration were
assessed by H&E staining. Islets were graded by blinded investigators for
severity of insulitis on a scale of 0–4: islets devoid of mononuclear cells � 0;
minimum focal islet infiltrate � 1�; peri-islet infiltrate of 	25% of islet
circumference � 2�; peri-islet infiltration and 	50% intra-islet infiltrate � 3�;
intraislet infiltration �50% of islet area � 4�. The insulitis score (%) for each
group was calculated as: sum of (1� number of islets with 1�; 2 � number of
islets with 2�; 3 � number of islets with 3�; 4 � number of islets with 4�)
divided by 4 � total number of islets scored (30). The calculated ratio
represents the insulitis score percentage and was expressed as the mean 

SEM. Each study group included 3 mice with a minimum of 10 islets scored.
Luminex assay. Splenocytes were harvested on experimental day 0, 10, or 19
from MLDS-treated male B6 and B6.C3�/� mice. Dilutions of spleen cells were
plated in HL-1 media stimulated in the presence or absence of purified islet
cells (5 � 105/well) and cultured at 37°C in 5% CO2 for 24 h. Supernatants from
cultures were collected for quantification of cytokines by Bio-Plex Pro Mouse
Cytokine TH1/TH2 assay. Assays were conducted according to the manufactur-
er’s instructions and analyzed on a Bio-Plex 200 System (Bio-Rad; Hercules, CA).
Statistics. Results are expressed as mean 
 SEM, unless stated otherwise.
Differences in gene expression were calculated using the nonparametric
Mann-Whitney U tests. P 	 0.05 was considered statistically significant.
Statistical analysis was performed with the SPSS Version 16.0 software
package (SPSS; Chicago, IL).

RESULTS

MLDS induces T-cell–mediated autoimmune diabe-
tes. To verify that MLDS is T-cell dependent in our
pathogen-free colony [contrasting with previous work
done in the 1980s in which experiments were not done in
a specific-pathogen–free environment (25,31)] we injected
WT, RAG1�/�, and nude B6 mice with MLDS. In all WT
mice, we detected progressively elevated serum glucose
levels beginning on experimental day 7 and all became
diabetic by experimental day 17. In contrast, we found that
none of the RAG1�/� and none of the nude mice developed
diabetes (Fig. 1A). In control experiments, we observed
that Hi-STZ (which directly destroys islet tissue) induced
diabetes by experimental day 7 comparably in WT and
RAG1�/� mice (Fig. 1A). On H&E-stained pancreas tissues
obtained on experimental day 19, we found significant
intra- and peri-islet mononuclear infiltration in the pan-
creas of all WTs with a mean insulitis score of 50.4 
 6.5%,
whereas we noted intact islets with no mononuclear cell
infiltrates in all RAG1�/� mice (Fig. 1B).

To test whether the MLDS protocol induced islet-reac-
tive T-cell autoimmunity, we reasoned that after syngeneic
islet transplantation, the primed islet-reactive, cellular
immune response would rapidly destroy the transplanted
tissue and induce recurrent diabetes. To test this hypoth-
esis, we isolated islets from WT B6 mice, pretreated them
in vitro with STZ to facilitate neoantigen expression (29),
and then transplanted 500 islets under the kidney capsules
of syngeneic MLDS-induced diabetic B6 mice. We injected
identically-treated islets into Hi-STZ diabetic B6 recipient
mice as controls. We observed that after transplantation,
all animals rendered diabetic by either MLDS or Hi-STZ
initially significantly lowered their serum glucose values
by day 2 after transplantation, demonstrating that the
transplanted islets were functional (Fig. 1C and D). Sub-
sequently, the serum glucose of all of the transplanted
MLDS-treated animals increased to pretransplant values
within 1 week after transplant (Fig. 1C). In contrast, in the
Hi-STZ treated mice, we found that islet transplantation
markedly reduced and stabilized lower serum glucose in
all animals and fully normalized serum glucose in 6 of 8
mice (Fig. 1D). On day 7 after transplantation, the MLDS
recipients had a significantly impaired insulin response
after intraperitoneal glucose load compared with the Hi-
STZ–treated recipients (Fig. 1E). When we examined the
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pancreas tissue, we found mononuclear cell infiltration in
the transplanted islets from the MLDS-treated mice, but
not in the Hi-STZ–treated animals (Fig. 1F). Control exper-
iments with islets that were not treated in vitro with STZ
prior to transplantation into MLDS mice resulted in pro-
longed euglycemia (n � 3; data not shown). Together
these experiments support the concept that MLDS induces
autoimmune diabetes, whereas Hi-STZ induces diabetes
through an islet-toxic mechanism.
C3 is required for MLDS-induced diabetes. Because
we (8,32,33) and others (34–36) have shown that immune

cell-produced complement exerts control over T-cell au-
toimmunity in other models, we assessed the kinetics of
complement component gene expression in total pancre-
atic tissue after MLDS administration using qRT-PCR. We
detected gene transcripts for complement components C3
and factor B in pancreatic tissue obtained on experimental
day 5 of MLDS. We noted that other complement compo-
nents, receptors, and regulators, including factor D,
C3aR1, C5aR1, and decay-accelerating factor (DAF) were
detectable, but were not increased during the same time
period (Fig. 2). We did not detect C3 or factor B transcripts
from purified islets obtained from untreated animals or
from mice treated with MLDS on days 5 or 10 (data not
shown), suggesting that the pancreatic C3-derived from
peri-islet immune cell infiltrates rather than from islet
cells.

To test whether C3 is required to induce diabetes after
MLDS, we administered MLDS to C3�/� mice on both
C57BL/6 (n � 12) and BALB/c (n � 7) background. In
contrast to the WTs (C57BL/6 n � 11, BALB/c n � 11) in
which blood sugars exceeded 200 mg/dl at experimental
day 11 in all mice, none of the C3�/� mice from either
background developed hyperglycemia (Fig. 3A). Although
we found histologic evidence of insulitis on experimental
day 19 after MLDS in WT mice, we did not observe
mononuclear infiltration within the islets of C3�/� animals
(Fig. 3B). The mean insulitis score was 50.4 
 6.5% in WT
versus 5.3 
 2.7% in C3�/� mice (P 	 0.01) (Fig. 3B). In
control experiments to test whether islets lacking C3
limits susceptibility to the effects of STZ, we cocultured
WT and C3�/� islets overnight with 0.5 mg/ml STZ. When
we then tested the cultured islets for apoptosis, we found
similar levels of Annexin V staining in WT islets and C3�/�

islets, 50.1% vs. 56.3%, respectively (Fig. S1, available in an
online appendix at http://diabetes.diabetesjournals.org/
cgi/content/full/db10-0044/DC1). In confirmation of equiv-
alent susceptibility to STZ, all Hi-STZ treated C3�/� mice
(n � 4) and WT mice (n � 7) developed diabetes with
identical kinetics to the WT controls (Fig. 3A).

Because mononuclear cell chemoattractants CCL2 and
CCL3, in addition to T-cell–derived IFN-� and the innate
cytokine IL-6, are implicated as mediators of insulitis, we
measured their gene transcripts in pancreatic tissue of
MLDS-treated WT and C3�/� mice. Compared with WT
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FIG. 1. MLDS-induced diabetes is T-cell dependent. A: Cumulative
diabetes incidence and mean blood glucose levels in MLDS WT (n �
11), MLDS Rag1�/� (n � 7), MLDS nude (n � 5), Hi-STZ WT (n � 7),
and Hi-STZ Rag1�/� (n � 4) mice. B: Histopathology of pancreatic
sections from WT and Rag1�/� mice stained with H&E from experimen-
tal day 19 MLDS mice reveal infiltration present in WT, but absent in
Rag1�/� mice. Arrowhead indicates areas of infiltration; original mag-
nification �200. Five hundred islets were pretreated with 0.5 mg/ml
STZ for 1 h, then transplanted into (C) MLDS (n � 7) and (D)
Hi-STZ–treated (n � 8) syngeneic recipients. Individual blood glu-
cose levels are shown. E: AUC was calculated from glucose tolerance
test performed on day 7 after islet transplantation in addition to
control nondiabetic mice (n � 6). F: Histopathology of transplanted
islets from MLDS and Hi-STZ–treated mice stained with H&E day 15
after transplantation. Heavy infiltration (arrowhead) was present
in the transplanted islets from MLDS, but not Hi-STZ mice; original
magnification �200.
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mice, C3 deficiency was linked with lower expression of
these genes, with CCL2 and CCL3 achieving statistical
significance. Notably, we found that these differences
were associated with lowered expression of the macro-
phage marker CD68 within the pancreas (Fig. 3C).
Diminished T-cell immunity to islet antigens in C3�/�

mice. To test the effect of C3 deficiency on the islet-
reactive T-cell response, we cultured spleen cells from
MLDS-treated WT and C3�/� mice (and from untreated
controls) in the presence or absence of purified islet cells
and measured cytokine production in culture supernatants
24 h later (Fig. 4). These analyses revealed islet-induced
production of TNF� (experimental day 10) and IFN-�
(experimental day 19) in MLDS-treated WT mice. Spleno-
cytes obtained from untreated mice did not respond to
islet stimulation, confirming that the noted cytokine pro-
duction was induced by MLDS. In contrast to the results in
WT mice, we did not detect cytokines in cultures of day-19

splenocytes obtained from MLDS-treated C3�/� mice.
Other cytokines including IL-17 and IL-10 were barely
detectable and not different between groups (data not
shown).
MLDS-induced diabetes requires bone marrow cell-
derived C3. Because immune cell–derived complement
plays an integral role in adaptive T responses (13,37), we
transplanted C3�/� (CD45.2) BM into lethally irradiated
CD45.1 WT B6 mice (C3�/� BM3WT) to produce animals
that contained serum C3, but possessed C3�/� BM cells.
Conversely, we transplanted WT B6 CD45.1 BM into
lethally irradiated CD45.2 C3�/� mice (WT BM3C3�/�) to
produce animals deficient in serum C3, but with C3�
BM–derived cells. WT BM3WT chimeras on the B6
background were produced as controls. Staining periph-
eral blood for CD45.1/CD45.2 and analyzing the cells by
flow cytometry (Fig. 5A) verified that the immune cells
were �90% donor BM-derived. Zymosan C3 uptake assays
(Fig. 5B) validated the presence or absence of C3 in the
serum of each animal. We did not detect C3 in the sera of
any WT BM3C3�/� chimeras (same as C3�/� controls),
but we observed that all sera from C3�/� BM3WT and WT
BM3WT chimeras was C3� comparable to WT controls
(Fig. 5B). When we administered MLDS to the chimeric
animals, we found that only 2 of 8 C3�/� BM3WT chimeras
developed diabetes, whereas all of the WT BM3C3�/�

chimeras and all of the control WT BM3WT chimeras
developed sustained hyperglycemia (Fig. 5C).

In separate “add back” experiments to test the require-
ment for spleen cell–derived C3 in MLDS- induced diabe-
tes, we adoptively transferred 3 � 106 WT or control C3�/�

spleen cells into C3�/� mice, and then treated all animals
with MLDS. Although 2 of 3 C3�/� mice that received WT
spleen cells became diabetic, none of 4 animals that
received C3�/� spleen cells developed hyperglycemia (Fig.
S2 in the online appendix).

DISCUSSION

Taken together, our findings indicate that immune cell–
derived C3 is required for the development of diabetes in
the MLDS model. We showed that in WT animals, MLDS-
induced hyperglycemia and islet inflammation are associ-
ated with complement gene upregulation (Fig. 2). We then
documented that C3-deficient mice from two different
genetic backgrounds are resistant to MLDS-induced diabe-
tes (Fig. 3). This protective phenotype occurs in the
absence of islet inflammation (Fig. 3) and in association
with diminished islet antigen-induced spleen cell-derived
IFN-� and TNF� production (Fig. 4). Using a bone marrow
chimera strategy (and confirmed by spleen cell adoptive
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in duplicates by Luminex and the data shown are representative of
three independent experiments.
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transfers), we showed that BM-derived C3 and not serum
C3 is critical for the development of autoimmune diabetes
in this model (Fig. 5).

Previous mechanistic work performed by our group (5)
demonstrated that cognate T-cell/APC interactions result
in release and activation of alternative pathway comple-
ment yielding locally produced C3a and C5a. These inter-
mediaries bind to their respective receptors, C3aR and
C5aR expressed directly on T cells, and through regulating
AKT phosphorylation, augment T-cell proliferation and
prevent T-cell apoptosis (5,11). The C3a and C5a also bind
to their receptors on APCs, upregulating cytokine produc-
tion and costimulatory molecule expression, which further
amplify the T-cell response (5). In the absence of either C3
or C3aR/C5aR, T-cell proliferation is prevented, T-cell
apoptosis is enhanced, and APC-produced cytokines and
costimulatory molecule expression are reduced (5,11),
together resulting in diminished cellular immune re-
sponses. Our new findings that islet-reactive T-cell immu-
nity and graft inflammation are diminished in MLDS
treated C3�/� mice without diabetes are consistent with
these mechanisms. In further support of the role for these
C3aR and C5aR signaling as an underlying mechanism for
our observations, we found that only 1 of 5 mice deficient
in both C3aR and C5aR developed diabetes within 30 days
after initiation of MLDS treatment (Fig. S3).

As others have demonstrated a key role for immune
cell–derived complement as an opsonin (38,39), limited
antigen processing and presentation of autoantigens may

contribute to the protective phenotype of the C3-deficient
mice (40). Macrophage-derived C3, a key regulator of
macrophage activation (41), may also be important in
facilitating macrophage mediated islet injury (4,15). These,
among other effects of C3 on regulating innate and adap-
tive immunity, require additional study.

It is notable that NOD mice develop spontaneous auto-
immune diabetes despite being C5 deficient (42), indicat-
ing that C5, C5a, and the membrane attack complex (43)
are not required in the pathogenesis of diabetes in that
model system. Whether C3 and/or its activation cleavage
products, C3a, C3b, or C3dg are involved in the pathogen-
esis of diabetes in NOD mice is an issue that remains to be
tested. However, the generation of C3�/� NOD mice is
improbable because both C3 and the diabetes-susceptible
H-2Kd genes are located on chromosome 17 (17,18).

Our data support the interpretation that MLDS-induced
diabetes is, in part, an autoreactive, T-cell–mediated pro-
cess. We showed that both T-cell–deficient nude mice and
T- and B-cell–deficient Rag1�/� mice do not develop
hyperglycemia despite administration of MLDS that is
pathogenic in WT animals (Fig. 1). Our documentation of
recurrent hyperglycemia after syngeneic islet transplanta-
tion of MLDS-induced diabetic animals, but not diabetic mice
induced by Hi-STZ (Fig. 1), supports this interpretation.

In summary, this work demonstrates an unanticipated
key role for immune cell–derived C3 in the pathogenesis
of murine autoimmune diabetes. These results argue that
studies testing the function of immune cell–derived com-
plement in human diabetes are warranted.
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